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Boundary heating of poro-elastic and
poro-elasto-plastic spheres

BY A. P. S. SELVADURAI* AND A. P. SUVOROV

Department of Civil Engineering and Applied Mechanics, McGill University,
817 Sherbrooke Street West, Montreal, Quebec, Canada H3A 2K6

This paper examines the coupled hydro-thermo-mechanical behaviour of a fluid-saturated
porous sphere with a skeletal fabric that can exhibit either elastic or elasto-plastic
mechanical behaviour. Analytical results for the thermo-poro-elastic response of the
sphere subjected to transient heat transfer are complemented by computational results
for the analogous thermo-poro-elasto-plastic problem. The results presented in the paper
examine the influence of the permeability, thermal expansion properties of the pore
fluid and the skeleton, and the elasto-plasticity effects of the porous skeleton on the
time-dependent pore fluid pressure, displacement and stress within the sphere.
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1. Introduction

An understanding of the thermo-hydro-mechanical (THM) behaviour of
geomaterials is necessary for many applications in the environmental
geosciences and geoenvironmental engineering. In the area of deep geological
disposal of heat-emitting radioactive wastes (Gnirk 1993; Selvadurai &
Nguyen 1997; Rutqvist et al. 2001; Stephansson et al. 2004; Alonso et al.
2005), earthquake hazards along fault zones (Rice 2006), geothermal energy
extraction (Dickson & Fanelli 1995; Duffield & Sass 2003) and ground
source energy extraction (Knellwolf et al. 2011; Laloui & Di Donna 2011),
the coupled processes associated with heat transfer, mechanical deformations
of the porous skeleton and fluid movement under thermal, hydraulic and
mechanical effects are recognized as important considerations. Knowledge
of the coupled THM processes in the fluid-saturated geological medium
is also essential to accurately evaluate the pore-fluid pressure responses,
where adverse fluid pressures can induce damage in the form of micro-
fracturing to the porous skeletal structure. Investigations dealing with the
modelling of THM processes in poro-elastic fluid-saturated media are quite
extensive. The reader is directed to recent literature in geomechanics,
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particularly those conferences devoted to poromechanics (Selvadurai 1996;
Thimus et al. 1998; Auriault et al. 2002; Abousleiman et al. 2005), articles
with extensive reviews (Selvadurai 2007; Schanz 2009; Selvadurai & Selvadurai
2010) and the recent articles on nuclear waste management cited previously,
for further information.

Conventional poro-elasticity and thermo-poro-elasticity problems have been
examined in the literature, starting with the classical studies by Mandel (1953)
and Cryer (1963) (see also Selvadurai & Shirazi 2005), and the amplification of
the pore-fluid pressure during radial loading of a saturated clay was confirmed
in the experimental studies conducted by Gibson et al. (1963). The thermo-poro-
elastic problem for a hollow sphere subjected to a sudden rise in temperature
and pressure on its inner wall was studied by Kodashima & Kurashige (1996).
In their work, the heat transport equation included a nonlinear convective
term; the analytical solution of the problem was obtained for the steady-state
case, and the transient solution was obtained numerically. Similar studies were
conducted by Rehbinder (1995), who considered problems with cylindrical and
spherical symmetries, and the stationary solutions for the nonlinear thermo-poro-
elastic problem were obtained using a perturbation technique. Belotserkovets &
Prevost (2011) studied the transient response of a thermo-poro-elastic sphere
subjected to an applied radial stress. The goal of their studies was to characterize
the influence of the applied stress on the change in the temperature within
the sphere.

The present paper includes the study of an idealized problem where the
skeleton of the fluid-saturated material exhibits elasto-plastic effects. The
treatment of such effects is not generally considered applicable to brittle
geomaterials that have a greater susceptibility for damage development in the
form of micro-cracks and micro-fissures that can alter the stiffness and fluid
transmissivity properties (Selvadurai & Mahyari 1997; Mahyari & Selvadurai
1998; Selvadurai 2004; Selvadurai & Shirazi 2004, 2005; Shirazi & Selvadurai
2004). The consideration of plasticity effects is largely of interest to soft rocks
that could display elasto-plastic constitutive behaviour in their skeletal responses,
particularly in the small strain range (Desai & Siriwardane 1984; Darve 1990;
Davis & Selvadurai 2004; Pietruszczak 2010). Thermo-poro-elasto-plasticity of
clays has been discussed in connection with engineered clay barriers that have
been proposed for high-level nuclear waste disposal endeavours (Hueckel &
Borsetto 1990; Hueckel & Peano 1996; Laloui et al. 2005; Sanchez et al.
2008). Analytical investigations are rare; an example of the consolidation of
a poro-elasto-plastic column is given by Pariseau (1999) and the Cam Clay
plasticity model applied to the problem of thermal failure in saturated clays
was considered by Hueckel et al. (2009). The Cam Clay model was also used to
obtain an analytical solution for the undrained expansion of a spherical cavity
(Silvestri & Abou-Samra 2011).

This paper presents a comparison of analytical and computational results for
the idealized problem of the external heating of a fluid-saturated sphere with a
skeletal response that can be described by elastic or elasto-plastic phenomena.
The objectives of the computational studies presented in the paper are to
develop a set of benchmark computational results that can be used to validate
computational codes (such as COMSOL and ABAQUS) in their ability to provide
inter-code validations.

