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Undrained behaviour of a non-homogeneous elastic medium: the influence
of variations in the elastic shear modulus with depth

A. KATEBI� and A. P. S . SELVADURAI�

This paper examines the axisymmetric interior loading problem for an incompressible isotropic elastic
half-space where the linear elastic shear modulus varies with depth. In particular, the non-homogeneity
has an exponential variation either over the entire depth of the half-space, or over a finite depth
beyond which it is constant. The mathematical formulation of the traction boundary value problem is
developed through the application of integral transform techniques, and the numerical results obtained
are compared with results derived from a computational procedure involving a finite-element
approach.

KEYWORDS: deformation; elasticity; numerical modelling; settlement; stiffness

INTRODUCTION
The mechanics of non-homogeneous elastic media has been
a topic of continuing interest to theoretical and applied solid
mechanics. Extensive reviews of the subject are given by
Mossakovskii (1958), Olszak (1959), Popov (1959), Rakov
& Rvachev (1961), Kassir & Chuapresert (1974), Korenev
(1975), Selvadurai (1979, 1996, 2007), Gladwell (1980) and
Aleynikov (2011). The application of the theory of elasticity
of non-homogeneous media to problems in geomechanics
commences with the seminal paper by Gibson (1967), who
examined the undrained elastic behaviour of a non-homoge-
neous elastic medium where the shear modulus varied
linearly with depth. Gibson’s research provided a definitive
explanation for a Winkler medium, which consists of a
discrete set of springs with identical stiffness. The elastic
stiffness for the spring elements can be interpreted in terms
of the linear variation of the shear modulus with depth for
the specific case where the surface shear modulus is zero.
The elastic half-space with this particular variation in shear
modulus is referred to as a ‘Gibson soil’, and has been
extensively studied by a number of Gibson’s co-workers,
including Brown & Gibson (1972), Awojobi & Gibson
(1972), Gibson & Kalsi (1974) and Gibson & Sills (1974).

The geotechnical investigations conducted by Skempton &
Henkel (1957), Ward et al. (1965), Burland & Lord (1970),
Butler (1974), Hobbs (1974) and Abbiss (1979) refer to
undrained shear moduli values that vary linearly with depth.
The majority of investigations prior to Gibson’s studies
focused on the exponential variations in the elastic shear
modulus; this led to considerable simplification in the math-
ematical modelling of the elasticity problems associated with
non-homogeneous elastic media. The exponential variation
in the shear modulus, however, leads to unbounded varia-
tions in elastic stiffness, when the formulations are applied
to examine the mechanics of a half-space region. This
limitation was addressed in a paper by Selvadurai et al.
(1986), who examined the problem of the torsional indenta-
tion of a half-space region where the shear modulus has a
bounded exponential variation with depth. Selvadurai (1996)
also applied the bounded exponential variation in the shear

modulus to examine the surface indentation of a half-space
region. The accurate representation of both the near-surface
non-homogeneity and far-field variation are important for
estimating the undrained displacements of the inhomo-
geneous soils that are subjected to surface and interior loads.

This paper examines the axisymmetric problem of the
interior loading of an inhomogeneous isotropic incompress-
ible elastic half-space by a uniform circular load of finite
radius. The problem is an approximation for the loading
induced by an embedded foundation, such as an end-bearing
pile (Poulos & Davis, 1975), an anchor plate (Selvadurai,
1989, 1993, 1994; Rajapakse & Selvadurai, 1991), or a test
device such as a screw plate (Selvadurai et al., 1980). The
interior loading of an isotropic homogeneous elastic half-
space was first examined by Mindlin (1936). The problem of
the interior loading of a non-homogeneous medium with a
linear variation in the shear modulus was examined by
Rajapakse (1990) and Rajapakse & Selvadurai (1991), who
extended the analysis to include circular footings and anchor
plates in non-homogeneous elastic media. This paper exam-
ines two types of elastic non-homogeneity in the shear
modulus: (a) exponential variation with depth over the entire
half-space region; and (b) exponential variation with depth
over a finite depth, beyond which the elastic shear modulus
is assumed to be constant. The solution of these problems is
accomplished using an integral transform formulation of the
resulting equations of elasticity. An alternative approach for
the modelling of depth-dependent non-homogeneity in a
half-space is to use a layered system approach to represent
the variation in the elastic moduli (Yue et al., 1999). Other
approaches for modelling elastic non-homogeneity include
the harmonic spatial variation in the elastic modulus investi-
gated by Selvadurai & Lan (1997, 1998) or a more general-
ised approach that was presented by Spencer & Selvadurai
(1998).

