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Abstract The paper examines problems that relate to defects in elastic solids that are reinforced by aligned fibres.
The category of problems deals with flaw bridging that can occur as a result of continuity of fibres across the defect
in the matrix region. The defects can be a flaw of finite dimensions or cracks in the conventional sense. The presence
of fibre continuity across a flaw exerts a displacement-dependent boundary condition at the faces of the crack that
can alter the stress state at the boundary of the defect and contribute to fracture generation. The analysis of both a
spheroidal flaw with fibre bridging and an idealized penny-shaped crack with fibre continuity across the faces of the
crack leads to the conclusion that the stress amplification usually associated with extension of the flaw is suppressed
by the fibre continuity. The second type of problem deals with the mechanics of flaws that can emanate from the
extremities of an isolated cylindrical fibre in an elastic matrix of infinite extent. The problem is examined using
a computational approach based on the boundary integral equation technique. The modelling is used to examine
the role of the fibre–matrix elasticity mismatch on the stress intensity factors at the tip of penny-shaped cracks
emanating from the ends of the fibre.

Keywords Bridged cracks · Bridged penny-shaped defects · Cracks at fibre ends · Fibre-reinforced composites ·
Integral equation methods · Stress intensity factors

1 Introduction

In engineering applications, multi-directional reinforcement constitutes the norm, particularly in applications where
structures can be subjected to loadings, the directions ofwhich are unspecified. It is less common to use unidirectional
reinforcement. However, studying unidirectionally-reinforced materials offers a greater understanding of how the
micro-mechanical features can influence load transfer at the fibre-scale. Ideally, fibre-reinforced materials are
manufactured to be free of defects, but this is almost impossible to achieve; even ‘perfect’ fibre reinforcement can
contain defects introduced during the manufacturing or utilization stages. For example, curing or practical situations
such as localized loads, impact loads, extreme temperatures, moisture influx and chemical reactions can affect the
integrity of the fibre-reinforced material by compromising the bond at the fibre–matrix interface. Therefore the
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Fig. 1 Defects in a
unidirectionally reinforced
elastic composite

reliability of the fibre-reinforced material can be influenced by the development of fibre yield, fibre breakage, fibre
pullout, matrix fracture, delamination of the fibre–matrix interface, void growth in the matrix, etc. (Fig. 1). Several
decades ago, researchers began to discuss the importance of understanding how damage to fibre-reinforcedmaterials
can affect their integrity (see, e.g. Backlund [1]). The term flaw bridging was coined to describe situations where
intact fibres are able to provide a bridging action capable of facilitating load transfer in situations where the matrix
of the material has been damaged or fractured. The effectiveness of such flaw bridging will depend upon themode of
loading of a composite. Since unidirectional reinforcement is intended to enhance the ability to carry loads aligned
with the fibre direction, we will examine the processes of flaw bridging for situations where the bridging action is
in the same direction as the applied loadings.

The topics of crack and flaw bridging in unidirectional fibre-reinforced composites were discussed by Kelly
[2], Aveston and Kelly [3], Bowling and Groves [4], Sih [5], Beaumont and Harris [6] and Beaumont [7]. The
initial investigations dealing with the modelling of flaw bridging in composites were presented by Selvadurai [8,9],
followed by the work of Stang [10]. Several others, including Rose [11], McCartney [12], Budiansky et al. [13],
Budiansky and Amazigo [14], Movchan and Willis [15,16], have investigated various aspects of the elastostatic
problem of bridging-induced behaviour of flaws in unidirectional fibre-reinforced materials. Of related interest are
the studies in the area of fibre-reinforced cementitious materials where bridging action is an essential part of the
mechanisms associated with the generation of the load-carrying capacity. The literature in this field is vast, and no
attempt is made to provide a comprehensive literature survey. Accounts of developments in this area are given in
[17–24].

As a demonstration of the impact of flawbridging, the paper first considers the problemof the bridging of an oblate
spheroidal cavity related to a unidirectionally reinforced composite, where the fibres are exposed in the spheroidal
region and exhibit continuity across the faces of the flaw [25]. The mechanical behaviour of the unidirectionally
reinforced composite is treated as a transversely isotropic elastic solid, and the equatorial plane of the spheroidal
cavity is assumed to be aligned with the plane of transverse isotropy of the composite. The analysis of the bridged
spheroidal cavity problem uses the results for spheroidal defects in transversely isotropic elastic solids developed
by Chen [26], which yields a compact analytical result for the stress concentration at the boundary of the spheroidal
defect. Other bridging fibre orientations can be considered, but the greatest benefit from the bridging action is
derived when the fibres are aligned normal to the equatorial plane of the defect and the loading of the transversely
isotropic solid is along the axis of elastic symmetry.

The problem of a penny-shaped crack in an isotropic elastic solid where the surfaces of the crack are subjected
to displacement-dependent tractions was first considered by Atkinson [27]. The displacement-dependent boundary
conditions are a form of “bridging” that can influence the stress intensity factors at the crack tip. The problem of
a bridged penny-shaped crack in a transversely isotropic elastic solid [8,9] is relevant to examining the bridging
action across penny-shaped flaws in unidirectionally fibre-reinforced solids. The general approach can also be used
to examine bridged Griffith cracks and edge cracks in composite plates [28] and locally loaded bridged external
cracks in composite solids [29]. The bridging action across defects located in composite materials is amenable
to mathematical modelling only in special situations where the external loading of the unidirectionally reinforced
composite does not induce a state of compression in the bridging fibre region. In problems where the displacement-
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dependent tractions of the bridging fibres exhibit a unilateral character, the analysis of the associatedmixed boundary
value problem related to the crack will also involve the identification of the boundary of the region that imposes the
displacement-dependent traction boundary conditions. This class of problems is best analysed through an iterative
computational approach.

