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• An analytical solution for the poroelastic problem associated with a line injection sources is developed.
• Numerical results that can be used as a first approximation of ground heave for different line injection lengths are presented.
• The potential of failure development at the injection zone is examined.
• Provides validation of a computational approach.
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a b s t r a c t

This paper examines the geomechanical effects resulting from the injection of a non-
reactive fluid along a line segment located at the interior of a poroelastic halfspace. The
mechanical behaviour of the geologic medium is described using Biot’s classical theory of
poroelasticity. The mathematical solutions for the surface heave associated with a point
injection source are used to develop results for the ground heave associated with both
vertically-aligned and horizontally-aligned line injection sources of constant intensity and
finite length. The results obtained from the mathematical analysis are used to benchmark
computational results for analogous problems.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The behaviour of fluid-saturated geological media due
to injection of fluids at the interior has important applica-
tions to the geologic sequestration of fluidized greenhouse
gases (Rutqvist,1 Selvadurai2,3) and geologic disposal of
contaminants and hazardouswastes in fluidized forms.4–12

Pressurized injection of fluids to the interior of a geologic
medium can alter the stress state in the porous skeleton
and in the pore fluids. It is therefore important to assess the
influences of injection activities so that the geomechanical
implications, particularly in terms of potential for fracture
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generation and failure in the geologic medium, can be ad-
equately assessed. The failure of geologic media during in-
jection is an important consideration in energy resources
extraction endeavours (e.g. shale gas extraction). The injec-
tion of fluids to the interior of geological media can result
in ground heave. This aspect is also important to engi-
neering implementation of geologic sequestration of flu-
idized greenhouse gas. Recent CO2 injection activities in
In Salah, Algeria have resulted in time-dependent heave of
the ground surface (Fig. 1) (see e.g. Vasco et al.13). Ground
heave can result in additional stress that can lead to fail-
ure of geological media. Themajority of studies in this area
treat the injection activity as a static process where the ge-
ologic medium is assumed to be an elastic solid and the in-
jection process is simulated by a distribution of centres of
dilatation acting at the interior of the geologic formation.
Examples of such studies are given byGeertsma,14 Segall,15
Segall and Fitzgerald16 and more recently by Selvadurai.2,3
Within the scope of the theory of linear poroelasticity, the

http://dx.doi.org/10.1016/j.gete.2015.03.001
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Fig. 1. Example of the ground heave due to CO2 injection (Fig. 1 given in Vasco et al.13).

solutions at t = 0 and t → ∞ are essentially elasticity so-
lutions. The fluid injection process is, however, a transient
problem and the stress state in the geological medium can
be influenced by the rate of injection. Therefore it is im-
portant to pose the fluid injection problemwithin the con-
text of the theory of poroelasticity so that the influence of
the injection rate, the fluid transport properties, etc., can be
incorporated in the study of the injection problem. An ob-
jective of this paper is to extend the existing modelling to
include transient poromechanical behaviour of the geo-
logic medium and to simulate the injection process so that
the time-dependent ground heave and the stress state at
critical locations of the geological formation can be as-
sessed in terms of non-dimensional parameter groups as-
sociated with the poroelastic properties and the injection
processes.

The classical theory of poromechanics, as developed by
Biot,17 provides a suitable phenomenological model for
examining the coupled processes encountered in fluid-
saturated porous media. The basic theory takes into
consideration the transient effects associated with the
coupling of fluid flow and elastic deformations in a fluid-
saturated porous medium. Extensive accounts of develop-
ments in this area and alternative representations of Biot’s
governing equations are given by Rice and Cleary,18 De-
tournay and Cheng,19 Coussy,20 Selvadurai,21,22 Selvadu-
rai and Yue,23 Yue et al.,24 Selvadurai and Shirazi25 and
Verruijt.26 Despite simplifications associated with the as-
sumption of linear elastic behaviour of the porous skele-
ton andDarcy flow through the porous skeleton, the theory
continues to be the mainstay of approaches associ-
ated with the solution of many important problems in
geosciences and geomechanics relevant to groundwater
extraction and recharge,27,14,28–30 geologic disposal of heat-
emitting nuclear waste,4,5,11,12 geologic sequestration of
greenhouse gases in fluidized forms31,32 and deep mantle
processes and seismic effects.33,34

This paper examines the geomechanical response of the
fully saturated porous medium resulting from fluid injec-
tion into the interior region. The mathematical solution

for the axisymmetric point source problem is used to de-
velop results for line source injection problems. Integral
transform techniques (Hankel and Laplace transform tech-
niques) are used in the solution of the point source injec-
tion problem. The results are converted to 3-dimensional
solutions by taking double Fourier transforms instead of
Hankel transforms. It is shown that the mathematical so-
lutions for horizontally and vertically aligned line sources
can be obtained by superposing the point source solutions.
The analytical results are also used to assess the accu-
racy of the computational results obtained from the finite
element-based multi-physics code, COMSOLTM.