In the case of the discrete variation in the elastic non-
homogeneity, the demarcation point between the variations is
assumed to be the point of application of the interior circular
loads. The procedure can, however, be extended to include
the case where the demarcation point is located at an
arbitrary position in relation to the plane of application of
the axisymmetric interior loading. The numerical results for
the surface displacement of the half-space region are used to
compare the influences of the bounded and unbounded
values in the linear elastic shear modulus. The results
derived from the current study and a previous investigation
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by Selvadurai & Katebi (2012) are compared with equivalent
results for the problem of the undrained interior loading of a
half-space with a linear variation in the elastic shear mod-
ulus (Rajapakse, 1990). The analytical results are also used
to establish the accuracy of finite-element results for the
analogous problems.

GOVERNING EQUATIONS
The development of the partial differential equations

governing the elastic non-homogeneity problem is relatively
straightforward, and the governing equations are presented
for completeness. Details of the development are given in
Popov (1959), Gibson (1967) and Korenev (1975). The
displacement field in the elastic continuum is defined by
u(x), where x is a position vector, and the linearised strain
tensor �(x) is defined by

� ¼ 1
2

=uþ =uð ÞT
h i

(1)

The Cauchy stress tensor is �(x), and the constitutive
relationship for a non-homogeneous elastic material in which
the linear elastic shear modulus varies with the coordinate
direction z takes the form

� ¼ 2G zð Þ ÆeIþ �½ � (2)

where G(z) is the linear elastic shear modulus, I is the unit
matrix

e ¼ tr �ð Þ; Æ ¼ �

1� 2�
(3)

and � is Poisson’s ratio, which is assumed to be a constant.
Attention is specifically restricted to incompressible elastic
materials, for which isochoric deformations give

tr �ð Þ ¼ 0; � ¼ 1
2

(4)

The constraints in equations (4) imply that the constitutive
equations (2) are indeterminate to within an isotropic stress
state f (r, z) (e.g. Selvadurai & Spencer, 1972; Spencer,
1980); this needs to be determined from the solution of the
equations of equilibrium, which, in the absence of body
forces and for axial symmetry, reduce to

=:� ¼ 0 (5)

Attention is now restricted to a state of axisymmetric
deformation where the displacement components are ur(r, z)
and uz(r, z), and the displacement equation of equilibrium
can be reduced to

=2ur þ
@ f

@r
� ur

r2
þ 1

G

dG

dz

@uz

@r
þ @ur

@z

� �
¼ 0 (6)

=2uz þ
@ f

@z
þ 1

G

dG

dz
f þ 2

@uz

@z

� �
¼ 0 (7)

where =2 is the axisymmetric form of Laplace’s operator
given by

=2 ¼ @2

@r2
þ 1

r

@

@r
þ @2

@z2
(8)

Eliminating the function f (r, z) between equations (6) and
(7), and based on the assumption that the differentiations
commute, one obtains

g zð Þ=2ur þ =2 @ur

@z
� @

@r
=2uz

� �

þ g zð Þ @2ur

@z2
� ur

r2
� @2uz

@r@z

� �
� 1

r2

@ur

@z

þ g2 zð Þ þ dg zð Þ
dz

� �
@uz

@r
þ @ur

@z

� �
¼ 0

(9)

where

g zð Þ ¼ 1

G

dG

dz
(10)

By restricting attention to a variation in the elastic shear
modulus of the form

G1 zð Þ ¼ G0eºz, z < d (11a)

