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Abstract-The axially symmetric flexural interaction of a uniformly loaded circular elastic plate resting in 
smooth contact with a transversely isotropic elastic halfspace is examined by using a variational method. 

I. INTRODUCTION 

The analysis of interaction between structural elements such as beams, plates, etc. and elastic 
media is of interest to several branches of engineering. Such solutions are of particular 
importance in analytical studies related to structural foundations resting on soil and rock media. 
This paper examines the application of an energy method to the analysis of the axisymmetric 
interaction between a uniformly loaded thin circular plate and a transversely isotropic elastic 
halfspace. The interface between the plate and the elastic halfspace is assumed to be smooth. 
Furthermore it is assumed that no separation occurs between the plate and the elastic medium. 

The energy method of analysis of the interaction problem centers around the development 
of a total potential energy functional for the plate-elastic medium system, for prescribed plate 
deflection w(r) which is indeterminate to within a set of arbitrary constants. The assumed form 
of w(r) also satisfies the kinematic constraints of the axisymmetric deformation. The total 
potential energy functional consists of the strain energy of the halfspace region, the strain of 
the circular plate and the potential energy of the applied loads. The total potential energy 
functional thus developed is defined in terms of the undetermined constants characterizing the 
plate deflection. We may, however, eliminate two of these constants by invoking the Kirchhoff 
boundary conditions applicable to the free edge of the circular plate. The remaining constants 
are uniquely determined from the linearly independent algebraic equations generated from the 
minimization of the total potential energy functional. 

The method of analysis outlined here is used to examine the flexural interaction of a 
uniformly loaded circular plate with a free edge resting in smooth contact with a transversely 
isotropic halfspace. The boundary plane of the transversely isotropic elastic halfspace is 
assumed to be perpendicular to the axis of elastic symmetry. The assumed deflected shape w(r) 
is an even order polynomial in r up to the sixth order. This particular form of the deflected 
shape is assumed to represent, approximately, the flexural performance of circular plates of 
high relative rigidity. (The parameter, RA, characterizing the relative rigidity of the plate-elastic 
medium system is defined by (21).) 

The energy method of analysis yields analytical expressions for the central deflection, the 
differential deflection and central flexural moment in the thin circular plate. The accuracy of the 
energy estimate is compared with existing solutions for various choices of the relative rigidity 
parameter (RA +O, or RA --)a~). 

2. ANALYSIS 

We consider the axisymmetric indentation of a transversely isotropic elastic halfspace by a 
thin flexible circular plate of thickness h and radius u. The plate is subjected to a uniform load 
of stress intensity p. over its entire surface (Fig. 1). Since no separation takes place at the 
interface, the deflected shape of the plate w(r) also corresponds to the surface displacement of 
the halfspace in the z-direction, within the contact region r s a. 

For axially symmetric deformations of a thin plate, the flexural energy UF is given by 

D 
UF=T 

2(1- vb)dw(r)d2w(r) 
v%r)12 - 7 7.7 rdrde 1 (1) 
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Fii, I. Geometry of the interaction problem. 

where 

and &, and Vb are respectively, the elastic modulus and Poisson’s ratio for the plate material 
and S corresponds to the plate region. 

The elastic strain energy in the transversely isotropic elastic halfspace can be developed by 
computing the work component of surface tractions which compose the interface contact 
stresses. Since the interface is assumed to be smooth, only the normal surface tractions 
contribute to the strain energy. The normal stresses generated as a result of the imposed 
surface displacement w(r) can be uniquely determined from the integral equation methods 
developed by EZlliott[f], Shield[2], England[3], Sveklo[4] and others for the analysis of mixed 
boundary value problems associated with transversely isotropic elastic materials. We consider 
the problem of a transversely isotropic elastic halfspace which is subjected to the axisymmetric 
displacement field 

ux = w(r) for z = 0, O<r<a (3) 

where U, is the component of the displacement vector in the z-direction. The surface of the 
halfspace is subjected to the traction boundary conditions 

flu = 0 onz=O; a<r<m 

a,=0 onr=O; 
(4) 

O<r<= 

where crzl and o;, are the normal and shear stress components of the Cauchy stress tensor 
referred to the cylindrical polar coordinate system (r, 8, z). From the integral equation for- 
mulation of the mixed boundary value problem it can be shown that the compressive contact 
stress at the interface is given by 

where 

k -‘d ’ nu(r)dr 
l+kz 1 I dt om 

(5) 
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and yi, ki (i = 1,2) are constants related to the elastic constants Cii of the transversely isotropic 
elastic material (see Appendix A). From the above results, the elastic strain energy of the 
transversely isotropic elastic halfspace due to the indentation w(r) is given by 