One category of fibre-reinforced composite material employs the reinforcement of a brittle matrix by randomly
distributedfibres offinite length.Theobjective of short-fibre-reinforcement is to suppress thedevelopment of damage
and fracture in the brittle matrix [30–32]. The development of interface delamination between a reinforcing fibre
and the brittle elastic matrix can be accomplished through the use of bond-enhancing agents. Experimental evidence
suggests that matrix cracking can originate both at the extremities of the reinforcing fibre of finite length and at
locations where the fibre itself experiences fracture. Problems related to the interaction of matrix cracks and discrete
fibre reinforcement have been examined in the literature. Pacella and Erdogan [33] investigated the mechanics of
a penny-shaped crack located within a symmetric arrangement of discrete reinforcing fibres. Wijeywickrema et al.
[34] examined the problem of the axial loading of a single fibre composite region containing an annular crack, which
is an extension to the study of the classical problem of an annular crack in an extended elastic solid [35,36]. The role
of the fibre in attenuating the Mode I stress intensity factor at the interior tip of the annular crack is examined. The
study of this category of problem requires the micro-mechanical modelling of individual fibres and the defects that
originate at fibre extremities. The problem can also be examined by representing the fibre as a prolate spheroidal
elastic inclusion in an elastic matrix where cracks can originate in the vicinity of the extremities of the inclusion. A
problem of this type was examined by Taya and Mura [37] who examined the uniaxial stressing of an aligned short-
fibre reinforced composite containing fibre end cracks. Selvadurai et al. [38] examined the axisymmetric problem
of the uniform axial stressing of a single fibre–infinite matrix region, which contains a penny-shaped crack through
the matrix. The analysis is reduced to a set of coupled integral equations of the Fredholm-type that can be solved
only in a numerical fashion. The analytical results are used to confirm the accuracy of a boundary element analysis
of the identical problem. The boundary element technique was successfully applied by ten Busschen and Selvadurai
[39] and Selvadurai and ten Busschen [40] to examine the problem of matrix crack extension at the site of a single
broken fibre embedded in a brittle matrix. The computational approach is used to predict the mode of matrix crack
extension. Other computational techniques have been used to examine fracture mechanics problems where singular
fields at the crack tip are modelled correctly. The primary advantage of the boundary element approach is the ability
to examine the process of crack extension without re-meshing the domain [40,41]. The technique therefore offers
the possibility of matrix crack extension at arbitrary orientations from fractured fibre locations. Considering the
advantages of the boundary element scheme, the present paper applies the axisymmetric boundary element technique
to examine the problems related to the axial stressing of a single cylindrical elastic short fibre embedded in an elastic
matrix with penny-shaped delaminations at the extremities of the fibre. The boundary element technique is used to
determine the Mode I and Mode II stress intensity factors at the tip of the penny-shaped crack. The influence of the
fibre–matrix modular ratio in amplifying the stress intensity factors at the crack tip is demonstrated. The boundary
element technique is also used to examine the problem where a fractured fibre gives rise to a penny-shaped crack.
The influence of the axial loading of the fibre in amplifying the Mode I stress intensity factor is investigated.

2 Elastic modelling of unidirectionally reinforced solids

Unidirectionally fibre-reinforced materials in their fabricated condition generally consist of a weaker and usually
brittle matrix that is reinforced by stronger fibres that are separated and regularly arranged to provide a composite
with a continuous fibre–matrix bond. This is admittedly an oversimplified idealization; the fibre arrangement is
often irregular [42] (Fig. 2) resulting in contact between the fibres, which could initiate defects in the material.
Mathematical and mechanics-based theories have been developed to model composites with unidirectional fibre
reinforcement; these treatments have led to the consideration of more complicated arrangements of fibre rein-
forcement. The research articles by Spencer [43–46] give examples of the use of the classical theory of ideal

123



362 A. P. S. Selvadurai

21
6μ

m 60μm
79μm

Fig. 2 Scanning Electron Microscope view of a multi-laminate fibre-reinforced plate and the detail of the fibre configuration [42]

fibre-reinforced solids, while Hill [47], Hashin and Rosen [48], Hale [49] and Christensen [50] give accounts of the
developments in the theory of composites.

We consider a unidirectionally reinforced elastic solid, which can be modelled as a transversely isotropic elastic
solid with the plane of transverse isotropy normal to the fibre direction, following Elliott [51], Shield [52], Chen
[26], Lekhnitskii [53] and Green and Zerna [54]. Referring to the axisymmetric cylindrical polar coordinate system
(r, z), it can be shown that the displacement and stress fields in the transversely isotropic elastic medium can be
expressed in terms of two functions: ϕα(r, z) (α = 1, 2), which are solutions of

(
∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2α

)
ϕα(r, z) = 0, (1)

where zα = z/
√
nα and nα are the roots of the characteristic equation

c11c44n
2 + {c13(2c44 + c13) − c11c33}n + c33c44 = 0. (2)

In (2), ci j are the elastic constants of the transversely isotropic elastic model of the unidirectionally fibre-reinforced
solid. These elastic constants can be expressed in terms of the isotropic elastic constants of the fibre (suffix f ) and the
matrix (suffix m) phases and their respective volume fractions (i.e. E f , ν f , Em, νm and V f and Vm , respectively).
These expressions are given by Hashin and Rosen [48], and a summary of the expressions is given in the Appendix.
The eigenvalues of (2) may be real or complex depending on the elastic constants ci j (see, e.g. [26,51–54]). The
displacement and stress fields in the transversely isotropic elastic material can be expressed in terms of ϕα(r, z) as
follows:
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Fig. 3 Spheroidal flaw with
fibre bridging in the
unidirectionally
fibre-reinforced composite
material
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where

kα = c11nα − c44
c13 + c44

, (α = 1, 2). (8)