G2 zð Þ ¼ G0eºd , z > d (11b)

equation (9), applicable to the separate domains, takes the
form

º=2ur þ =2 @ur

@z
� @

@r
=2uz

� �

þ º
@2ur

@z2
� ur

r2
� @2uz

@r@z

� �

� 1

r2

@ur

@z
þ º2½ � @uz

@r
þ @ur

@z

� �
¼ 0, z < d

(12a)

=2 @ur

@z
� @

@r
=2uz

� �
� 1

r2

@ur

@z
¼ 0, z > d (12b)

The results in equations (12), together with the incompress-
ibility condition

@ur

@r
þ ur

r
þ @uz

@z
¼ 0 (13)

constitute the set of coupled partial differential equations
governing the displacement field.

In order to solve equations (12) and (13) Hankel trans-
form representations are introduced (Sneddon, 1951; Selva-
durai, 2000a), of the form

ur r, zð Þ ¼
ð1

0

�Ur �, zð ÞJ1 �rð Þd� (14)

uz r, zð Þ ¼
ð1

0

�Uz �, zð ÞJ0 �rð Þd� (15)

where � is the Hankel transform parameter, and Jn is the
Bessel function of the first kind of order n. Using equations
(13), (14) and (15), equations (12) can be reduced to

d4Uz

dz4
þ 2º

d3Uz

dz3
þ º2 � 2�2
� � d2Uz

dz2

� 2º�2 dUz

dz
þ �2 �2 þ º2

� �
Uz ¼ 0, z < d

(16a)

d4Uz

dz4
� 2�2 d2Uz

dz2
þ �4Uz ¼ 0, z > d (16b)

The stress components relevant to the paper can be ex-
pressed in the form

� zz r, zð Þ ¼ G zð Þ
ð1

0

� F þ 2
dUz

dz

� �
J0 �rð Þd� (17)

� rz r, zð Þ ¼ G zð Þ
ð1

0

� ��Uz þ
dUr

dz

� �
J1 �rð Þd� (18)

1160 KATEBI AND SELVADURAI



where F is the Hankel transform of f, defined by

f r, zð Þ ¼
ð1

0

�F �, zð ÞJ0 �rð Þd� (19)

AXISYMMETRIC INTERNAL LOADING OF A
NON-HOMOGENEOUS ELASTIC HALF-SPACE

The problem is considered of an incompressible non-
homogeneous elastic half-space, which is loaded internally
by an axially directed circular load of radius a with stress
intensity p0 and situated at a depth z ¼ d from the traction-
free surface of the half-space (Fig. 1). The most convenient
approach for formulating boundary value problems of this
type (Selvadurai et al., 1991; Selvadurai, 2000b, 2000c) is
to consider that the original half-space region is composed
of (a) a layer region (superscript (1)) occupying the domain
r 2 (0,1) and z 2 (d,1), and (b) a half-space region
(superscript (2)) occupying the domain r 2 (0,1) and
z 2 (d,1).

The elastic layer region and the elastic half-space region
that are subjected to the following boundary and interface
conditions are considered.

� (1)
zz r, 0ð Þ ¼ 0 (20)

� (1)
rz r, 0ð Þ ¼ 0 (21)

u(1)
r r, dð Þ ¼ u(2)

r r, dð Þ (22)

u(1)
z r, dð Þ ¼ u(2)

z r, dð Þ (23)

� (1)
zz r, dð Þ � � (2)

zz r, dð Þ ¼
p(r), r < a

0, r . a

(
(24)

� (1)
rz r, dð Þ ¼ � (2)

rz r, dð Þ (25)