In general, the total potential energy of the externally applied axisymmetric load is given by 

up = - I I p(r)w(r)r dr de 
SP 

where S, is the region occupied by p(r). 
The total potential energy functional for the plate-elastic medium system (U) is obtained by 

the summation of (I), (7) and (8) (i.e. U = UF + UE + UP). For the total potential energy 
functional to satisfy the principle of stationary potential energy we require 

su=o (9) 

where SU is the variation in the total potential energy. In order to apply the principle of total 
potential energy to the interaction problem we assume that the deflected shape w(r) can be 
represented in the form 

w(r) = a ?I ’ C21@2i(d 
I’ 

where C’2i are arbitrary constants and @z(r) are arbitrary functions which satisfy the kinematic 
requirements of the plate deformation. Of the (n + 1) arbitrary constants two can be eliminated 
by invoking the Kirchhoff boundary conditions[5] applicable for the free edge of the circular 
plate, i.e. 

M&)=-D -y-p-- 
[ 
d2w(r) v,, dw(r) 

r dr 1 =o 
,=0 

(11) 

Using the above conditions, the total potential energy functional for the plate-elastic 
medium system can be represented in terms of (n - 1) independent constants C’2i. The principle 
of total potential energy rquires that U be an extremum with respect to the kinematically 
admissible deflection field characterized by C’2i (see, e.g. Sokolnikoff [a]). Hence 

au -= 
ac2i O (i=O,l,..., n-l). (12) 

The above minimization procedure yields (n - 1) linear equations for the undetermined con- 
stants C2i (i = 0, 1.2, . . . , II - 1). 

3. ANALYSIS OF THE CIRCULAR PLATE PROBLEM 

The formal theory developed in the preceding section is applied to the analysis of a 
uniformly loaded circular plate (i.e. S, = S), with a free edge, resting on a transversely 
isotropic elastic halfspace. It is assumed that the deflected shape of the plate can be ap 
proximated by the power series 

3 2i 

W(r) = 0 

ZJ 0 I 
C2i 5 
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(13) 
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where Czi are arbitrary constants. We note that in (13), the particular choice of functions 
corresponding to @&) give a kinematically admissible plate deflection and finite flexural 
moments and shearing force in the plate region OS r~u. Upon satisfaction of the Kirchhoff 
free edge boundary conditions (1 I), the plate deflection (13) can be reduced to the form 

where 

{A,;A2}= (l+a) 
2(2+vb) 

(14) 

(15) 

The contact stress distribution corresponding to the imposed displacement field (14) can be 
determined by making use of the relationships (5) and (6); we have 

where 

\Ir= (ki - kz) 
(VI - ~210 + MO + k2) 

and nzi are constants defined in Appendix A. Also, by making 
the total potential energy functional U reduces to the form 

(17) 

use of w(r) as defined by (14), 

u 2cua' 
=~~c~+c0C2XI+c~x21+1TDC22x~--~0a3~C0+x,C21 (18) 

and the constants xn (n = 1,2,3,4) are also defined in Appendix A. The constants Co and C2 can 
be determined from the equations which are generated from the minimization conditions 

dll=(). dll=o 
ace ’ ac2 * (19) 

The deflected shape of the uniformly loaded circular foundation corresponding to (13) is given 

by 

w(r) = 2c~{x,’ - 4x2 - 2R,,x,} 

(20) 

and R,, is a relative rigidity parameter of the circular plate-transversely isotropic elastic 
halfspace system defined by 

R4 =;(l (21) 

The accuracy of the solution for the plate deflection[(20)] developed by the variational 
procedure can be examined by assigning suitable limits to the relative rigidity parameter RA. 

4. LIMITING CASES 

(i) Infinitely rigid plate 
As the relative rigidity parameter RA +=, the interaction problem reduces to that of the 
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smooth indentation of a transversely isotropic elastic halfspace by a rigid circular punch. In the 
limit as R,, 400, (20) gives the following cxprcssion for the constant displaccmcnl wu 

~Wdh - k2) 

w” = 4cu(l+ Ml + kz)(Y, - 72)’ 
(22) 

The above result is in agreement with the expressions obtained by Elliott[l] and Shield[t] for 
the rigid displacement of a circular punch on a transversely isotropic elastic halfspace which 
were obtained by considering, separately, integral equation methods and results of potential 
theory respectively. 

(ii) Flexible circular loading 
As RA+O, the interaction problem reduces to that of the axisymmetric loading of a 

transversely isotropic elastic halfspace by a uniform circular load of radius o and stress 
intensity po. The two results of particular engineering interest are the maximum deflection w(0) 
and the differential deflection {w(O) - w(a)} within the uniformly loaded area. 