2. Governing equations

The constitutive equations for linear, isotropic and
isothermal poroelasticity were first given by Biot17 and
rederived and extended in terms of engineering pa-
rameters by Rice and Cleary18 (see also Detournay and
Cheng19; Selvadurai and Yue23; Yue and Selvadurai35;
Selvadurai21,22):

σ = 2Gϵ +
2Gν

1 − 2ν
trϵI −

3(νu − ν)

B(1 − 2ν)(1 + νu)
pI (1)

p =
2GB2(1 − 2ν)(1 + νu)

2

9(νu − ν)(1 − 2νu)
Θ −

2GB(1 + νu)

3(1 − 2νu)
trϵ (2)

where p is the pore pressure, ϵ is the strain tensor, σ is the
total stress, Θ is the volumetric strain, G is the shear mod-
ulus, ν is the Poisson’s ratio, νu is the undrained Poisson’s
ratio, and B is the Skempton’s pore pressure parameter.36
Darcy’s law governing flow of the fluid through the porous
medium is given by

v = −
k
γw

∇p (3)

where v is the velocity of the fluid and k is the hy-
draulic conductivity. In Eq. (3), we assume that the veloc-
ity of the porous skeleton is small in comparison to the
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velocity of the pore fluid and therefore can be neglected
in the formulation of Darcy’s law. Substituting Eqs. (1)–(3)
into the equations of equilibrium and the mass conserva-
tion equation of the pore fluid gives rise to the basic equa-
tions governing the theory of poroelasticity in terms of the
displacements and the pore fluid pressure.We first restrict
attention to a state of axial symmetry in the fluid injection
process into an interior point. The axisymmetric form of
the basic equations governing Biot’s poroelasticity can be
written as

G

∇

2ur −
ur

r2


− (2η − 1)

∂Θ

∂r
= α

∂p
∂r

(4)

G∇
2uz − (2η − 1)

∂Θ

∂z
= α

∂p
∂z

(5)

β
∂p
∂t

− γ
∂Θ

∂t
= c∇2p (6)

where

α =
3(νu − ν)

B(1 − 2ν)(1 + νu)
;

β =
(1 − 2νu)(1 − ν)

(1 − 2ν)(1 − νu)
;

γ =
2GB(1 − ν)(1 + νu)

3(1 − 2ν)(1 − νu)

c =
2GB2(1 − ν)(1 + νu)

2k
9(νu − ν)(1 − νu)γw

; η =
(1 − ν)

(1 − 2ν)

(7)

and ∇
2 is the axisymmetric form of Laplace’s operator

given by

∇
2

=
∂2

∂r2
+

1
r

∂

∂r
+

∂2

∂z2
. (8)

To ensure positive definiteness of the strain energy poten-
tial, the material parameters should satisfy the following
thermodynamic constraints; G > 0, 0 ≤ B ≤ 1;−1 < ν <
νu ≤ 0.5. (see e.g. Rice and Cleary18; Detournay and
Cheng19; Wang37 and further references are given in
Selvadurai21,22).

2.1. Methods of solution of the governing equations

We introduce displacement functions S(r, z, t) and
E(r, z, t) (see e.g. McNamee and Gibson38,39) where the
displacement and stress components can be expressed in
the forms

ur = −
∂E
∂r

+ z
∂S
∂r

; uz = −
∂E
∂z

+ z
∂S
∂z

− S;

Θ = ∇
2E; p =

2G
α


∂S
∂z

− ηΘ


(9)

σrr

2G
=


∂2

∂r2
− ∇

2

E − z

∂2S
∂r2

+
∂S
∂z

;

σzz

2G
=


∂2

∂z2
− ∇

2

E − z

∂2S
∂z2

+
∂S
∂z

;

σrz

2G
=

∂2E
∂r∂z

− z
∂2S
∂r∂z

. (10)