Proc. R. Soc. A (2012)

 on February 1, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


Poro-elasto-plastic spheres 2781

2. Governing equations

We consider the class of porous materials in which the pore space is fluid-
saturated and the skeleton can exhibit mechanical and thermal deformations
associated with stresses and temperatures applied to the skeletal phase. The
porous material undergoes failure, which can be described by an appropriate
elasto-plastic model, characterized by an yield condition, a flow rule and a
hardening law. It is assumed that the thermo-physical properties for the solid
phase of the geomaterial are the same, irrespective of whether it exhibits elastic
or plastic responses. Similarly, we assume that the fluid transport properties in the
porous medium are the same in both the intact and yielded regions. We denote the
total stress tensor in the pore skeleton by sij(xi , t) and the pore-fluid pressure by
p(xi , t). The development of the poro-elastic part of the constitutive modelling
adopts the procedures described by Selvadurai & Nguyen (1995). Briefly, the
constitutive equation governing the poro-elastic response of the fluid-saturated
porous medium is given by

sij = 2GD3ij + (KD − 2
3GD)3kkdij − apdij − 3KDasTdij , (2.1)

where dij is Kronecker’s delta and

3ij = 1
2(ui,j + uj ,i) (2.2)

is the infinitesimal strain tensor expressed in terms of the displacement
components ui ; T is the temperature; KD and GD are the bulk and shear moduli
of the porous skeleton, as is the coefficient of linear thermal expansion of the solid
phase and the comma denotes the partial derivative with respect to the spatial
variable xi . In (2.1), a is Biot’s coefficient defined by

a = 1 − KD

Ks
, (2.3)

where Ks is the bulk modulus for the solid phase. In most geomechanical
applications, Ks → ∞, with the result that a = 1. In the absence of body forces
and gravity effects, the equation of equilibrium expressed in terms of the
total stress

sij ,j = 0 (2.4)

can be combined with the constitutive relationship (2.1) to give

GDV2ui +
(

KD + 1
3
GD

)
vuk,k

vxi
− a

vp
vxi

− 3KDas
vT
vxi

= 0, (2.5)

where V2 is Laplace’s operator. The flow of water through the porous medium
is described by the conventional form of Darcy’s law applicable to an isotropic
porous medium: i.e. the fluid velocity in the pore space (vf

i ) relative to the porous
skeleton velocity (vs

i ) is given by

vf
i − vs

i = −K
h

vp
vxi

, (2.6)
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where K is the permeability and h is the dynamic viscosity. The mass conservation
equation for the fluid-saturated poro-elastic geomaterial can be written as

−K
h

V2p + a
vuk,k

vt
+

(
4

Kf
+ a − 4

Ks

)
vp
vt

= [43af + (a − 4)3as]vT
vt

, (2.7)

where as is the coefficient of linear thermal expansion of the solid phase, af is
the coefficient of linear thermal expansion of the pore fluid, uk,k(= 3vol) is the
volumetric strain of the skeleton, which can include both elastic and plastic
components, Kf is the bulk modulus of the fluid and 4 is the porosity. Equation
(2.7) also holds for elasto-plastic porous materials with incompressible and elastic
solid phases.

When dealing with quasi-static thermo-poro-elasto-plastic materials, we can
assume that neither the deformations of the medium nor the fluid flow process
results in heat generation, and therefore does not contribute to any change
in temperature within the medium. This considerably simplifies the equations
governing the heat transfer process, which can be expressed as a classical heat
conduction equation of the form

V2T = rcp

kc

vT
vt

, (2.8)

where kc, r and cp are, respectively, the effective values of the thermal
conductivity, mass density and heat capacity of the saturated porous medium.
These can be expressed as the averages of the properties of the solid (subscript s)
and fluid (subscript w) phases: kc = 4kcw + (1 − 4)kcs and rcp = 4(rcp)w +
(1 − 4)(rcp)s.

In addition to the elastic response associated with the porous skeleton, we
assume that the skeleton can exhibit failure upon attainment of a stress state
prescribed by a yield condition. The choice of a yield condition is dependent
on the type of geomaterial and, for the purposes of illustration, we consider the
modified Cam-Clay model (Schofield & Wroth 1968; Desai & Siriwardane 1984;
Davis & Selvadurai 2004; Pietruszczak 2010). The yield surface is given by

(s̃ − a)2 +
(

q̃
M

)2

− a2 = 0, (2.9)

where q is the von-Mises stress, a is the radius of the yield surface, M is the slope
of the critical state line and s̃ is the isotropic stress applicable to the skeletal
stress: i.e.

q =
√

3
2
s̃ij s̃ij ; s̃ = −1

3
s̃kk ; sij = s̃ij − apdij ; s̃ij = s̃ij + s̃dij . (2.10)

The centre of the yield surface (a, 0) in the (s̃, q) plane can be expressed as
2a = s̃0

c + s̃c(3
pl
kk), where s̃0

c is the initial yield stress for the isotropic compression
stress state, and

s̃c = s̃c(3
pl
kk) (2.11)

is the hardening law that prescribes the dependence of the isotropic stress on the
volumetric plastic strain.
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The yield condition (2.9) can be written as√√√√(
s̃ − s̃o

c

2
− s̃c(3

pl
kk)

2

)2

+
( q
M

)2 ≥ s̃o
c

2
+ s̃c(3

pl
kk)

2
. (2.12)