3 The bridged spheroidal defect

As a prelude to the discussion of the flaw bridging action in a unidirectionally fibre-reinforced solid, we consider
the three-dimensional problem in which an oblate spheroidal region contains only fibres. The equatorial plane of the
oblate spheroidal cavity is assumed to coincide with the plane of transverse isotropy of the unidirectionally fibre-
reinforced solid. The exposed fibres exert a displacement-dependent traction boundary condition at the boundary
of the cavity. The unidirectionally reinforced solid containing the aligned bridged spheroidal flaw is subjected to
a uniaxial state of stress, which is oriented in the fibre direction (Fig. 3). The boundary of the spheroidal flaw is
described by the equation:

z2

a2
+ r2

b2
= 1, (9)

where a and b are, respectively, the semi-minor and semi-major axes of the spheroidal region and the axis z is
aligned with the fibre direction. We consider a fibre composite region B bounded internally by the fibre region. At
the boundary of the fibre region ∂B, (i) there is continuity of displacement between the fibre domain (superscript f )
and the composite region (superscript c); (ii) there is the continuity of traction in the z-direction; (iii) since the fibres
can exert a traction only in their alignment direction, there is zero radial traction on the surface of the spheroidal
cavity; and (iv) at locations remote from the spheroidal cavity, the stress field should reduce to a uniaxial stress
state. These are equivalent to the following conditions:

u f
z (r, z) = ucz(r, z) for (r, z) ∈ ∂B, (10)
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T f
z (r, z) = T c

z (r, z) for (r, z) ∈ ∂B, (11)

T c
r (r, z) = 0 for (r, z) ∈ ∂B, (12)

σ c
zz(r, z) = T0 for (r, z) ∈ B. (13)

For the solution of the bridged spheroidal flaw problem, it is convenient to adopt a solution technique where a
combination of solutions are used, with one solution corresponding to the uniaxial stress state and the second
solution accounting for the effects of the bridged spheroidal flaw. The combined solution for the displacement field
is given by

ucr (r, z) = −T0c13r

χ
+ u∗

r (r, z), (14)

ucz(r, z) = −T0(c11 + c12)z

χ
+ u∗

r (r, z) (15)

and
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rr (r, z) = σ ∗

rr (r, z), (16)

σ c
θθ (r, z) = σ ∗

θθ (r, z), (17)

σ c
zz(r, z) = T0 + σ ∗

zz(r, z), (18)

σ c
rz(r, z) = σ ∗

r z(r, z), (19)

where

χ = c33(c11 + c12) − 2c213. (20)

The displacement and stress fields associated with u∗
i and σ ∗

i j can be determined by introducing a new variable
q(r, z) defined by the equation

z2

q2
+ r2

q2 − 1
= c2 where c2 = a2 − b2. (21)

The surfaces, q = const., represent a spheroid in the (r, z) space, and the functions qα(r, zα), (α = 1, 2) are defined
by the relationships:
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with
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, (23)

and the applicability of the preceding representations for modelling spheroidal regions in transversely isotropic
media is given by Chen [26]. The result (22) is useful in subsequent developments. Also, when

qα = ρα, ρα = Γ 2

Γ 2 − nα

, Γ = a

b
, (24)

the appropriate displacement and stress field corresponding to u∗
i (r, z) and σ ∗

i j (r, z) in the composite region can be
obtained by selecting a potential function of the form [26]:

ϕα(r, z) = Aα

2
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)
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)
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2 ln
(
qα+1
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)]
, (25)

where Aα are arbitrary constants.
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For the fibrous flaw region F , (which is contained within the unidirectionally reinforced composite region B),
the variation in the axial displacement u f

z (r, z) takes the general form:

u f
z (r, z) = zS(r), (r, z) ∈ F, (26)

where S(r) is an arbitrary function. Since the fibrous flaw region is incapable of sustaining radial and shear stresses,

σ
f
rr (r, z) = σ

f
r z(r, z) = 0, (r, z) ∈ F (27)

and

T f
z (r, z) = E f V f S(r)nz, (r, z) ∈ ∂B. (28)

Note that the parameter V f appearing in (28) accounts for the fact that effective fibre elasticity in the fibrous
spheroidal inclusion region is volume averaged. The absence of the factor V f would imply that the entire fibrous
inclusion region is composed of material with elasticity E f . In (28), nz is the direction cosine of the normal to the
spheroidal interface ∂B or q = ρ, with

nr = r

(ρ2 − 1)D0
, nz = z

ρ2D0
, D2

0 = r2

(ρ2 − 1)2
+ z2

ρ4 . (29)

The solution procedure for the spheroidal fibrous flaw problem is straightforward [25] and involves the application
of the continuity of the axial displacement, continuity of axial traction and null radial traction boundary condition on
the fibrous inclusion boundary ∂B to eliminate the unknown function S(r) and to determine the unknown constants
Aα (α = 1, 2). The influence of the bridging action is best illustrated by examining the amplification of the
circumferential stress at the boundary of the equatorial plane. Omitting details, it can be shown that for real values,
the expression for the axial stress takes the form:

σzz(r, 0)

T0
= 1 +

2∑
α=1

λα(1 + kα)

(
1

2
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q0α + 1

q0α − 1

)
− 1

q0α

)
, (30)

where the superscript ‘c’ has been omitted for convenience and
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1(ρi ) = 1