The coupled system of partial differential equations gov-
erning S(r, z, t) and E(r, z, t) takes the forms

∇
2S = 0 (11)

c∇4E =


β +

αγ

2Gη


∇

2 ∂E
∂t

−
β

η

∂2S
∂z∂t

. (12)

We introduce the zeroth-order Hankel transform with re-
spect to the radial coordinate (r) and the Laplace transform
with respect to the time (t), such that

F̄(ξ , z, t) =


∞

0
rJ0(ξ r)F(r, z, t)dr (13)

F̃(r, z, s) =
1

2π i


∞

0
e−stF(r, z, t)dt. (14)

The PDEs governing Eqs. (11) and (12) give the following
system of the coupled ODEs for the transformed variables
˜̄S(r, z, t) and ˜̄E(r, z, t): i.e.

d2

dz2
− ξ 2


˜̄S = 0 (15)

d2

dz2
− ξ 2


d2

dz2
−


ξ 2

+
s
c


β +

αγ

2Gη


˜̄E

= −
βs
ηc

d ˜̄S
dz

. (16)

3. Fluid injection at a point in the halfspace

We first examine the problem of injection of a fluid at a
constant rate into a point within the poroelastic halfspace.
The injection of fluid occurs at a constant volume flow
rate of Q0 (units L3/T) at a point located at a finite depth
h from the traction free surface (Fig. 2). For convenient
formulation, we introduce the superscript ( )L to indicate
the layer occupying the region r ∈ (0, ∞); z ∈ (0, −h),
and the superscript ( )H to indicate the halfspace occupying
the region r ∈ (0, ∞); z ∈ (0, ∞) (Fig. 2).

The boundary conditions applicable to the surface z =

−h are

σ L
zz(r, −h, t) = 0; σ L

rz(r, −h, t) = 0;

pL(r, −h, t) = 0.
(17)

And, at the interface z = 0, the continuity conditions are
uL
r(r, 0, t) − uH

r (r, 0, t) = 0;

uL
z(r, 0, t) − uH

z (r, 0, t) = 0 (18)

σ L
zz(r, 0, t) − σH

zz (r, 0, t) = 0;

σ L
rz(r, 0, t) − σH

rz (r, 0, t) = 0 (19)

pL(r, 0, t) − pH(r, 0, t) = 0. (20)
A velocity discontinuity occurs due to the influx of fluid
into a point at the interface (see e.g. Kanok-Nukulchai and
Chau30)

k
γw


∂p
∂z

L

z=0
−

k
γw


∂p
∂z

H

z=0
=

Q0δ(r)
2πr

H(t) (21)

where δ(r) is the Dirac delta function (which has units
of 1/Length) and H(t) is the Heaviside step function. The
initial conditions governing the poroelasticity problem
are
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Fig. 2. Line source injection into a poroelastic halfspace formulated by superposing a number of point sources along the line. (a) Horizontal line source
injection; (b) Vertical line source injection.

σL(x, 0) = σH(x, 0) = uL(x, 0) = uH(x, 0) = 0

pL(x, 0) = pH(x, 0) = 0.
(22)

In addition, the solution should satisfy the regularity
condition, which requires
σ(i)(x, t), p(i)(x, t), u(i)(x, t) → 0,
(i = L,H) as |x| → ∞, t ∈ (0, ∞). (23)

4. Final results for the poroelasticity problem

The solution to the point source injection problem has
been obtained by several authors28–30,40,41 and the ex-
traction problem for a disc-shaped source of infinitesimal
thickness has recently been developed by Selvadurai and
Kim.42 A result of importance to the analysis of ground
heave is the vertical displacement uz(r, z, t) that occurs on
the surface of the halfspace region. Avoiding details of the
mathematical manipulation, the final expression for the
vertical displacement can be represented in the form

uz
L(r, z, t)

Q0γwα/2G(2π)k
=

 ζ+i∞

ζ−i∞


∞

0
ξ J0(rξ)

×


e−ξh

− e−ϕh

ηΓ (ϕ − ξ)2 − η(ϕ2 − ξ 2) + ξ(ϕ − ξ)


×


(ξΓ (z + h) − Γ − ξ(z + h))e−ξz−ξh

+
(2ηξΓ − ξ)

η(ϕ2 − ξ 2)
(ϕe−ϕz−ϕh

− ξe−ξz−ξh)



+ξ(e−ξz−ξh
+ eξz+ξh)

e−ξh

2ηξ(ϕ2 − ξ 2)