To determine the incremental plastic strains, we specify an associated flow rule
such that

d3
pl
ij = dl

vG
vs̃ij

; G =
√√√√(

s̃ − s̃0
c

2
− s̃c(3

pl
kk)

2

)2

+
( q
M

)2 − s̃0
c

2
− s̃c(3

pl
kk)

2
. (2.13)

The plastic multiplier dl can be found from the consistency condition

vG
vs̃ij

ds̃ij + vG

v3
pl
kk

d3
pl
kk = 0. (2.14)

Substituting the flow rule (2.13) into the consistency condition (2.14), the plastic
multiplier can be obtained as

dl = − (vG/vs̃ij) ds̃ij

(vG/v3
pl
kk)(vG/vs̃ij)dij

= (vG/vs̃ij)Dijkld3kl

(vG/v3
pl
kk)(vG/vs̃ij)dij + (vG/vs̃ij)Dijkl(vG/vs̃kl)

(2.15)

where Dijkl = (KD − 2/3GD)dijdkl + GD(dikdjl + dildjk) is the elastic constitutive
tensor.

The incremental plastic strains can now be obtained as

d3pl
mn = − (vG/vs̃mn)(vG/vs̃ij)

(vG/v3
pl
kk)(vG/vs̃ij)dij

ds̃ij

= (vG/vs̃mn)(vG/vs̃ij)Dijkld3kl

(vG/v3
pl
kk)(vG/vs̃ij)dij + (vG/vs̃ij)Dijkl(vG/vs̃kl)

. (2.16)

The incremental form of the elasto-plastic constitutive tensor defined as dsij =
DEP

ijkld3kl can be expressed as

DEP
ijkl = Dijkl − Dijrs(vG/vs̃rs)(vG/vs̃mn)Dmnkl

(vG/v3
pl
kk)(vG/vs̃ij)dij + (vG/vs̃ij)Dijkl(vG/vs̃kl)

. (2.17)

The hardening rule adopted here assumes that

s̃c = s̃c(3
pl
kk) = H (−3

pl
kk), (2.18)

where H is a positive constant. If the volumetric strain is negative (compaction),
hardening takes place and the yield stress s̃0

c also increases. In this case, the
loading path in the (s̃, q)-plane intersects the yield surface when the effective
pressure s̃ is larger than the radius of the yield surface. On the other hand, if the
volumetric strain is positive (dilatation), the yield stress decreases. In this case,
the loading path in the (s̃, q)-plane intersects the yield surface when the effective
pressure s̃ is smaller than the radius of the yield surface.
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3. Analysis of the thermo-poro-elastic sphere

Ideally, the results derived from the computational modelling should be validated
through comparisons with either exact or approximate mathematical solutions of
the governing linear or nonlinear partial differential equations applicable for both
the thermo-poro-elastic and thermo-poro-elasto-plastic material responses. Such
solutions are either unavailable or available in forms that are not amenable for
convenient calibration of the computational codes. Some progress can be made
in the analysis of the thermo-poro-elasticity problem related to boundary heating
of a fluid-saturated poro-elastic sphere and the problem of uniform heating of
a poro-elasto-plastic sphere. The basic approach for the poro-elastic sphere will
be described in this section.

We consider the problem of a fluid-saturated poro-elastic sphere of radius R0
that is subjected to boundary heating, i.e. a prescribed temperature change at
the boundary. Because the problem related to the heating of the sphere exhibits
spherical symmetry, the only non-zero primary-dependent variables are the radial
displacement u(R, t), the pore-fluid pressure p(R, t) and the temperature T (R, t).
The solution of the problem of the sphere subjected to the temperature change at
the boundary will allow us to derive solutions for other (related) problems such
as a sphere subjected to radial stress at the boundary, and also to the uniform
temperature change applied to the entire sphere.

The equilibrium equation (2.5) in the spherical coordinate system takes
the form(

KD + 4
3
GD

)
v2u
vR2

+ 2
(

KD + 4
3
GD

)
1
R

vu
vR

− 2
(

KD + 4
3
GD

)
u
R2

− 3KDas
vT
vR

− a
vp
vR

= 0. (3.1)

The equilibrium equation (3.1) can also be written in terms of the volumetric
strain e = (vu/vR) + (2u/R) as

(KD + 4
3GD)Ve − 3KDasVT − aVp = 0. (3.2)

From (3.2), the pressure can be expressed as

ap(R, t) = (KD + 4
3GD)e − 3KDasT + f (t), (3.3)

where f (t) is an arbitrary function of time.
The fluid flow equation (2.7) is given by

− K
h

(
v2p
vR2

+ 2
R

vp
vR

)
+ a

(
vu̇
vR

+ 2u̇
R

)
+ 1

MB

vp
vt

= −K
h

V2p + aė + 1
MB

ṗ

= 34afṪ + 3(a − 4)asṪ , (3.4)

where MB = [(4/Kf + (a − 4)/Ks)]−1 is the Biot modulus.
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Now assume that the fluid and solid phases are incompressible. By taking
the divergence of the equilibrium equation (3.2) and substituting V2p into
the fluid flow equation (3.4), we can obtain the governing equation for the
volumetric strain,

ė = K
h

(
KD + 4

3
GD

)
V2e − K

h
3KDasV

2T + 34afṪ + 3(1 − 4)asṪ . (3.5)

In the case of compressible phases, the equation (3.5) will be coupled with the
fluid pressure (Belotserkovets & Prevost 2011).