2
ln

(
ρi + 1

ρi − 1

)
− 1

ρi
, 
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2(ρ2
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Expression (30) can be evaluated for a specific choice of a fibre-reinforced compositewhere the effective transversely
isotropic properties are determined from the effective elasticity estimates for unidirectionally reinforced composites
developed by Hashin and Rosen [48], which are summarized in the Appendix. In general, the parameters kα, nα, λα
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Fig. 4 Axial stress
distribution in the
unidirectional
fibre-reinforced composite
on the equatorial plane of
the prolate spheroidal flaw
with fibre bridging
(Γ = 2.00)

and the functions 
β(qα) (β = 1, 2) can be real- or complex-valued depending on the elastic constants ci j . As a
result, the distribution of axial stress on the equatorial plane needs to be evaluated by considering the result:

σzz(r, 0)

T0
= 1 + Re

{
2∑

α=1

λα(1 + kα)

(
1

2
ln

(
q0α + 1

q0α − 1

)
− 1

q0α

)}
. (32)

To present certain numerical results, we consider the specific case of a unidirectionally fibre-reinforced material
where the matrix properties are as follows: Em = 27.6 GPa, νm = 0.35 and ν f = 0.20. The elastic modulus of the
fibre is varied as a multiple of the elasticity of the matrix, i.e. E f = M∗Em . Also the specification of the volume
fraction of the fibres V f completes the description of the fibre-reinforced composite. The geometry of the fibrous
flaw is specified by the flaw aspect ratio Γ = a/b which is assigned values corresponding to a prolate (Γ = 2.0)
and oblate (Γ = 0.5) spheroidal region, respectively. Figs. 4 and5 illustrate typical variations in the axial stress
distribution within the composite region for spheroidal cavities as a function of the fibre–matrix modular ratio M∗.
As the spheroidal fibrous-bridging region acquires an oblate shape, the stress concentration at the boundary of the
cavity is amplified. In the limit as the oblate spheroidal region flattens to a crack, the stress at the boundary of the
crack will become singular, and the singularity will be suppressed as the elasticity of the reinforcing fibres increases.
The influence of the bridging action on the development of stress amplification at the boundary of the spheroidal
region is illustrated in Fig. 6. As is evident, the elastic stiffness of the bridging fibres has a significant influence in
moderating the stress amplification and when M∗ > 102, which is satisfied by most reinforcing materials, the stress
amplification is significantly reduced.

4 The bridged penny-shaped crack problem

The analytical solution for the axisymmetric problem of a penny-shaped crack located in an isotropic elastic solid
of infinite extent was presented by Sack [55] and Sneddon [56] using spheroidal function and dual integral equation
formulations, respectively. The analytical solution can be used to develop an exact result for the Mode I stress
intensity factor at the crack tip, and the result has been extensively used in fracture mechanics calculations (see e.g.
Liebowitz [57], Sih [58], Cherepanov [59]) and for benchmarking computational treatments of fracture mechanics
problems. In this section, we examine the problem of the bridged penny-shaped crack problem for a transversely
isotropic elastic solid, which introduces a displacement-dependent normal traction constraint on the faces of the
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Fig. 5 Axial stress distribution in the unidirectional fibre-
reinforced composite on the equatorial plane of the oblate spher-
oidal flaw with fibre bridging (Γ = 0.50)

Fig. 6 Stress amplification at the boundary of the bridged spher-
oidal flaw

crack (Fig. 7). The analysis of penny-shaped cracks with displacement-dependent traction boundary conditions on
the crack faces was first examined by Atkinson [27] using an iterative technique. We examine the problem of a
penny-shaped matrix crack that is located in a unidirectional fibre-reinforced material, where the fibres exhibit
continuity across the faces of the crack. To preserve axial symmetry in the problem, the plane of the penny-shaped
matrix crack is selected normal to the direction of uniaxial reinforcement, and we introduce the assumption that
the bridging fibres have a constant length within the penny-shaped debonded region. This assumption gives rise
to a displacement constraint which is derived from a fibre that has a finite length at the crack tip. This assumption
can be modified by assuming a variation of the debonded length that varies from a finite value at the centre of
the penny-shaped crack to zero at the boundary. This introduces a further variable in terms of the nature of the
distribution of the lengths of constraining ligaments within the penny-shaped crack region. Comments related to
the improvement of the description of the distribution of fibre length within the crack region will be discussed later
in this section. The axisymmetric bridged crack problem can be formulated in relation to a halfspace region, where
the surface of the halfspace region is subjected to mixed boundary conditions:

uz(r, 0) = 0 , b ≤ r < ∞, (33)

σzz(r, 0) = −p∗(r) + E f V f

l
uz(r, 0); 0 < r < b, (34)

σr z(r, 0) = 0; 0 ≤ r ≤ ∞, (35)

where p∗(r) is the tensile traction induced in the plane z = 0 of the intact composite due to the action of the external
stress state. Again, we note that elasticity of the bridging fibre is modified by the factor V f to ensure that the region
is not completely occupied by the elastic fibres. For the analysis of the mixed boundary value problem posed by
(33)–(35), we seek solutions of (1), which are based on Hankel transform developments (Sneddon [60], Selvadurai
[61]). The relevant solutions that satisfy the regularity conditions applicable to a halfspace region are

ϕi (r, z) = 1

b2

∫ ∞

0
ξ Ai (ξ)e−ηi z J0(ξr/b)dξ, (36)
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Fig. 7 Bridged
penny-shaped crack

Axial stress σ0
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Unidirectionally
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Bridged penny-
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2l r

where Ai (ξ) are arbitrary functions and ηi = ξ/b
√

νi . The mixed boundary conditions (33) to (35) can be reduced
to a system of dual integral equations for a single unknown function. Using a finite Fourier transform, we can further
reduce the dual system to a single Fredholm integral equation of the second-kind for an unknown function φ(t),
which takes the form

φ(t) − β

π

∫ 1

0
K (t, τ )φ(τ) dτ = g(t), (37)

where

K (t, τ ) = 2
∫ ∞

0
ϑ−1 sin(ϑ t) sin(ϑτ)dϑ

β = E f V f b
√

ν1ν2(k1 − k2)

Eml�∗ ; �∗ = �c44
Em

, (38)

� = √
ν1(1 + k1)

(
k2c33 − ν2c13

c44

)
− √

ν2(1 + k2)

(
k1c33 − ν1c13

c44

)
.