+ ϕ(e−ϕz−ϕh
+ eϕz+ϕh)

−e−ϕh

2ηϕ(ϕ2 − ξ 2)


est

s
dξds (24)

where ζ is a real number-associated Bromwich integral
used in the Laplace transform inversion and

ϕ =


ξ 2 +

s
c


β +

αγ

2Gη


; Γ =

βG
2ηβG + αγ

. (25)

Using the relationship between the Hankel transforms and
Fourier transforms,43,44 this mathematical form is con-
verted into a three-dimensional solution by introducing a
double Fourier transformwith respect to x and y instead of
taking the Hankel transform with respect to r . The double
Fourier transform is defined by

F̂(u, v, z, t) =


∞

−∞


∞

−∞

F(x, y, z, t)e−i(ux+vy)dxdy. (26)

The solution for the vertical displacement expressed in
rectangular Cartesian coordinates can then be written as
Eq. (27) given in Box I. Expressions for the double Fourier
equivalents of the axial displacement uz(x, t), pore fluid
pressure p(x, t) and total stressesσij(x, t) are also obtained
using a similar procedure. Relevant results for the stresses
and displacements are given in the Appendix (Boxes IV
to X).
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uz
L(x, y, z, t)

Q0γwα/2G(2π)2k
=

 ζ+i∞

ζ−i∞


∞

−∞


∞

−∞

ei(ux+vy)

×


e−

√
u2+v2h

− e−ϕh

ηΓ (ϕ −
√
u2 + v2)2 − η(ϕ2 −

√
u2 + v22) +

√
u2 + v2(ϕ −

√
u2 + v2)



×


(

u2 + v2(z + h)(Γ − 1) − Γ )e−

√
u2+v2(z+h)

+
(2η

√
u2 + v2Γ −

√
u2 + v2)

η(ϕ2 −
√
u2 + v22)

(ϕe−ϕ(z+h)

−


u2 + v2e−

√
u2+v2(z+h))


+


u2 + v2(e−

√
u2+v2(z+h)

+ e
√

u2+v2(z+h))
e−

√
u2+v2h

2η
√
u2 + v2(ϕ2 −

√
u2 + v22)

+ ϕ(e−ϕ(z+h)
+ eϕ(z+h))

−e−ϕh

2ηϕ(ϕ2 −
√
u2 + v22)


×

est

s
dudvds (27)

Box I.

[Note that the designations
√
u2 + v2 and

√
u2 + v22 in

(27) (and subsequent expressions) are used to emphasize
the fact that the solutions are obtained through the
application of a Fourier transform rather than a Hankel
transform. The Hankel transform variable ξ is

√
u2 + v2

in the Fourier domain and ξ 2 is
√
u2 + v22 in the Fourier

domain.]

4.1. Distributed injection problems 1: Horizontal line source

We consider the problem of fluid injection along a
horizontal line situated at a depth h from the surface of
the poroelastic halfspace (Fig. 2(a)). The problem can be
formulated in a variety ofways including the superposition
technique. Assuming that the line source consists of a
number of point sources placed along the line, the solution
for the horizontal line injection problem can be obtained
by superposing the point source solutions either discretely
or continuously. Using the integral technique, the surface
displacement for the horizontal line injection problem can
be obtained from the result
uL
z(x, y, −h, t)(Horizontal line source)

=

 l

−l
UL
z (x, y, −h, ξ ∗, t)(Point source)dξ ∗ (28)

where UL
z (x, y, −h, ξ ∗, t)(Point source) is given by Eq. (29)

given in Box II.
The complete solution for the horizontal line source is

obtained by utilizing this superposition technique.

4.2. Distributed injection problems 2: Vertical line source

The solution to the problem of the axial surface dis-
placement due to fluid injection along a line source located
on the z-axis can be obtained in the form
uL
z(x, y, −h, t)(Vertical line source)

=

 d

0
UL
z (x, y, −h, η∗, t)(Point source)dη∗ (30)

where UL
z (x, y, −h, η∗, t)(Point source) is given by Eq. (31)

given in Box III.