The temperature satisfies the heat conduction equation(
v2T
vR2

+ 2
R

vT
vR

)
= rcp

kc

vT
vt

. (3.6)

A solution to the governing equations (3.5) and (3.6) for the volumetric strain
and temperature should satisfy the boundary and initial conditions applicable to
a problem.

The boundary of the sphere is subjected to the temperature change T0, the
fluid pressure and the radial stress at the boundary are maintained at zero
values: i.e.

T (R0, t) = T0, p(R0, t) = 0, sRR(R0, t) = 0. (3.7)

It was shown by Mason et al. (1991) that the stress boundary condition can be
written in terms of the volumetric strain as

sRR(R0, t) =
(

KD + 4
3
GD

)
e(R0, t) − 4GD

R3
0

∫R0

0
R2e(R, t) dR − 3KDasT (R0, t)

− ap(R0, t) = 0. (3.8)

At time t = 0, all the dependent variables within the sphere are assumed to
be zero.

The solution of the heat conduction equation (3.6) can be obtained by using a
Laplace transform technique; the Laplace transform of the temperature field can
be found as

T̄ (R, s) = T0

s
R0

R
sinh(R/R0

√
sk)

sinh(
√

sk)
k = R2

0rcp

kc
. (3.9)

By using the Cauchy residue theorem, the expression (3.9) can be inverted and
the temperature field can be obtained in the form

T (R, t) = T0 − 2T0

[ ∞∑
n=1

(−1)n+1e−n2p2t sin(npR/R0)
npR/R0

]
t = kc

rcp

t
R2

0

= t
k
. (3.10)

In the limit as R → 0, sin(npR/R0)/(npR/R0) = 1.
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By taking the Laplace transform of the governing equation for the volumetric
strain (3.5), we obtain

ē(R, s) = A(s)
R0

R
sinh(

√
suR/R0)

sinh(
√

su)
+ Ca

1
(1 − k/u)

T0

s
R0

R
sinh(

√
skR/R0)

sinh(
√

sk)
,

u = R2
0h

K (KD + 4/3GD)
and Ca = 34af + 3(1 − 4)as − 3KD

KD + 4/3GD

k

u
as,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.11)

where the transform of the temperature field (3.9) has been used. The unknown
function A(s) can be found by enforcing the zero-traction boundary condition
(3.7), and the result can be written as

A(s) = 1
k/u − 1

Ca

T0

s
F(sk)
F(su)

+ 3KDas
T0

s
1

F(su)

and F(s) = KD + 4
3
GD − 4GD

coth(
√

s)√
s

+ 4GD

s
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.12)

The Laplace transform of the pressure can be found by using (3.3) and a null
boundary condition for the pressure (3.7)

p̄(R, t) =
(

KD + 4
3
GD

)
[ē(R, s) − ē(R0, s)] − 3KDas

[
T̄ (R, s) − T0

s

]
. (3.13)

The radial displacement can be found using the formula (Mason et al. 1991)

u = 1
R2

∫R

0
R2e(R, t) dR, (3.14)

which gives

ū(R, s) = A(s)
R2

0

R2

(
R

cosh(
√

su R/R0)√
su sinh(

√
su)

− R0
sinh(

√
su R/R0)

su sinh(
√

su)

)

+ Ca

1
1 − k/u

T0

s
R2

0

R2

(
R

cosh(
√

sk R/R0)√
sk sinh(

√
sk)

− R0
sinh(

√
sk R/R0)

sk sinh(
√

sk)

)
.

(3.15)

Using the final value theorem, it can be shown that the displacement distribution
within the sphere in the long term is given by

u(R, t = ∞) = asT R, (3.16)

which is independent of the thermal expansion of the fluid phase. When
applying the final value theorem, the useful relations are

√
su sinh(

√
su R/R0) =

(R/R0)(su + (R2/R2
0)((su)2/6) + · · ·) and cosh(

√
suR/R0) = (1 +(R2/R2

0)
(su/2) + · · · ).

In order to find the inverse Laplace transform of ē(r , s), it is important to note
that the zeros of F(su), i.e. F(snu) = 0, are among the poles of the first term of
the expression for ē(R, s); these coincide with the poles found by Mason et al.
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(1991) for the problem of a sphere subjected to a mechanical load and can be
found by solving the following equation

tan
√

xn = 2(1 − 2nD)
√

xn

[2(1 − 2nD) − (1 − nD)xn]
and sn = −xn

u
= −xn

K (KD + 4/3GD)
hR2

0

, xn > 0

where nD is the skeletal Poisson’s ratio. When n → ∞, xn → (np)2. The other
poles are sn = −(n2p2/k) and s = 0. By applying the Cauchy residue theorem,
the expression for the volumetric strain can be obtained as

e(R, t) = 1
(k/u − 1)

CaT0 + 3asT0

+ Ca

1
1 − k/u

{
T0 − 2T0

[ ∞∑
n=1

(−1)n+1 exp
(

−n2p2t
k

)
sin(npR/R0)

npR/R0

]}

+ 8GD
u/k

(1 − k/u)
CaT0

∞∑
n=1

1
Qn

R0

R
sin

(
np

√
u

k

R
R0

)
exp

(
−n2p2t

k

)

+ u/k

(1 − k/u)
CaT0

∞∑
n=1

1
xn sin(

√
xnk/u)