In equation (24), p(r) represents the intensity of internally
applied pressure over the circular area. In addition, the
displacement and stress fields should satisfy the regularity
conditions applicable to the layer and half-space regions as
r, z!1: Consistent with the regularity conditions at infin-
ity, the transformed solution for the displacement compo-
nents ur(r, z) and uz(r, z) can be written as

uz r, zð Þ ¼
ð

A1e�k1zþB1e�k2zþC1ek3zþD1ek4z
� 	

�J0 �rð Þd�;

z , d

(26a)

uz r, zð Þ ¼
ð

A2e��z þ B2ze��z
� 	

�J0 �rð Þd�; z . d (26b)

and

ur r, zð Þ¼ð
A1k1

�
e�k1zþB1k2

�
e�k2z�C1k3

�
ek3z�D1k4

�
ek4z

� �
�J1 �rð Þd�;

z , d

(27a)

ur r, zð Þ ¼
ð

A2e��z þ B2 z� 1

�

� �
e��z

� �
�J1 �rð Þd�; z . d

(27b)

where

k1 ¼ 1
2

ºþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
º2 þ 4iº�þ 4�2

q� �

k2 ¼ 1
2

ºþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
º2 � 4iº�þ 4�2

q� �

k3 ¼ 1
2
�ºþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
º2 þ 4iº�þ 4�2

q� �

k4 ¼ 1
2
�ºþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
º2 � 4iº�þ 4�2

q� �
(28)

and A, B, C and D are arbitrary functions of � to be
determined from appropriate boundary and continuity condi-
tions.

Using equations (26), (27) and (7), f (r, z) takes the form

f r, zð Þ ¼ð
A1q1e�k1z þ B1q2e�k2z þ C1q3ek3z þ D1q4ek4z
� 	

�J0 �rð Þd�;

z , d

(29a)

f r, zð Þ ¼
ð
�2B2e��z
� 	

�J0 �rð Þd�; z , d (29b)

where

qi ¼
k3

i

�2
� ki �

ºk2
i

�2
� º; i ¼ 1, 2

qiþ2 ¼ �
k3

iþ2

�2
þ kiþ2 �

ºk2
iþ2

�2
� º; i ¼ 1, 2

(30)

Substituting equations (26), (27) and (29) into the boundary
and continuity equations defined by equations (20)–(25)
results in a system of linear simultaneous equations for the
arbitrary functions A1(�), A2(�), B1(�), B2(�), . . ., etc. (see
the Appendix). The substitution of the explicit results for
arbitrary functions A1, B1, C1, D1, A2 and B2 in equations
(17), (18), (26) and (27) results in explicit solutions for
displacements and stresses at an arbitrary point within the
domain of the non-homogeneous elastic half-space. The
expressions for stresses and displacements involve infinite
integrals with integrands decaying exponentially with in-
creasing values of the Hankel transform parameter �. This
completes the formal analysis of the axisymmetric internal
loading of an incompressible elastic half-space region with

Traction-free surface

Non-homogeneous
elastic half-space

z

a

d

0

θ r

Uniform
circular
load

Fig. 1. Mindlin loads at the interior of an undrained non-
homogeneous elastic half-space
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an exponential variation of the linear elastic shear modulus
with depth.

MODULUS OF ELASTICITY
In this paper the half-space is considered to be elastic

non-homogeneous. The justification for considering elastic
non-homogeneity stems from results of experimental investi-
gation (e.g. Skempton & Henkel, 1957; Ward et al., 1965;
Hooper & Butler, 1966; Simons & Som, 1969; Burland &
Lord, 1970; Cooke & Price, 1973; Marsland, 1973; Butler,
1974; Hobbs, 1974; Atkinson, 1975; Burland et al., 1977;
Abbiss, 1979; Simpson et al., 1979; Costa Filho & Vaughan,
1980), in which it is shown that the shear modulus of many
soils increases with depth. It is worth mentioning that elastic
moduli in these studies were determined using triaxial com-
pression, in situ pressure meter and plate loading tests.