5. Analytical solutions and comparison with computa-
tions

Formal analytical solutions for the vertical displace-
ments and pore fluid pressure for the cases involving in-
jection along a horizontally- or a vertically-oriented line
source of finite length have been developed. The final anal-
ysis of the problem is completed with the inversion of
both the Fourier and Laplace transforms. An exact inver-
sion of these transforms is not possible but numerical in-
version procedures available in MATLAB R⃝ can be used.
The Laplace transform inversion is performed using the
algorithm developed by Crump.45 The validation of these
numerical schemes for the axisymmetric case is further
discussed in Selvadurai and Kim.42

The computational solutions were obtained using
the finite element-based multi-physics code COMSOLTM.
The horizontal and vertical line source problems are
3-dimensional problems, and the representation of the
COMSOLTM modelling is shown in Fig. 3. The influence of
a finite boundary is minimized by locating the exterior
boundary of the domain at a distance sufficiently remote
from the fluid injection location (i.e. the dimensions of the
discretized domain are x ∈ (−100l, 100l); y ∈ (−100l,
100l); z ∈ (0, 100h)). At the surface, the pore pressure and
the effective stress are set to zero, and a flux discontinu-
ity is applied to the interface between the layer and the
halfspace. The symmetry/zero flux boundary condition is
applied at the bottom and the lateral surfaces. Fig. 4 shows
the mesh configuration used in the COMSOLTM modelling.
Extra fine meshes are used around the injection region,
and coarse meshes are used for the rest of the domain. The
mesh consists of 11,616 tetrahedral elements for l/h = 0.1
and increases to 23,817 for l/h = 10. Each nodal point has
4 degrees of freedom (DOF).

In the computational modelling, the following values
were used to evaluate the surface displacements, the pore
fluid pressure and the effective stresses (the geological
medium has properties similar to limestone given in Hart
and Wang46 and Selvadurai and Najari47):

G = 20.0 × 103 kN/m2
; ν = 0.25; k = 10−5 m/s;

γw = 9.81 kN/m3
; νu = 0.5.



Author's personal copy

6 J. Kim, A.P.S. Selvadurai / Geomechanics for Energy and the Environment 2 (2015) 1–14

UL
z (x, y, −h, ξ ∗, t)

Q0γwα/2G(2π)2k
=

 ζ+i∞

ζ−i∞


∞

−∞


∞

−∞

ei(u(x−ξ∗)+vy)

×

 e−

√
u2+v2h

− e−ϕh

ηΓ (ϕ −
√
u2 + v2)2 − η(ϕ2 −

√
u2 + v22) +

√
u2 + v2(ϕ −

√
u2 + v2)

×
est

s
dudvds (29)

Box II.

UL
z (x, y, −h, η∗, t)

Q0γwα/2G(2π)2k
=

 ζ+i∞

ζ−i∞


∞

−∞


∞

−∞

ei(ux+vy)

×

 e−

√
u2+v2(h+η∗)

− e−ϕ(h+η∗)

ηΓ (ϕ −
√
u2 + v2)2 − η(ϕ2 −

√
u2 + v22) +

√
u2 + v2(ϕ −

√
u2 + v2)


×

est

s
dudvds. (31)

Box III.

Fig. 3. The geometry of the region used in COMSOLTM modelling.

5.1. Point source

Fig. 5 compares the analytical solutions given in this
study for the cases of fluid injection into an interior point
and the analytical solutions for either a horizontal or ver-
tical line source with l/h = 0.1 and d/h = 0.1, re-
spectively. The vertical displacements presented here are
non-dimensionalized by 2Gk/Q0γw where Q0 is the total
volume flow rate for the point source (we omit the nega-
tive sign in the displacement results with the understand-

ing that the vertical displacement uz occurs due to the fluid
injection in the negative z-direction). The point source
results obtained from the axisymmetric system are con-
sistent with the results obtained from the 3-dimensional
model. When the total volume flow rates, Ql/h=0.1 and
Qd/h=0.1, are the same as Q0, the results for the horizontal
and vertical line source cases l/h = 0.1 and d/h = 0.1,
respectively, also show good agreement with the point
source solutions.Ql/h=0.1 = Qd/h=0.1 = Q0 is valid through-
out this study.
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Fig. 4. Mesh configuration of the cross-section (x–z–plane) for the 3-D finite element modelling of the injection problem (11, 616 tetrahedral elements
for l/h = 0.1).

Fig. 5. Comparison of the point source solutions and line source
solutions.