Tn

Hn

R0

R
sin

(√
xn

R
R0

)
exp

(
−xnt

u

)

+ 3KDasT0

∞∑
n=1

1
Hn

R0

R
sin

(√
xnR
R0

)
exp

(
−xnt

u

)
, (3.17)

where

Qn =
(

KD + 4
3
GD

) (
−n2p2u

k

)
sin

(
np

√
u

k

)

− 4GDnp

√
u

k
cos

(
np

√
u

k

)
+ 4GD sin

(
np

√
u

k

)
,

Hn =
(

KD − 2
3
GD

)
sin(

√
xn) + (KD + 4

3GD)
√

xn cos(
√

xn)
2

and Tn =
(

KD + 4
3
GD

) (
−xnk

u

)
sin

(√
xnk

u

)
− 4GD

√
xnk

u
cos

(√
xnk

u

)

+ 4GD sin
(√

xnk

u

)
, n = 1, 2, . . . . (3.18)

The fluid pressure can be obtained from (3.13) using the volumetric strain given
in (3.17) and the temperature field (3.10),

p(R, t) = p(R0, t) + (KD + 4
3GD)[e(R, t) − e(R0, t)] − 3KDas[T (R, t) − T0].

(3.19)
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Remark 3.1. From the stress–strain constitutive equations, the mean effective
stress is equal to

s̃ii

3
= KD(e − 3asT ) − ap. (3.20)

On the external surface, R = R0, the radial stress and the fluid pressure are equal
to zero, and therefore the effective hoop stress s̃44 can be obtained from (3.20) as

s̃44(R0, t) = 3
2KD(e − 3asT ) at R = R0. (3.21)

Using the stress–strain relationships, we obtain(
KD + 4

3
GD

)
(3RR − asT ) + 2

(
KD − 2

3
GD

)
(344 − asT ) = 0

(
KD − 2

3
GD

)
(3RR − asT ) + 2

(
KD + 1

3
GD

)
(344 − asT ) = 3

2
KD(e − 3asT ),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.22)

and the strains on the external surface can be expressed in terms of the volumetric
strain e as

3RR(R0, t) = 2GD − 3KD

6GD
(e − 3asT ) + asT

344(R0, t) = 4GD + 3KD

12GD
(e − 3asT ) + asT .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.23)

Because u(R, t) = 344(R, t)R, the expression for the hoop strain 344(R0, t) enables
us to find the surface displacement in terms of the volumetric strain,

u(R0, t) = 4GD + 3KD

12GD
(e − 3asT )R0 + asTR0. (3.24)

The initial volumetric strain on the external surface R = R0 can be derived from
(3.11), using the initial value theorem,

e(R0, 0) = 3asT0
KD

KD + (4/3)GD
. (3.25)

Substitution of this value into (3.23) allows us to find the initial strains on the
external surface,

3RR(R0, 0) = 3KDasT0

KD + (4/3)GD
; 344(R0, 0) = 0. (3.26)

This shows that the initial value of the surface displacement u(R0, 0) is zero.
In the long term t → ∞, the sphere is stress-free, and the displacement of the
poro-elastic sphere is equal to that of the elastic sphere, i.e. u(R) = asT0R.
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Again, using the expression for the initial volumetric strain (3.25) in (3.20),
the initial value of the hoop stress on the external surface can be obtained as

s̃44(R0, 0) = − 6KDGDasT0

KD + (4/3)GD
. (3.27)

The initial skeletal hoop stress on the external surface is compressive if the
temperature change is positive. In the long term, the sphere is stress-free.

Remark 3.2. We now consider a problem when the initial temperature is non-
zero. At first, it is sufficient to assume that T (R, t) ≡ TC, constant, for all R and
t, and then use the superposition principle, if necessary. For this particular case,
the volumetric strain can be obtained from (3.17) by taking the limit k → 0 and
setting T0 = TC,

e(R, t) = 3asTC + KD(34asTC − 34afTC)
∞∑

n=1

1
Hn

R0

R
sin(

√
xn

R
R0

) exp
(

−xnt
u

)
.

(3.28)

The fluid pressure can still be found from (3.19) but with T (R, t) = TC. It can
be shown that the initial value of the fluid pressure p(R, 0) = 4KD[3af − 3as]TC ,
0 ≤ R < R0, derived from (3.19), is in fact equal to the pressure in the undrained
sphere, when the change in the mass of the fluid is zero. However, for a sphere
with a drained boundary condition, the same response can be observed initially at
t = 0 for 0 ≤ R < R0, if the temperature inside the sphere instantaneously becomes
equal to TC. For this case, the pressure distribution inside the sphere exhibits a
Mandel–Cryer-type effect (Mason et al. 1991). (In general, the Mandel–Cryer-
type effect can take place in a poro-elastic sphere when there is a sudden change
in the fluid-flow boundary condition on the external surface from an initially
undrained state to a drained state.)

Let us find initial values of strains and stresses inside a sphere that is heated
uniformly and instantaneously. From (3.5), the initial value of the volumetric
strain is given by

e(R, 0) = 3[4af + (1 − 4)as]TC, 0 ≤ R < R0. (3.29)

Because the heating is uniform, we can assume that the displacement depends
linearly on R, and therefore the components of the strain tensor are equal, i.e.