The early work by Skempton & Henkel (1957) on London
Clay suggested that the modulus of elasticity increases with
depth. Similar observations by Ward et al. (1965) and Mars-
land (1973) on London Clay using both triaxial and plate
loading tests show that the elastic modulus increases with
depth, but it can be observed from these and other studies
that the triaxial test results are very variable. However, the
results from large in situ plate load tests are more consistent,
and are also typically higher than those obtained from
laboratory triaxial tests. By comparing with laboratory va-
lues, Marsland (1973) noted that modulus values given by
the plate tests are much closer to those derived from the
analysis of settlement records (Hooper & Butler, 1966).
Instrumented pile test results presented by Cooke & Price
(1973) also seem to support this view.

Burland et al. (1977) studied the depth variation of the
geotechnical properties of Oxford Clay and Kellaways Beds;
the results showed that the vertical Young’s modulus in-
creases with depth, although the variation is not necessarily
linear. The rate of increase in the Young’s modulus was
higher at greater depths in Oxford Clay. Burland et al.
(1977) reported that the undrained vertical Young’s modulus,
Ev, increases with depth from 10 MPa to 160 MPa. In order
to provide an example application of the variation of the
modulus of elasticity, a simple linear fit and an exponential
fit have been completed for the data provided by Burland et
al. (1977).

G ¼ Esecant

2 1þ vð Þ ¼
Esecant

3
(31)

G zð Þ ¼ 3:33e0:0879z (32)

G zð Þ ¼ 3:33þ 1:062z (33)

In the above equations, the SI unit of the modulus of
elasticity (shear modulus G and secant Young’s modulus
Esecant) is expressed in megapascals (MPa), and the SI unit
for z is given in metres (m). The numerical results for these
two variations are presented in the next section.

Studies of the variation in the shear modulus with depth
are not limited to clay; the results of large plate tests at
various depths by Abbiss (1979) show that the stiffness of
chalk and also its static Young’s modulus increase with
depth. Cripps & Taylor (1981, 1986) investigated the engin-
eering properties of overconsolidated clays and mudrocks.
There are also a few tests that considered the measurement
of the modulus of elasticity under drained conditions (Atkin-
son, 1975; Hooper & Wood, 1977).

All the investigations mentioned above show that the
modulus of elasticity in soils generally increases with depth,
although the variation is not necessarily linear or exponen-
tial.

NUMERICAL RESULTS
The procedure outlined in the previous section leads to

explicit infinite integral expressions for the displacement and
stress fields within the non-homogeneous elastic half-space
under a buried circular load. The integrands of these inte-
grals cannot be expressed in explicit forms. Consequently,
results of interest for practical applications can be developed
only through a numerical integration of the infinite integrals.
Eason et al. (1955) developed a special numerical procedure
to evaluate such infinite integrals, and further applications
are investigated by Selvadurai & Rajapakse (1985) and
Oliveira et al. (2012). Owing to the oscillatory and singular
nature of these integrands, an adaptive numerical procedure
is used to enhance the accuracy of the numerical results;
examples of such an application are given by Rahimian et
al. (2007) and Katebi et al. (2010). For numerical evaluation
of the integrals, the upper limit of integration is replaced by
a finite value �0; this limit is increased until a convergent
result is obtained. The approach outlined in this section was
applied to evaluate the influence of the non-homogeneity on
the displacements of a non-homogeneous elastic half-space
under uniform internal loading over a circular area. It should
be pointed out that all numerical results are presented in
non-dimensional forms.

In the following, numerical results are presented that
illustrate the influence of the segmental non-homogeneity on
results of engineering interest. Further, in order to have a
better understanding of the influence of non-homogeneity on
displacements and stresses, a comparison has been made
between these results and those obtained by Selvadurai &
Katebi (2012) and Rajapakse (1990). Selvadurai & Katebi
(2012) considered the problem with an exponential variation
of the shear modulus, while Rajapakse (1990) considered a
linear variation in the shear modulus. Segmental, exponential
and linear variations are given by equation (11) and

G zð Þ ¼ G0eºz (34)

G zð Þ ¼ G0 þ mz (35)

respectively.
Since there are different variations of the shear modulus,

these variations must be related in order to make compari-
sons. These can be related through the equation

dGExp zð Þ
dz

� �
z¼0

¼ dGLinear zð Þ
dz

� �
z¼0

(36)