5.2. Horizontal line source

5.2.1. Surface displacement
Fig. 6 illustrates the variation in the time-dependent

surface displacement uz(x, 0, −h, t∗) along the x-axis for
different values of l/h. Since the horizontal line source
solution is obtained by continuously superposing the point
source solution, the total volume flow rate Q increases
as l/h increases (e.g. Ql/h=5 = 10Q0). As expected, Fig. 6
shows that the surface heave increases as l/h increases.
Assuming that the surface heave for the case of l/h = 10
at t∗ → ∞ is the maximum heave, we observed that,
at t∗ = 1, the surface heave for the case of l/h = 0.1
is less than 3% of the maximum heave, while the heave
when l/h = 10 is approximately 30% of the maximum.
At the end of the poromechanical process (t∗ → ∞), the
surface heave for the case l/h = 0.1 only attains 4% of the
maximum heave for the case l/h = 10. This implies that
the time required to reach a certain degree of surface heave
increases as l/h increases. As l/h increases, the surface
heave is flattened at the centre and becomes wider in the
x-direction. The corresponding computational results are
presented as circles and show good agreement (Fig. 6).

The vertical displacements plotted as 3D surfaces are
shown in Fig. 7 for different l/h. It is clearly observable

Fig. 6. Time-dependent surface displacements in the x-direction.

that the magnitude of the surface heave increases and the
shape becomes wider in the x-direction as l/h increases.
However, unlike the results observed in the x-direction, the
heave shape does not change with l/h in the y-direction;
there is no observable flattening of the centre or widening
of the heave in the y-direction.

Fig. 8 shows the non-dimensionalized surface displace-
ment for different Poisson’s ratios where the relative line
length is l/h = 0.1. The surface heave for (ν, νu) =

(0, 0.01), (0, 0.2), and (0, 0.4) are larger than those for
(ν, νu) = (0.49, 0.5), (0.4, 0.5), (0.2, 0.5) and (0, 0.5). The
surface heave decreases as ν increases when νu = 0.5 and
the difference increases to 0.15. The non-dimensionalized
surface heave for (ν, νu) = (0, 0.5) is approximately 0.16
while that for (ν, νu) = (0.49, 0.5) is less than 0.01. When
ν = 0, the surface heave shows a slight decrease as νu
increases; however, the maximum non-dimensionalized
surface heave is the same as that found at 0.16 for (ν, νu) =

(0, 0.01), (0, 0.2), and (0, 0.4) in this study.

5.2.2. Change in pore fluid pressure
In Fig. 9, the changes in pore fluid pressure due to fluid

injection into the porous medium for different values of
l/h are shown. The total volume flow rate Q increases
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(a) l/h = 0.1. (b) l/h = 1.

(c) l/h = 5. (d) l/h = 10.

Fig. 7. Surface heave in the positive x–y–plane for different horizontal injection lengths at t∗ → ∞ (red line indicates the injection region). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

with l/h, and therefore the pore fluid pressure also in-
creases as l/h increases. The results for the horizontal line
source are comparedwith the results obtained for the point
source problem. We noted that the vertical displacement
converges to the point source solution when l/h = 0.1;
however, the pressure results obtained for the horizontal
line source for l/h = 0.1 are bounded whereas those ob-
tained for the point source are singular. The correspond-
ing computational results are plotted as dashed lines and
they show good agreement with the analytical solutions.
The discrepancy between the analytical and computational
results is less than 6% excluding the interface.

5.2.3. Change in effective stresses
The change in the effective stress is calculated from the

result

(σ ′

ij)
Q

= (σij)
Q

− α(p)Q δij (32)

where (σij)
Q and pQ are the changes in the total stress and

pore fluid pressure due to fluid injection and α is the Biot
parameter. The injection of fluids into the porous medium
increases the pore fluid pressure surrounding the injection
region, and, therefore, the effective stress is expected to
decrease in the injection zone. The results obtained at
x = y = 0 are shown in Figs. 10 and 11 for (σ ′

xx)
Q

and (σ ′
zz)

Q , respectively. Both results give negative values,
which indicates that there is a decrease in the effective
stress of the porous medium. The computational solutions
are also plotted in dashed lines on the figures and the
agreement with the analytical solutions is generally good
for results obtained in both the x and z-directions.

5.3. Vertical line source

Fig. 12 presents the non-dimensionalized surface dis-
placements for the vertical line source problem for dif-
ferent values of non-dimensional time t∗. The illustrated
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Fig. 8. Surface settlement for different Poisson’s ratios when l/h = 0.1.

Fig. 9. Changes in pore fluid pressure.