The function g(t) depends only on the nature of the axisymmetric external loading. For example, when the
composite is subjected to a uniform tensile stress field at infinity

g(t) = t. (39)

It should be noted the function φ(t) will contain a multiplier that takes into account the magnitude and nature of
the loading. The mathematical analysis of the bridged penny-shaped crack problem (for t ∈ real and τ ∈ real) is
formally reduced to the solution of

φ(t) − β

π

∫ 1

0
ln

(
t + τ

t − τ

)
φ(τ) dτ = g(t); t > τ ≥ 0. (40)

The integral equation (40) can be classified as a Fredholm type, even though the kernel suffers a discontinuity at
t = τ , since the kernel is quadratic integrable (Mikhlin [62]):∫ 1

0

∫ 1

0
ln|t − τ | dtdτ → finite.

The solution of (40) provides, formally, results of importance to the idealized bridged penny-shaped crack with
a bridged region of constant length 2l over the entire crack surface. The result of particular interest to fracture
mechanics of composites relates to the Mode I stress intensity factor at the crack tip, defined by
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KI = lim
r→b+ [2(r − b)]1/2σzz(r, 0). (41)

Considering the result for the axial stress expressed in terms of φ(t), it can be shown that for a penny-shaped crack
in a unidirectional fibre-reinforced material with crack bridging and subjected to a uniform far-field axial stress σ0,

KI = 2σ0
√
b

π
φ(1). (42)

In the limiting case when the elasticity of the bridging fibres E f → 0, β → 0, and we have a penny-shaped crack
located in a matrix with unidirectional cavities where originally there were fibres. Since the resulting material is
still transversely isotropic and φ(1) = 1, expression (42) for the stress intensity factor gives

KI = 2σ0
√
b

π
, (43)

which is the classical result. As the fibre elasticity reduces to zero, the isotropic matrix still retains a transversely
isotropic character due to the aligned voids that correspond to the fibres. The stress intensity factor is independent of
the transverse isotropy of themediumwith directional voids.Consider the limiting casewhen the unidirectional fibre-
reinforced material is reinforced with inextensible fibres (i.e. E f → ∞): This is an idealization that was proposed
by Adkins and Rivlin [63] and successfully developed by Spencer [43], Everstine and Pipkin [64], England and
Rogers [65], Pipkin and Rogers [66], Spencer [67], Sanchez and Pipkin [68], Morland [69] and Pipkin [70] for the
stress analysis and for examining a wide class of problems in idealized fibre-reinforced materials. In recent years,
the theory has been extended by Spencer and Soldatos [71] and Soldatos [72,73] to include fibres that possess
bending stiffness.

In the limit, the integral equation (12) reduces to

∫ 1

0
ln

(
t + τ

t − τ

)
φ(τ) dτ = 0, (44)

which has a trivial solution φ(t) = 0. Consequently, KI ≡ 0, and the stress intensity factor is completely suppressed.
The limit, of course, has to be approached with caution since there are boundary layers that can exist in the medium
at the crack tip, which can lead to stress channelling phenomena. (i.e. the stresses are transmitted along single
inextensible fibres that can carry the stresses [64–70]) For arbitrary values of the elastic properties of the fibre-
reinforced composite, the integral equation (40) has a non-degenerate solution. There appears to be no closed form
solution of this equation, and the Fredholm integral equation can be solved using quadrature techniques that reduce
the integral equation to a matrix equation. Details of the method are well documented in the literature (Baker [74],
Delves andMohamed [75], Atkinson [76], Selvadurai [77–80]). Figure8 illustrates the influence of the fibre–matrix
elastic modular ratio and the geometry of the bridging zone on the Mode I stress intensity factor for the bridged
penny-shaped crack. It is evident that as the fibre–matrixmodular ratio increases and the bridging region geometry in
terms of the fibre length decreases, the Mode I stress intensity factor for the bridged penny-shaped crack decreases.
The general modelling approach for examining bridging action at penny-shaped flaws subjected to loading by a
dipole of forces is presented in [9], and a similar problem for the bridged external circular crack is given in [29].
Analogous results for the case of the bridged plane crack are also presented in [28]. The assumption of a constant
length of a ligament zone is a limitation of the above modelling approach. The modelling can be improved by
examining the limiting results observed in the preceding studies and by prescribing the axial displacement in the
fibrous region to be of the form:

uz(r, 0) =
{
C1(b2 − r2)2 + C2(b2 − r2)1/2 0 < r ≤ b,
0 b < r < ∞,

(45)
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Fig. 8 Mode I stress intensity factor at a bridged penny-shaped
crack