3RR(R, 0) = 344(R, 0) = [4af + (1 − 4)as]TC, 0 ≤ R < R0. (3.30)

From the stress–strain constitutive relations, analogous to (3.22), the components
of the stress tensor can be obtained as

s̃RR(R, 0) = s̃44(R, 0) = 3KD4[af − as]TC, 0 ≤ R < R0. (3.31)

At the boundary R = R0, the initial hoop strain is given by the same expression
owing to continuity of the displacement, i.e.

344(R0, 0) = [4af + (1 − 4)as]TC. (3.32)
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The radial component of the strain tensor can be found from the constitutive
relations (3.22) by setting the radial stress to zero, s̃RR(R0, 0) = 0. This gives

3RR(R0, 0) = asTC + 2
3

(2GD − 3KD)
[KD + (4/3)GD]4[af − as]TC. (3.33)

We can then compute the initial hoop stress from (3.22)

s̃44(R0, 0) = 6KDGD

[KD + (4/3)GD]4(af − as)TC. (3.34)

The initially drained condition is another admissible set of initial conditions. For
this case,

3RR = 344 = asTC

and sRR = s44 = p = 0 ∀R, t = 0.

}
(3.35)

Remark 3.3. Suppose that the thermal expansion coefficients and temperature
change in (3.28) are KD3asTC = −P0; 4/(1 − 4)KD3afTC = P0, where P0 is a
positive constant. Then the expression (3.28) can be simplified to

e(R, t) = −P0
1

KD

(
1 + 4

3

∞∑
n=1

(1 − 2nD)(1 + nD)
2(1 + nD)(1 − 2nD) − (1 − nD)2xn

× R0

R
sin(

√
xnR/R0)

sin(
√

xn)
exp

(
−xnt

u

))
(3.36)

where nD is the Poisson’s ratio for the undrained material. In deriving (3.36),
we have used the equation for the roots xn . Equation (3.36) corresponds to the
equation derived by Mason et al. (1991) for a poro-elastic sphere subjected to a
compressive radial stress −P0 at the boundary R = R0.

Remark 3.4. It is instructive to solve the problem for the undrained poro-
elastic sphere subjected to the temperature change T (R0, t) = T0 on the external
surface. The volumetric strain for the undrained sphere can be obtained from
(3.5) by setting the permeability equal to zero,

e(R, t) = 34afT (R, t) + 3(1 − 4)asT (R, t). (3.37)

The fluid pressure on the external surface can be found from (3.8)

p(R0, t) =
(

KD + 4
3
GD

)
e(R0, t) − 4GD

R3
0

∫R0

0
R2e(R, t) dr − 3KDasT0. (3.38)

Using the expression (3.37) for the volumetric strain, the fluid pressure on the
external surface R = R0 can be evaluated from (3.38) as

p(R0, t) = KD[34afT0 − 34asT0]

+ 8GD[34afT0 + 3(1 − 4)asT0]
∞∑

n=1

1
n2p2

exp
(

−n2p2 t
k

)
. (3.39)

This expression can be substituted into (3.19) to obtain the fluid pressure for all
points within the sphere.
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The fluid pressure in the undrained sphere subjected to a uniform and constant
temperature change, i.e. T (R, t) ≡ TC, can be found from (3.39) by setting T0 =
TC and t → ∞,

p(R0, t) = KD[34af − 34as]TC. (3.40)

It is clear that if the temperature TC > 0, the thermal expansion of the solid
phase induces negative fluid pressure, and the thermal expansion of the fluid
phase results in positive fluid pressure.

Remark 3.5. Consider the case where the poro-elastic sphere with
incompressible constituents is subjected to a non-zero fluid pressure and zero
temperature change on the external surface. For this type of loading, the resulting
strains will be zero and no change in the mass of the fluid will occur. The fluid
pressure within the sphere will be equal to the applied pressure at the boundary
at all times.

Remark 3.6. The inverse Laplace transform can also be found numerically
by using an expansion involving Legendre polynomials. Suppose that F is the
Laplace transform of a function f , i.e.

F =
∫∞

0
f (t) exp(−st) dt. (3.41)

Then the original function f (t) can be found using the Legendre polynomial
expansion method,

f =
N∑

n=0

cnPn(1 − 2 exp(−st)),

cn = s(2n + 1)
n∑

m=0

(−1)m(n + m)!
(n − m)!(m!)2

F(s(m + 1))

and s = ln(2)
(2t)

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.42)

where Pn is the Legendre polynomial of order n. The first five Legendre
polynomials are: P0 = 1, P1(x) = x , P2(x) = 1/2(3x2 − 1), P3(x) = 1/2(5x3 − 3x),
P4(x) = 1/8(35x4 − 30x2 + 3) and P5(x) = 1/8(63x5 − 70x3 + 15x).

Special attention is required when two time constants u and k are equal, i.e.
u = k, because the particular solution of the inhomogeneous equation (3.5) needs
to be modified. However, a good approximation to the actual solution in this case
can be obtained by setting u ≈ k.