Fig. 10. Changes in effective stress in the x-direction.

results were obtained by varying the length of the vertical
line injection region, d. Although this problem is consid-

Fig. 11. Changes in effective stress in the z-direction.

ered to be 3-dimensional in this study, it is an axisym-
metric problem, and the results obtained in the x- and
y-directions are the same. It can be seen from Fig. 12
that the magnitude of the surface heave increases as d/h
increases. In the case of the horizontal line source, the
surface heave flattened at the centre and became wider as
l/h increased. However, in the case of the vertical source
problem, no widening of the heave was observed and the
flattening at the centre is comparatively smaller than for
the horizontal line source problem. Also, comparing the re-
sults for the cases d/h = 1, 5 and 10 with those for the
horizontal line source problem, it is observed that the mag-
nitudes of the surface heave associated with the vertical line
source injection were larger than those for the horizontal line
source problem. The corresponding computational results
are plotted as circles in Fig. 12. The agreement between the
analytical results and the computational results is good.

6. The stress state during injection

The injection of fluids into the interior of a fluid-
saturated poroelastic medium can alter the stress state in
the halfspace region. In such studies, it is implicitly as-
sumed that the porous medium is hydraulically and me-
chanically homogeneous and that the injection does not
result in changes to the hydro-mechanical properties of
the geomaterial. Experimental and theoretical investiga-
tions suggest thatmaterial heterogeneity can be important
to poromechanical aspects of the problem48,49 and that al-
teration in the stress state can result in alteration to the
mechanical and fluid transmissivity properties.50–57 The
poroelastic analysis of the injection process can be used
to examine the potential for development of failure in the
fluid-saturated medium at a specific location. The devel-
opment of failure will be governed by the effective stress
state in the fluid-saturated medium, which consists of the
in situ effective geostatic stress state, (σ ′

ij)
0(x, y, z, t) and

the effective stress induced by the fluid injection process,
[σ ′

ij(x, y, z, t)]
Q . The in situ effective stress state is assumed

to be geostatic and given by

(σ ′

ij)
0(x, y, z, t)
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Fig. 12. Normalized surface displacements in the x-direction.

=


(γs − γw)z 0 0

0


ν

1 − ν


(γs − γw)z 0

0 0


ν

1 − ν


(γs − γw)z

 (33)

where γs is the saturated unit weight of the poroelastic
medium. The effective stress state after injection is given
by

σ ′

ij = (σ ′

ij)
0
+ (σ ′

ij)
Q . (34)

The susceptibility to fracture initiation during injection can
be determined by prescribing a failure criterion and apply-
ing the criterion to a critical location in the vicinity of the
injection zone. The failure criterion chosen for the analy-
sis of fracture is the Hoek–Brown58 criterion, which is used
quite extensively in rock mechanics:

σ ′

1 = σ ′

3 + σ ′

UCS


mi

σ ′

3

σ ′

UCS
+ 1

0.5

(35)

where σ ′

UCS is the uniaxial compressive strength of the in-
tact rock material and mi is the Hoek–Brown parameter.
In this study, we have used σ ′

UCS = 48.9 MPa59 and mi =

7.8e−σ3/22.560 to obtain the Hoek–Brown failure criterion
for Indiana limestone. Using a linear approximation, we
modify the Hoek–Brown criterion as a form of the Kf—line
which is a function of p′

= (σ ′

1+σ ′

3)/2 and q′
= (σ ′

1−σ ′

3)/2
(Fig. 13).

We assume that the injection site is in the layer of
Indiana Limestone that has the elastic properties given
in Section 5 and a saturated unit weight of 26500 N/m3.
When fluid is injected into a horizontal line of length 200m
(2l) at a depth of 1000m, the maximum and minimum
initial effective stresses are 16.69 MPa and 5.56 MPa at
the injection site. Assuming that σ ′

1 = σ ′
zz σ ′

2 = σ ′
yy and

σ ′

3 = σ ′
xx, the stress path is a line with a slope of

dq′

dp′
=

dσ ′
zz − dσ ′

xx

dσ ′
zz + dσ ′

xx
. (36)

For the point at the centre of the injection region, the
failure analysis is shown in Fig. 13 for different volume
flow rates, Q . It is observed that the slope of the stress path
does not change; however, the stress path approaches the

Fig. 13. Modified Hoek–Brown failure criterion and stress paths.

failure criterion indicated by proximity to the Kf—line as
the volume flow rate, Q , increases. In this study, the failure
at the centre of the injection location can occur when Q
exceeds 5 m3/s.