Fig. 9 Cylindrical reinforcing fibre with penny-shaped end
cracks

whereC1 andC2 are arbitrary constants. The axial displacement distribution (45) can accommodate the limiting cases
of (i) a crack bridged by relatively stiff fibres,which can result in a zero gradient of the axial displacement distribution
at the boundary r = b and (ii) a displacement distribution that will approach the profile of an unconstrained penny-
shaped crack at the boundary of the crack, which can correspond to a constraint offered by relatively flexible fibres.
The presence of the arbitrary constants allows the application of a variational technique for their determination.
The stress distribution corresponding to the prescribed displacement (45) can be obtained by solving a set of mixed
boundary value problems for a halfspace region. This enables the development of a total energy potential (U ) for
the infinite space region, consisting of (i) the elastic energy of the fibre-reinforced region, (ii) elastic energy of
the bridging ligaments and (iii) the potential of the external loads, which will be indeterminate within the arbitrary
constantsC1 andC2. These arbitrary constants can be uniquely determined by using the constraints, which represents
the minimization of the total potential energy of the system with respect to the arbitrary constants:

∂U

∂C1
= ∂U

∂C2
. (46)

It has been demonstrated [81–85] that the variational procedure outlined above can be used to examine contact and
crack problems where displacements are prescribed in an arbitrary manner and the solutions provide approximate
analytical results to problems that can otherwise be examined only by using computational approaches.
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5 Cracks at the extremities of fibre inclusions

Reinforcement of both ductile and brittle elastic matrices by random distributions of short-fibre inclusions is used
quite extensively to enhance the fracture toughness and fatigue properties of reinforced composites (Spencer [86],
Sih and Tamuzs [87], Hashin and Herakovich [88], Kelly and Rabotnov [89], Clyne and Withers [31], Selvadurai
[32].) The development of defects in such short fibre composites is therefore an integral part of the stress analysis
of such composites. In the case where the fibre has a finite length, defects will usually initiate at the ends of the
reinforcing fibres with sharp edges, and this can result in fibres or inclusions with end cracks (Taya and Mura [37],
Mura [90], Nemat-Nasser and Hori [91]). The analysis of a representative element of such a short-fibre–brittle
elastic matrix containing edge cracks can be complicated by the presence of a bimaterial region, the finite domain
of the fibre, the orientation of the defects in relation to the orientation of the short fibre and the type of loading. The
problem of the axisymmetric loading of an infinite domain containing a penny-shaped crack across a single fibre
was presented in [38], and the resulting mathematical formulation of the elasticity problem required the solution of
three coupled integral equations of the Fredholm type, which could only be solved in numerical fashion. The use
of computational approaches at the outset therefore presents an attractive approach for examining the problem of a
short fibre embedded in an elastic matrix and with penny-shaped end cracks that extend into the elastic matrix. We
consider the axisymmetric problem of a cylindrical fibre embedded in bonded contact along the cylindrical surface
of the fibre and with identical penny-shaped cracks at the plane ends of the fibre that extend to the elastic matrix
(Fig. 9). The computational approaches that can be used to examine this problem are many and varied, ranging
from the finite element methods to the extended finite element methods to the boundary integral equation or the
boundary element techniques. Here we apply the boundary element technique to solve the problem shown in Fig. 9.
The advantage of the boundary element approach in examining this type of problem is the fact that attention is
focused on the evaluation of the stress intensity factors at the boundary of the penny-shaped edge cracks.

5.1 Boundary element methods

The formulation of the boundary element method for elastostatic problems is given in [92–97], and in this section
we present a brief outline of the relevant equations applicable to a bi-material elastic region. The generalization
to a bi-material elastic region will enable the solution of the crack–fibre interaction problem shown in Fig. 9. We
consider isotropic elastic materials for which

σ
(α)
i j = λαδi j u

(α)
k,k + μα

{
u(α)
i, j + u(α)

j,i

}
(47)

and the Navier equations are

μα∇2u(α)
i + (λα + μα)u(α)

k,ki = 0, (48)

where λα and μα are Lamé’s constants; the subscript or superscript α refers, respectively, to the matrix (m) or
fibre ( f ) regions; ui and σi j are, respectively, the displacement components and the stress tensor referred to the
rectangular Cartesian coordinate system, x, y, z; i, j = x, y, z; λα = 2μανα/(1 − 2να); να are Poisson’s ratios;
∇2 is Laplace’s operator in terms of rectangular Cartesian coordinate system; and δi j is Kronecker’s delta function.
The boundary integral equation for the axisymmetric problem pertaining to the fibre–matrix composite region can
be written in the form [92–97]

clku
(α)
k (P) +

∫
Γα

{
P∗(α)
lk (Q, P)u(α)

k (Q) − u∗(α)
lk (Q, P)P(α)

k (Q)
} r

ri
dΓ = 0, (49)
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where P corresponds to the field point and Q corresponds to a source point; l and k can be assigned the coordinates
r and z referred to the axisymmetric cylindrical polar coordinate system (r, z) where Γα is the boundary of the
region α; u(α)

k (Q, P) and P(α)
k (Q, P) are, respectively, the displacement and tractions on the boundary Γα and

u∗(α)
ik ; and P∗(α)

ik are fundamental solutions. Also in (49), clk are constants defined by

clk = δlk + ϕlk(P), (50)

which is zero when the point is outside the body, and δlk when the point is within the body. In the case of a
smooth boundary where the tangent plane is continuous, ϕlk(P) = −δlk/2. In other instances, such as corners, the
evaluation of ϕlk(P) can involve complex algebraic operations, and the value can depend on the corner angle and
its orientation in space. Procedures for the evaluation of ϕlk(P)are given in [92] and [98]. For the solution of the
fibre–matrix interaction, this calculation is not required.