4. Results for the thermo-poro-elastic sphere

To validate the analytical solution for the thermo-poro-elastic sphere presented
in §3, we consider a thermo-poro-elastic sphere of radius R0 = 10 m subjected to
a temperature rise of 100◦C on the external surface. We implicitly assume that
although the temperature of the fluid is set to 100◦C, we do not account for
any phase transformations during heating. The initial temperature is assumed
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= 0
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Figure 1. The two-dimensional finite-element discretizations used in COMSOL (241 elements).

equal to zero. The fluid pressure and the radial stress at the boundary are set
to zero. The results were evaluated analytically (using the closed-form analytical
expressions (3.17)–(3.18) for the volumetric strain, (3.19) for the fluid pressure,
(3.21) for the hoop stress and (3.24) for the surface displacement) and numerically
(using the finite-element program COMSOL). The problem can be solved using a
two-dimensional axisymmetric formulation. Figure 1 shows the projection of the
sphere onto the x1 − x2 plane of the Cartesian coordinate system and the finite-
element mesh generated by COMSOL. Appropriate zero-boundary conditions
were imposed on the displacements, fluid velocity and tractions at the relevant
boundaries of the domain to ensure symmetry.

The mechanical and physical parameters of the thermo-poro-elastic problem
are specified as follows: Young’s modulus of the drained skeleton E = 60 × 109 Pa;
Poisson’s ratio n = 0.30; viscosity of the pore fluid h = 0.001 Pa s; permeability
K = 3 × 10−19 or 3 × 10−20 m2; thermal conductivity kc = 3.15 W m−1 ◦C−1;
specific heat of the solid material cs = 700 J kg−1 ◦C−1; density of the solid material
rs = 2700 kg m−3; specific heat of the fluid cw = 4190 J kg−1 ◦C−1; density of the
fluid rw = 1000 kg m−3; coefficient of linear thermal expansion of dry skeleton
as = 8.3 × 10−6 ◦C−1; coefficient of linear thermal expansion of fluid af = 69 ×
10−6 ◦C−1; porosity 4 = 0.25. The solid material composing the porous skeleton
and the fluid are assumed to be incompressible.

The time-dependent evolution of the temperature in the sphere can be obtained
using the analytical expression (3.10). The temperature is initially equal to zero
at all points, except at the external surface, where it is prescribed equal to T0 =
100◦C, and it then gradually increases reaching the maximum value of 100◦C.
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Figure 2. Volumetric strain for the poro-elastic sphere of radius 10 m subjected to a sudden
temperature rise of 100◦C at the boundary. The permeability is 3 × 10−19 m2. (Dotted line indicates
the solution derived using the COMSOL code and the solid line indicates the analytical solution.)
(Online version in colour.)

The time-dependent evolution of the volumetric strain inside the poro-elastic
sphere is shown in figure 2. The volumetric strain is plotted for the centre, the
mid-radius and the external surface. The permeability of the sphere is set to
K = 3 × 10−19 m2. The initial value of the volumetric strain is zero at all points
inside the sphere except at the boundary, where it is equal to 3asT0KD/(KD +
(4/3)GD) = 0.0015. The long-term value of the volumetric strain is equal to that
of the elastic sphere, i.e. 3asT0 = 0.0025, for all points.

Figure 3 shows the volumetric strain at the boundary of thermo-poro-elastic
sphere for two values of permeability, K = 3 × 10−19 m2 and K = 3 × 10−20 m2.
If the permeability is K = 3 × 10−19 m2, the volumetric strain monotonically
increases as a function of time. If the permeability is an order of magnitude lower
(i.e. K = 3 × 10−20 m2), the evolution of the volumetric strain is not monotonic
and the transient value of the strain exceeds its steady-state value, i.e. 3asT0 =
0.0025. This behaviour does not occur in the thermo-elastic sphere and is a
consequence of the thermal expansion of the fluid that flows out of the sphere
very slowly because of the low permeability.

Figure 4 displays the evolution of the hoop stress at the boundary of the
thermo-poro-elastic sphere. As before, two values of permeability are used,
K = 3 × 10−19 m2 and K = 3 × 10−20 m2. From (3.27), the initial value of the hoop
stress is given by −6asT0KDGD/(KD + (4/3)GD) = −71.1 MPa. The hoop stress
is a monotonic function of time and entirely compressive if the permeability is
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Figure 3. Volumetric strain at the boundary of the poro-elastic sphere for two values of permeability,
3 × 10−19 and 3 × 10−20 m2. The sphere is subjected to a sudden temperature rise of 100◦C at the
boundary. (Dotted line indicates the solution derived using the COMSOL code, and the solid line
indicates the analytical solution.) (Online version in colour.)
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Figure 4. Hoop stress at the boundary of the poro-elastic sphere for two values of permeability,
3 × 10−19 and 3 × 10−20 m2. The sphere is subjected to a sudden temperature rise of 100◦C at the
boundary. (Dotted line indicates the solution derived using the COMSOL code, and the solid line
indicates the analytical solution.) (Online version in colour.)
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Figure 5. Radial displacement of the boundary of the poro-elastic sphere for two values of
permeability, 3 × 10−19 and 3 × 10−20 m2. The sphere is subjected to a sudden temperature rise of
100◦C at the boundary. (Dotted line indicates the solution derived using the COMSOL code, and
the solid line indicates the analytical solution.) (Online version in colour.)

K = 3 × 10−19 m2. However, if the permeability is K = 3 × 10−20 m2, the hoop
stress is not a monotonic function and can become tensile for some period of
time during the deformation. This phenomenon can be explained by the thermal
expansion of the fluid and cannot be captured by the thermo-elastic model. The
steady-state value of the stress is zero.