7. Conclusions

In this paper, the analytical solutions for the poroelastic
problem of fluid injection along horizontal or vertical line
elementswere developedbyusing the analytical results for
the point source solutions. Assuming that the lines consist
of a number of points, we superpose the point source
solutions to formulate the solutions for the horizontal and
vertical line sources. The influence of the length of the
injection line is investigated on the surface displacement,
pore fluid pressure and effective stress. For a totalQ , larger
surface heave is observed as the length of the injection
line increases horizontally or vertically. The pore fluid
pressure surrounding the injection region increases due
to the fluid injection. Also, we observed that there is a
larger change in the pore fluid pressure as the injection
line length increases. The increase in pore fluid pressure
results in a decrease in the effective stress. The possibility
of injection-induced failure is also examined by applying
the Hoek–Brown failure criterion.

The superposition technique introduced in this study
can be conveniently applied to other distributed injection
problems including circular, disc-shaped and non-axis-
aligned lines. Also, the solutions presented here can be
used to accommodate fluid withdrawal problems. Since
the analysis is restricted to poroelastic behaviour of the
fluid-saturated geomaterial, when the injection ceases the
ground heave will gradually reduce to zero and the rate at
which the ground heave recovers can be examined using
the present formulation. The analytical solutionswill serve
as a useful first approximation for analogous but more
complex geologic sequestration problems.
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uH
z (x, y, z, t)

Qoγwα/2G(2π)2k
=

 ζ+i∞

ζ−i∞


∞

−∞


∞

−∞

ei(ux+vy)

×


e−

√
u2+v2h

− e−ϕh

ηΓ (ϕ −
√
u2 + v2)2 − η(ϕ2 −

√
u2 + v22) +

√
u2 + v2(ϕ −

√
u2 + v2)



×


(

u2 + v2(z + h)(Γ − 1) − Γ )e−

√
u2+v2(z+h)

+
(2η

√
u2 + v2Γ −

√
u2 + v2)

η(ϕ2 −
√
u2 + v22)

× (ϕe−ϕ(z+h)
−


u2 + v2e−

√
u2+v2(z+h))


+


u2 + v2(e−

√
u2+v2(z+h)

− e−

√
u2+v2(z−h))

×
e−

√
u2+v2h

2η
√
u2 + v2(ϕ2 −

√
u2 + v22)

+ ϕ(e−ϕ(z+h)
− e−ϕ(z−h))

−e−ϕh

2ηϕ(ϕ2 −
√
u2 + v22)



×
est

s
dudvds (A.1)

Box IV.

pL(x, y, z, t)
Qoγw/(2π)2k

=

 ζ+i∞

ζ−i∞


∞

−∞


∞

−∞

ei(ux+vy)


e−ϕz−2ϕh
− eϕz

2ϕ



+

 (2ηΓ
√
u2 + v2 −

√
u2 + v2)(e−

√
u2+v2h

− e−ϕh)(e−

√
u2+v2(z+h)

− e−ϕ(z+h))

ηΓ (ϕ −
√
u2 + v2)2 − η(ϕ2 −

√
u2 + v22) +

√
u2 + v2(ϕ −

√
u2 + v2)

 est

s
dudvds

(A.2)

Box V.

pH(x, y, z, t)
Qoγw/(2π)2k

=

 ζ+i∞

ζ−i∞


∞

−∞


∞

−∞

ei(ux+vy)


e−ϕz−2ϕh
− e−ϕz

2ϕ



+

 (2ηΓ
√
u2 + v2 −

√
u2 + v2)(e−

√
u2+v2h

− e−ϕh)(e−

√
u2+v2(z+h)

− e−ϕ(z+h))

ηΓ (ϕ −
√
u2 + v2)2 − η(ϕ2 −

√
u2 + v22) +

√
u2 + v2(ϕ −

√
u2 + v2)

 est

s
dudvds

(A.3)

Box VI.

σ L
xx(x, y, z, t)

Qoγwα/(2π)2k
=
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Box VII.
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σH
xx(x, y, z, t)

Qoγwα/(2π)2k
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Box VIII.

σ L
zz(x, y, z, t)
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(A.6)

Box IX.
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Box X.
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Appendix

The displacements in the z-direction, the change in
pore fluid pressure, and the effective stresses in three-
dimensional forms are given by equations in Boxes IV, V,
VI, VII, VIII, IX and X).
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