For axial symmetry, the fundamental solutions for the displacement field are given by

u∗(α)
rr = c

{
4(1 − να)(ρ2 + z̄2) − ρ2

2r R̄

}
K (m̄) −

{
(7 − 8να)R̄

4r
− e4 − z̄4

4r R̄3m1

}
E(m̄), (51)

u∗(α)
r z = cz̄

{
(e2 + z̄2)E(m̄)

2R̄3m1
− K (m̄)

2R̄

}
, (52)

u∗(α)
zr = cri z̄

{
(e2 − z̄2)E(m̄)

2r R̄3m1
+ K (m̄)

2r R̄

}
, (53)

u∗(α)
zz = cri

{
(3 − 4να)K (m̄)

R̄
+ z̄2E(m̄)

R̄3m1

}
, (54)

where

z̄ = z − zi ; r̄ = r + ri ; ρ2 = r2 + r2i
e2 = r2 − r2i ; R̄2 = r̄2 + z̄2; c = [4πμα(1 − να)]−1 (55)

m̄ = 2rri
R̄2

; m1 = 1 − m̄

and K (m̄) and E(m̄) are, respectively, the complete elliptic integrals of the first and second-kinds and ri and zi
refer to the coordinates of a field point. The corresponding terms for P∗(α)

lk can be obtained by the substitution of
(51)–(54) in (47).

Upon discretization of the boundaries Γα into boundary elements (Fig. 10), the integral equation (49) can be
represented in the form:

(
H(α) H(α)

I

)(
u(α)

u(α)
I

)
=

(
M(α) M(α)

I

)(
P(α)

P(α)
I

)
, (56)

where Hs and Ms are the influence coefficient matrices derived from the integration of the fundamental solutions
P∗(α)
lk and u∗(α)

lk , respectively. In the instance where there is complete bonding at the fibre–matrix interface, we have

u( f )
I = u(m)

I = uI ; P( f )
I = −P(m)

I = PI . (57)
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Fig. 10 Boundary element discretization of the fibre and penny-
shaped crack region

Fig. 11 Boundary element modelling of the crack tip

Using the above result, the complete matrix equation governing the fibre composite–crack interaction problem
can be expressed in the form

(
H( f ) H( f )

I 0
0 H(m)

I H(m)

)⎛
⎝u( f )

uI

u(m)

⎞
⎠ =

(
M( f ) M( f )

I 0
0 M(m)

I M(m)

)⎛
⎝P( f )

PI

P(m)

⎞
⎠. (58)

5.2 The modelling of crack tip behaviour

In the boundary element discretizations discussed in the preceding section, quadratic elements are used to model
the boundaries of the matrix and fibre regions. This allows the variation of displacements and tractions within the
element to be described by

{
u(α)
i

P(α)
i

}
= a0 + a1ζ + a2ζ

2, (59)

where ζ is the local coordinate of the element and ar (r = 0, 1, 2) are constants of interpolation. In the context of
linear elastic fracture mechanics, however, the stress field at the crack tip should contribute to a 1/

√
r -type stress

singularity. In the application of the conventional finite element technique to the study of crack problems, the quarter
point of the type proposed in [99] can be used to incorporate the required

√
r -type variations in the displacements:

{
u(α)
i

P(α)
i

}
= b0 + b1

√
r + b2r. (60)

If elements with variations of the type (60) are incorporated in the boundary element scheme, the P(α)
i in (60)

does not produce a 1/
√
r -type stress singularity at the crack tip. The approach adopted in [93,94] is to incorporate
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Fig. 12 Mode I stress intensity factor at the tip of the cracks at
the extremities of the finite fibre

Fig. 13 Mode I stress intensity factor at the tip of the cracks at
the extremities of the finite fibre

a singular traction quarter point boundary element, where the traction variations in (60) are multiplied by a non-
dimensional

√
l/r , where l is the length of the crack tip element. The variations of tractions can be expressed in

the form:

Pi = c0√
r

+ c1 + c2
√
r , (61)

where bi and ci (i = 0, 1, 2) are constants. The performance of both types of quarter-point elements has been
studied extensively in the literature on boundary element treatment of crack problems [41,93,96,100–103]. The
boundary element technique was also used recently by Perelmuter [104] to examine the problem of a bridged plane
crack located at a bi-material region.

In the crack–fibre interaction problems examined in this paper, the axial straining induces a state of axial symmetry
in the fibre–matrix composite region. Consequently, only the Mode I andMode II stress intensity factors are present
at the tips of the penny-shaped crack region (Fig. 9). The crack-openingmode stress intensity factor can be evaluated
by applying the displacement correlation method, which utilizes the nodal displacements at four locations A, B, E,
and D and the crack tip (Fig. 11). The Mode I stress intensity factor can be obtained from the result:
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Fig. 14 Mode I stress intensity factor at the tip of the cracks at
the extremities of the finite fibre

Fig. 15 Mode II stress intensity factor at the tip of the cracks at
the extremities of the finite fibre

K (α)
I = μα

(kα + 1)

√
2π

l0

{
4[uz(B) − uz(D)] + [uz(E) − uz(A)]

}
, (62)

where kα = (3 − 4να) and l0 is the length of the crack tip element. Similarly, the crack-shearing mode stress
intensity factor can be obtained from the result:

K (α)
II = μα

(kα + 1)

√
2π

l0

{
4[ur (B) − ur (D)] + ur (E) − ur (A)

}
. (63)

5.3 Numerical results

Considering the symmetry of the fibre–crack interaction problem about the plane z = 0, it is sufficient to consider
a boundary element discretization, which is restricted to the region z ≥ 0. Figure10 shows the boundary element
discretization, and the accuracy of the boundary element modelling has been verified through comparisons with the
exact analytical solution for the Mode I stress intensity factor for a penny-shaped crack located in an elastic solid
of infinite extent and subjected to a uniform axial stress and given by the result (43). The boundary element scheme
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Fig. 16 Mode II stress intensity factor at the tip of the cracks at
the extremities of the finite fibre

Fig. 17 Mode II stress intensity factor at the tip of the cracks at
the extremities of the finite fibre

provides numerical estimates for the stress intensity factor to an accuracy of less than 5 %, and the accuracy can be
improved by increasing the element numbers used in the boundary element discretization.