Equation (33) yields

º ¼ m

G0

(37)

Figure 2 shows the surface displacement of a non-
homogeneous incompressible elastic half-space for different
º, which is directly related to the shear modulus. The
vertical surface displacement for different depths and dia-
meters of the loading ~dd (~dd ¼ d/a) are shown in Fig. 3.
Also, the variations of vertical displacement along the
z-axis for different depths of the loading ~dd (~dd ¼ d/a) are
shown in Fig. 4. It is evident that the presence of non-
homogeneity has a significant effect on the maximum
displacement of the half-space.

To provide a better estimate of the relative influence of the
elastic non-homogeneity on the displacements of the med-
ium, the ratio of the displacement in a non-homogeneous
medium to that in a homogeneous medium has been evalu-
ated for different values of º, and is presented in Fig. 5 for
both exponential and segmental variations. Fig. 6 shows the
variation of the vertical displacement of a non-homogeneous
incompressible half-space with segmental variation of the
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shear modulus in the z-direction for different º at a depth
~dd ¼ 1: The comparison of the vertical displacement along the
z-direction for different shear modulus variations is shown in
Fig. 7. As would be expected, the vertical displacement is
much lower for the exponential variation than for the linear
or segmental variation of the shear modulus.

Furthermore, the variation of vertical displacement of a
non-homogeneous incompressible half-space with segmental
variation along the r-axis at depth ~dd ¼ 1 is shown in Fig. 8.
Fig. 9 shows the comparison of vertical displacement along
the r-axis for exponential, segmental and linear variation of
the shear modulus. As can be seen in the results presented
in Fig. 9, the slope of the curve should be zero where r ¼ 0;
however, this is not correctly addressed by the results of
Rajapakse (1990).

The presented figures show that the response of the
medium is influenced by the degree of non-homogeneity. As
would be expected, the vertical displacement decreases as
the shear modulus increases, if all other parameters are kept
constant. (i.e. as G increases, the stiffness of the half-space
also increases).

The numerical results for the linear and exponential fit
mentioned in the previous section are shown in Fig. 10. For
a better understanding of the influence of the degree of non-
homogeneity on the response, the variation of vertical dis-
placements along the z-axis has been plotted in Fig. 11 for
different depths and diameters of loading.

Figures 12 and 13 show the variation of non-dimensionalised
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normal and radial stress along the z-direction for segmental
non-homogeneity at a depth ~dd ¼ 2. As is evident from Fig. 9,
�zz and �rr sustain a discontinuity at ~dd ¼ 2, owing to the effect
of the applied load. It can be observed that �zz decreases with
an increase in the shear modulus, but unlike the displacement,
the influence of non-homogeneity is moderate, and limited to
the vicinity of the applied load. It should be noted that �ŁŁ and
�rr are equal, owing to the symmetry of the problem.

In order to check the consistency of the results, one can
use the strain–stress relation to calculate the strains and then
the displacements. The variation of normal strains along the
z-axis is given in Fig. 14.

Computational results
To provide a comparison with the analytical solutions, a

finite-element analysis of incompressible non-homogeneous
elastic half-space problem was performed using COMSOL
MultiphysicsTM software. The axisymmetric half-space region
is represented by a finite domain where the outer boundaries
extend to 1000 times the radius of the loaded area in both the r-
and z-directions. In order to obtain this ratio (l/a ¼ 1000), a
calibration was performed between computational results with
different l/a ratios and known analytical solutions for the
classical contact problem (Selvadurai, 1979; Gladwell, 1980).
A mixed U–P formulation was employed in the COMSOL
MultiphysicsTM software in order to model an incompressible
material. Fig. 15(a) shows the finite-element representation of
the classical problem of the indentation of the surface of a half-
space by a rigid circular disc of radius a, subjected to an axial
load P. As can be seen from Fig. 15(b), the analytical and
computational results are virtually identical beyond l/a ¼ 1000.
The same l/a ratio was used to develop computational results
for the non-homogeneous case.