In the limit as R,, +O, the expression (20) yields 

{ W(O))Energy = 
Podk - k2) 

cu(l + Ml + kzXY,- Y2y2) 
(1.045). (2W 

The exact solution for the central deflection of a transversely isotropic elastic halfspace 
subjected to a uniform circular load can be generated by making use of the results given by 
Elliott[l] and Shield[2] for the surface and interior loading of a halfspace. We obtain 

{w(O)hxact = 
PO& - k2) 

c44(1 + M + kz)(Yl- Y2)’ 
Wb) 

The energy estimate for the central deflection of a uniformly loaded area overpredicts the exact 
solution by approximately 4.5%. 

Similarly, the energy estimate for the differential deflection of the uniformly loaded region is 

{w(o) - W(dEncrgy = Po4k - k2) 

cutI + Ml + kz)(r,- Y2) 
{0.364}. 

The corresponding exact solution for the differential deflection is 

{w(o) - W(u))Exaec = Podh - k2) 

Cu(1+k,)(l+k2)(Y,-Y2) 

Wa) 

Wb) 

The energy estimate for the differential deflection overpredicts the exact solution by ap- 
proximately 0.3%. 

It may also be verified that in the limiting case of an isotropic material, the constants cii can 
be related to the Lame constants A and ~1 as follows: cl1 = ~33 = A t 2~, cl2 = cl3 = A, cu = cr. If 
we let uI, y-, 1, we find that V+( 1 - V) and the results (23) and (24) reduce to their 
counterparts for isotropic elastic materials. 

5. FLEXURAL MOMENTS 

The flexural moments in the uniformly loaded plate can be determined by making use of the 
expression for the plate deflection (20) and the relationships 

(25) 
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In general any inaccuracies in w(r) as computed by the energy method are magnified in the 
computation of M, and MB owing to the presence of derivatives up to the second order. A more 
accurate estimate of the flexural moments induced in the plate can be obtained by computing 
the flexural moments induced in the plate due to the combined action of the external uniform 
load p. and the contact stress distribution uJr). Using this technique, it can be shown that the 
central flexural moment (MO) in the circular plate is given by 

M _Po&+ Vb)_ 
0- 16 

~o’~~~~(~,~){~(uz-~z)-(l+~~)Jn(f)}dC (26) 

Using (16) in (25) we obtain 

(1-Vb)MOt(I+~b)m2 --- P 

4 2 (27) 

where m. and m2 are defined in Appendix A. 

6. NUMERICAL RESULTS AND DISCUSSION 

The assumption of tensionless contact at the frictionless interface is central to the 
developments presented in the preceding sections. For the energy solution to be physically 
admissible it is necessary that the contact stresses developed at the interface remain com- 
pressive for various combinations of the relative rigidity parameter RA and the elastic constants 
cib Should the contact stresses become tensile in any region of the interface then the interaction 
problem becomes one of unbonded or unilateral contact between the thin plate and the 
transversely isotropic elastic medium. Accounts of such investigations are given by 
Weitsman[7], Gladwell and Iyer[8], Gladwell[9], de Pater and Kalker[lO] and Selvadurai[ Ill. 
Frictionless contact between plates and elastic media, induced by highly localized or concen- 
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Fig. 2. Contact stress distribution at the interface: halfspace materiii. isotropic. 
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fig. 3. Contact stress distribution at the interface: halfspace material, magnesium. 
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Fig. 4. Contact stress distribution at the interface: halfspace material, cadmium. 
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trated loads are susceptible to such separation effects. In the present study, some indication of 
the nature of the contact stress distribution can be obtained by assigning limiting values for 
the relative rigidity parameter RA (i.e. Ra +O and RA +m). In the former case, the applied stress 
p. is directly transmitted to the interface without any flexural interaction. Therefore, the 
contact stresses are always compressive for all choices of the material parameters c;,. The 
energy estimate for the contact stresses beneath a perfectly flexible plate will be examined in 
relation to Figs. 2-4. 

In the latter instance, we note from (l4), (16) and (20) that as R,,+cQ, the contact stress at 
the interface reduces to 

rz* (6 0) = POU 
&7@-7i- (28) 

This result is in agreement with the analytical results derived by Elliott[ I] and Sveklo[4] for the 
contact stress distribution beneath a rigid circular flat punch resting in smooth contact with a 
transversely isotropic elastic halfspace. Here, the contact stress is uninfluenced by the degree 
of transverse isotropy of the halfspace region. 