In the numerical evaluation of the stress intensity factors at the penny-shaped cracks located at the extremities of
the fibre, several factors need to be taken into consideration; these include (i) the aspect ratio of the fibre h/a, (ii)
the radius of the crack in relation to the radius of the fibre c/a, (iii) Poisson’s ratios of the matrix and fibre materials
νm, ν f and (iv) the fibre/matrix modular ratio E f /Em . In the presentation of numerical results, the above parameters
are restricted to the following ranges: h/a ∈ (3, 10); c/a ∈ (1.5, 3.0); νm = ν f = 0.2; and E f /Em ∈ (1, 103).

Figures12, 13 and 14 illustrate the variations in theMode I stress intensity factor at the crack tip. From the results
shown in Fig. 14, it is evident that as the modular ratio E f /Em → 1 , c/a > 1 and when h/a > 10, the interaction
between the cracks at the extremities of the fibre inclusion is less significant and we obtain from the numerical
results, the relevant stress intensity factor for the classical penny-shaped crack in an elastic solid of infinite extent.
As h/a becomes small (in the range of 3–5), the interaction between the cracks influences the result for KI even
for the case when E f /Em → 1 and c/a > 1. The results of the numerical investigations also indicate that an
increase in the modular ratio E f /Em has the effect of amplifying the Mode I stress intensity factor at the crack tip.
This amplification effect becomes particularly significant as h/a increases and as c/a → 1. It should, however, be
noted that as c/a → 1, the crack tip is located at a bi-material interface and the conventional boundary element
modelling of the crack tip that incorporates a 1/

√
r -type stress singularity cannot accommodate the oscillatory form

of the stress singularity that will be present at a bi-material point [105–107]. In such cases, the boundary element
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technique should be modified to accommodate the oscillatory form of the stress singularity, and approaches for
such modelling are given in [108–112]. Figures15, 16 and 17 illustrate the influence of the geometric and material
parameters on the Mode II stress intensity factor at the crack tip. It is evident that the Mode II stress intensity factor
at the crack tip is considerably smaller than the corresponding Mode I stress intensity factor, which suggests that
the penny-shaped crack is most likely to extend in a self-similar fashion when the crack tip attains KIC, the critical
stress intensity factor. The effects of the Mode II stress intensity factor become appreciable only as E f /Em → 1.
For values of E f /Em > 102, the stiffness of the cylindrical inclusion is sufficient to suppress the Mode II stress
intensity factor for all choices of h/a and c/a. These conclusions should take into consideration the specific values
of Poisson’s ratios assigned to the fibre and matrix materials in developing the computational results.

6 Concluding remarks

Ideally, fibre-reinforced materials are assumed to be defect free. Defects can, however, be introduced either during
the manufacture of the composite or during its use, due to impact and thermal loadings, loss of bonding between
the reinforcing fibres and the matrix, and as a result of chemical action and moisture migration. In these situations,
the fibres can remain intact with delamination at the fibre–matrix interface, and this leads to the process of flaw
bridging. The influence of flaw bridging can be important since the load carrying capacity and stress state at the
fibre–matrix delaminated region can be moderated by the presence of fibre continuity. The paper reviews the topic
of flaw bridging and presents examples of idealized three-dimensional bridged defects in unidirectionally fibre-
reinforced materials, and either the stress amplification at the boundary of the delaminated region or the stress
intensity factor at the boundary of a penny-shaped defect can be suppressed by the bridging action of the fibres.
These observations are applicable to situations where loadings are applied in the direction of the bridging fibres
and, due to the flexible nature of the bridging fibres, the suppression of stress amplification or stress intensity factors
will not occur for the other forms of external loadings of the defect. The computational analysis of the isolated fibre
problem containing penny-shaped cracks at the ends of the finite fibres indicates that reinforcing action can lead to
amplification of the Mode I stress intensity factor at the end cracks, particularly as the crack diameter approaches
that of the fibre diameter. It could be concluded that, while fibre continuity can lead to the suppression of stress
amplification at defects in continuously reinforced composites, the converse can occur at cracks located at the ends
of isolated fibres.
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Appendix

The expressions for the constants K̄ , Ḡ, Ē, ν̄ and Ḡ∗ are given by Hashin and Rosen [48] as follows:

K =
{

ξ0(1 + 2νmV f ) + 2νmVm
ξ0Vm + V f + 2νm

}
(λm + Gm), G =

{
(α + βmV f )(1 + ρV 3

f ) − 3V f V 2
mβ2

m

(α − V f )(1 + ρV 3
f ) − 3V f V 2

mβ2
m

}
Gm,

ν =
{
V f E f L1 + VmEmL2νm

V f E f L3 + VmEmL2

}
, G

∗ =
{

η(1 + V f ) + Vm
ηVm + V f + 1

}
Gm

and

Ē = V f E f + VmEm,

where

L1 = 2ν f (1 − ν2m)V f + νm(1 + νm)Vm; L2 = 2(1 − ν2f )V f ,

L3 = 2(1 − ν2m)V f + (1 + νm)Vm,
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ξ0 = λ f + G f

λm + Gm
; α = η + βm

η − 1
; ρ = βm − ηβ f

1 + ηβ f
,

η = G f

Gm
; Vm + V f = 1,

Gi = Ei

2(1 + νi )
; λi = νi Ei

(1 + νi )(1 − 2νi )
; βi = 1

3 − 4νi
; (i = m, f ).
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