Figure 6 gives a comparison of the analytical results and
finite-element results for the internal loading of a non-
homogeneous incompressible half-space for segmental varia-
tion of the shear modulus (the computational results are
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indicated by the symbols h, s, ˜, etc.). It can be seen that
there is excellent correlation between the analytical results
derived from the exponential variations in the shear modulus
and the computational results (accurate to within 0.3%).
This almost negligible difference could have arisen either
from an error in the numerical calculation of the analytical–
numerical solution or through idealisation of the half-space
region as a finite domain. The discrepancies are considered
to be well within the range acceptable for engineering
applications of the results.

CONCLUDING REMARKS
In this paper, a mathematical treatment is presented for

the displacements and stresses corresponding to axisym-
metric interior loading of a non-homogeneous incompress-
ible isotropic elastic half-space where the linear elastic
modulus varies exponentially over a finite depth, beyond
which it is constant. These results have been compared with
two existing solutions for both linear and exponential varia-
tions of the shear modulus. The influence of non-homo-
geneity on the response of the half-space is clearly shown
by the numerical results presented. The interior loading of
an elastic half-space can serve as a useful model for
examining the interior loading of geologic media with
predominantly isochoric deformations. Experimental investi-
gations of geological media such as London Clay deposits
show that the modulus of elasticity in soils generally in-
creases with depth, although the variation is not necessarily
linear or exponential. The analysis of the traction boundary
value problem related to the interior loading of a non-
homogeneous elastic half-space can be obtained in a form
where results of practical interest can be derived through the
evaluation of infinite integrals. The study can also be used

as a benchmarking solution for examining the accuracy of
computational approaches that can ultimately be used to
examine more complicated variations of the shear modulus
with depth.
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APPENDIX

A1Ł1 þ B1Ł2 þ C1Ł3 þ D1Ł4 ¼ 0 (38)

A1�1 þ B1�2 þ C1�3 þ D1�4 ¼ 0 (39)

A1k1e�k1d þ B1k2e�k2d � C1k3ek3d � D1k4ek4d

¼ A2�þ B2 d�� 1ð Þ½ �e��d
(40)

A1e�k1d þ B1e�k2d þ C1ek3d þ D1ek4d ¼ A2 þ B2dð Þe��d (41)

A1�1e�k1d þ B1�2e�k2d þ C1�3ek3d þ D1�4ek4d

¼ 2�A2 þ 2�B2d � 2B2ð Þe��d
(42)

A1Ł1e�k1d þ B1Ł2e�k2d þ C1Ł3ek3d þ D1Ł4ek4d þ A2 þ B2dð Þe��d

¼ ~pp �ð Þ
G dð Þ

(43)

where

�i ¼ �þ k2
i

�
; i ¼ 1, 2, 3, 4

Łi ¼ qi � 2ki; Łiþ2 ¼ qiþ2 þ 2kiþ2; i ¼ 1, 2

G dð Þ ¼ G0eºd

~pp �ð Þ ¼
ð1

0

rp rð ÞJ0 �rð Þdr

(44)

The explicit solutions for the arbitrary functions A1, B1, C1, D1,
A2 and B2 can be expressed as follows.

A1 ¼
ª‘3�4

Ł3

(45)

B1 ¼ �
ª‘3

Ł2

� ª‘3�4Ł1

Ł2Ł3

(46)

C1 ¼
ª‘2

Ł2

� ª‘3�4 ‘1=‘3 � ‘2Ł1=‘3Ł2ð Þ
Ł3

(47)

D1 ¼
ª‘5

Ł2

� ª‘3�4 ‘4=‘3 � ‘5Ł1=‘3Ł2ð Þ
Ł3

(48)

A2 ¼
ª‘3�2

Ł2

� ª‘3�4 �1 � �2Ł1=Ł2ð Þ
Ł3

(49)