For circular plates of intermediate relative rigidity, the contact stresses depend on the 
liexibility characteristics of the circular plate and the material characteristics of the transversely 
isotropic elastic medium. The energy estimate of the contact stress distribution at the friction- 
less interface can be written in the form 

(29) 

where the constants cf depend on the relative rigidity parameter RA. This latter parameter can be 
rewritten as 

R,, = KR” (30) 

where K is a reduced relative rigidity parameter defined by 

K,l Eb h ’ 
12c44(I-vbq a 0 (31) 

and 

R*= #I - k2MwJ2) 

3hV(sXl +k2)-k2VhXl +h~~-3tv’(~2X~ +k2)- ~2dhXl+ k,)) * 

(32) 

The influence of the degree of transverse isotropy and the relative rigidity on the contact 
stress at the interface is examined by carrying out numerical computations for certain specific 
materials which display transversely isotropic properties. The material constants c+ ki and vi 
characterizing transversely isotropic materials such as magnesium and cadmium are reported by 
Chen[l2], Atsumi and Itou[l3] and Dahan and Zarka[lrl]. These properties together with 
material constants corresponding approximately to an isotropic material are listed in Tables 1 
and 2. The contact stress distributions derived for these three categories of materials are 

Table I. Elastic constants cii used (in units of IO” dynlcm’) 

Approximate isotropy 0.99997 3.5 3.5 1.5 I.5 
Magnesium 1.64 5.97 6.17 2.62 2.17 
Cadmium 1.56 11.00 4.69 4.04 3.83 
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Table 2. Values of Y, and k, (i = 1.2) 

VI Y h k2 

Approximate isotropy 1.00930 0.99078 1.01305 0.98712 
Magnesium 2.05017 0.5041 I 2.78203 0.35945 
Cadmium 1.04862 0.40660 I .85062 0.54036 

illustrated in Figs. 24. Values assigned for the reduced relative rigidity parameter K range 
from l@ to 10T4. The relative rigidity of lob corresponds, approximately, to a rigid circular 
plate. The contact stress distributions given in Figs. 2-4 indicate that at this upper limit of K the 
contact stresses are uninfluenced by the degree of transverse isotropy and the results cor- 
responds accurately to the contact stress distribution beneath the rigid circular punch. Similarly 
at the lower limit of K (= IO-') the contact stresses appear to uninfluenced by the degree of 
transverse isotropy of the elastic medium. This lower limit therefore corresponds to the energy 
solution for the perfectly flexible plate. Theoretically, this contact stress distribution should be 
uniform. The energy solution, however, gives a non-uniform result indicating that the contact 
stress distribution at this range of relative rigidity is sensitive to the prescribed deflected shape. 
To accurately depict the contact stress distribution applicable for the case K +O it is necessary 
to include further terms in the expansion for w(r) defined by (13). For the isotropic case (Fig. 2) 
the contact stresses compare favourably with equivalent results given by Brown[IS] who 
employs a power series expansion technique for the analysis of the interaction problem. Similar 
results are ,given by Borowicka(l61. Admittedly, this paper examines only a few specialized 
cases of transverse isotropy. As such no general conclusions can be made with regard to the 
nature of the contact stress distribution at the frictionless interface. The results given here, 
however, indicate that the development of tensile contact stresses can be suppressed in 
unilateral contact problems involving circular plates which are uniformly loaded over its entire 
surface area. 
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APPENDIX A 
The stress-strain relationships for the transversely isotropic material is given by 

o, = Cl& + cl& + c1xex.r: o,, = tug, 

o,, = clze, + Cllf,y + cuf**; a, = Cuf, 

022 = Cdfs* + f,,) + Cnfzz ; UIY =;h-c,2)f,, 

where u and c are the stress and strain tensors referred to the rect Cartesian system. 
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Following Green and Zerna[l’l] we introduce a set of non-dimensional parameters u. and k,, (a = 1.2) which are 
dependent on the five elastic constants r,,. The pair vi and vz are roots of the equation 

c,,c~v’+ [c13(2cu+ c13)- c~,r,~]vt c3jru=0 

and k, (i = 1.2) are defined by 

cllv,-cu k,=--. 
cIltcu 

(i= 1,2). 

Also yj (i = I, 2) are given by 

The Parameters V2i (i = 0, I, 2.3) and x, (i = I, 2.3.4) are given by 

and 

8 I6 
X,=‘)otf(lttlr)t~(A,trlr)t5j(A*trlb) 

,,Z 3rlot~(A,r)ot?~)t~(A~tlotAtrhtrl,) 

t~(~~A~trl.~~t?r)t~(~.A~t~~l)+~tJ~lt 

~,=8t32A,t$4A~t144A,A2t~A,1t~A~1 

t-(I-vb){4+16A,+24A2+48A,A2+16A,*+36A2*) 

,!+Al& 
x4 2 3 4’ 

The consl;lnts m. and m2 are defined by 

where 