B2 ¼
ª‘3R1

Ł2

� ª‘3�4 R1 � R2Ł1=Ł2ð Þ
Ł3

(50)

where

‘i ¼ �4Łi� �iŁ4; i¼ 1, 2, 3

‘iþ3 ¼��3Łiþ �iŁ4; i¼ 1, 2

I i ¼ e�d �þkið Þ �� kið Þ; I iþ2 ¼ e�d ��kiþ2ð Þ �þ kiþ2ð Þ; i¼ 1, 2

J i ¼ e�2d��d �þkið Þ 2�� �ið Þ; J iþ2 ¼ e�2d��d ��kið Þ 2�� �iþ2

� �
;

i¼ 1, 2

hi ¼�e�d(�þki) 2�þ Łið Þ; hiþ2 ¼�e�d ��kiþ2ð Þ 2�þ Łiþ2ð Þ;

i¼ 1, 2
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øi ¼ ed ��kið Þ �1þ d�� dkið Þ; øiþ2 ¼ ed �þkiþ2ð Þ �1þ d�þ dkiþ2ð Þ;

i¼ 1, 2

f i ¼ ed ��kið Þ ed kiþk4ð Þ��1þ ed kiþk4ð Þk4�1� ��4� ki�4

� �
; i¼ 1, 2

f 3 ¼ ed� �edk4��3� edk4 k4�3þ edk3��4þ edk3 k3�4

� �
�i ¼ �2e�2dI i� J i

� �
�4þ �i �2e�2dI4� J4

� �
; i¼ 1, 2, 3

�4 ¼��2‘2þ �1‘3

Łi ¼ ‘3 �4hi� �ih4ð Þ� ‘i �4h3� �3h4ð Þ; i¼ 1, 2

Ł3 ¼��4Ł1þ �1‘3� �3‘1ð ÞŁ2

�i ¼øi�
ø4�i

�4

� �
�
ø3� ø4�3=�4

� �
‘2

‘3

; i¼ 1, 2

Ri ¼
f 1

�4

þ f 3‘i

�4‘3

; i¼ 1, 2

ª¼ e�d��4P

G

(51)

NOTATION
A, B, C, D arbitrary functions of �

a radius of loading
d embedment depth of loading
~dd ¼ d/a

Esecant secant Young’s modulus
Ev undrained vertical Young’s modulus
F Hankel transform of f
f arbitrary function of (r, z)

G(z) shear modulus varying in z-direction
G0 shear modulus at surface

g(z) arbitrary function of z dependent on the variation in
the shear modulus

I unit matrix
Jn Bessel function of the first kind of order n
m non-homogeneous parameter (linear)
P axial load

p(r) intensity of internally applied pressure
p0 applied stress intensity
r radial coordinate

Ur, Uz Hankel transforms of ur(r, z) and uz(r, z),
respectively

u displacement vector
ur(r, z) radial displacement component
uz(r, z) vertical displacement component

x position vector
z vertical coordinate
� strain tensor
º non-homogeneous parameter (exponential)
� Poisson’s ratio
� Hankel transform parameter
� stress tensor

�rr radial stress
�zz axial stress
�ŁŁ circumferential stress
=2 Laplace’s operator
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Géotechnique 29, No. 2, 149–175, http://dx.doi.org/10.1680/
geot.1979.29.2.149.

Skempton, A. W. & Henkel, D. J. (1957). Tests on London Clay
from deep borings at Paddington, Victoria and the South Bank.
Proc. 4th Int. Conf. Soil Mech. Found. Engng, London 1, 100–
106.

Sneddon, I. N. (1951). Fourier transforms. New York, NY, USA:
McGraw-Hill.

Spencer, A. J. M (1980). Continuum mechanics. London, UK:
Longman Mathematical Texts.

Spencer, A. J. M. & Selvadurai, A. P. S. (1998). Some generalized
anti-plane strain problems for an inhomogeneous elastic half-
space. J. Engng Math. 34, 403–416.

Ward, W. H., Marsland, A. & Samuels, S. G. (1965). Properties of
the London Clay at the Ashford Common Shaft: in-situ and
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