The surface displacement of the poro-elastic sphere is depicted in figure 5
for two permeability values, K = 3 × 10−19 m2 and K = 3 × 10−20 m2. The initial
displacement is zero and the final displacement is equal to that of the elastic
sphere, asT0R0 = 0.0083 m. If the permeability of the sphere is small, the surface
displacement is not a monotonic function of time and exceeds its steady-state
value for some period of time.

A striking feature of the poro-elastic solution is the presence of the fluid
pressure as a dependent variable. Figure 6 shows the fluid pressure at the
centre of the poro-elastic sphere for two permeabilities K = 3 × 10−19 m2 and
K = 3 × 10−20 m2. The fluid pressure is shown to be smaller in the sphere with
the greater permeability. The fluid pressure is a non-monotonic function of
time for both values of the permeability. The initial and the final values of
the fluid pressure are zero, consistent with the diffusive character of the pore
pressure variation.

Figure 7 shows the influence of the thermal expansion coefficient of the solid
and fluid phases on the fluid pressure at the centre of the poro-elastic sphere.
The thermal expansion of the solid phase is as = 0 or as = 8.3 × 10−6 ◦C−1, and
the thermal expansion of the fluid phase is af = 6.9 × 10−5 ◦C−1. The permeability
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Figure 6. Fluid pressure at the centre of the poro-elastic sphere for two values of permeability,
3 × 10−19 and 3 × 10−20 m2. The sphere is subjected to a sudden temperature rise of 100◦C at the
boundary. (Dotted line indicates the solution derived using the COMSOL code, and the solid line
indicates the analytical solution.) (Online version in colour.)
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Figure 7. Fluid pressure at the centre of the poro-elastic sphere for two values of the thermal
expansion of the solid phase equal to 0 and 8.3 × 10−6 ◦C−1. The thermal expansion of the fluid
is 69 × 10−6 ◦C−1 and the permeability is 3 × 10−20 m2. The sphere is subjected to a sudden
temperature rise of 100◦C at the boundary. (Dotted line indicates the solution derived using the
COMSOL code, and the solid line indicates the analytical solution.) (Online version in colour.)
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Figure 8. Fluid pressure at the centre of two poro-elastic spheres subjected to a uniform and
constant temperature rise of 100◦C inside the domain. The two poro-elastic spheres have either
zero pressure or zero flux prescribed at the boundary. (Dotted line indicates the solution derived
using the COMSOL code, and the solid line indicates the analytical solution.) (Online version
in colour.)

is set to K = 3 × 10−20 m2. By comparing the two graphs, it is apparent that the
thermal expansion of the solid phase gives rise to negative fluid pressure, while
the thermal expansion of the fluid phase leads to positive pressure.

Figure 8 shows the fluid pressure evolution at the centre of two poro-elastic
spheres subjected to a uniform temperature change T (R, t) = 100◦C for all R
and t. It is assumed that this temperature change is applied instantaneously as
a Heaviside step function of time. For the first sphere, the fluid pressure at the
boundary is zero (drained sphere), and for the second sphere, the velocity at the
boundary is zero (undrained sphere). For the latter case, from (3.40), the pressure
is constant and equal to 34KD(af − as)T = 227 MPa, if the porosity is 4 = 0.25.
This expression shows that the thermal expansions of the phases result in fluid
pressures of opposite signs. In the short term, the drained sphere experiences the
Mandel–Cryer effect (Mason et al. 1991) because the fluid pressure inside the
drained sphere in fact turns out to be larger, in absolute value, than the fluid
pressure inside the undrained sphere.

5. Results for the thermo-poro-elasto-plastic sphere

In this section, we examine the time-dependent response of a poro-elasto-plastic
sphere of radius R0 subjected to a sudden positive temperature change T0 on the
external surface. The fluid pressure and applied radial stress s0

RR at the boundary
are set to zero.
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Figure 9. Initial yield surface of the modified Cam-Clay model for two values of the initial yield
stress 40 and 50 MPa plotted in the effective stress space. The stress state is axisymmetric. (Online
version in colour.)

The elasto-plastic behaviour of the skeleton of the geomaterial is described by
the isothermal-modified Cam-Clay model. Since this model is not implemented in
COMSOL, the finite-element code ABAQUS was used instead, since the modified
Cam-Clay plasticity model is in the library of plasticity models implemented
in ABAQUS.

The initial yield stress or initial size of the yield surface is assumed to be
s̃0

c = 40 or 50 MPa; further evolution of the yield surface is controlled by the
specified hardening rule s̃c = 10(−3

pl
kk) GPa; the parameter M in (2.9) is set to 1.

Figure 9 displays two yield surfaces of the modified Cam-Clay model for the
values of the initial yield stress s̃0

c equal to 40 and 50 MPa. The yield surfaces
are plotted in the effective stress space (s̃RR, s̃44) and in fact correspond to any
axisymmetric stress state irrespective of the values of the temperature or fluid
pressure. The equation for the yield surface illustrated in figure 9 can be obtained
from (2.12) as

1
9
(s̃RR + 2s̃44)2 + 1

3
s̃0

c(s̃RR + 2s̃44) + (s̃RR − s̃44)2 = 0. (5.1)

We immediately observe from figure 9 that the material cannot withstand large
tensile stresses but the range of admissible compressive stresses is much broader.
In fact, it can be shown that the tensile radial stresses lie in the range [0, (

√
13/3 −

1)s̃0
c/2], but the compressive radial stresses can change from −(

√
13/3 + 1)s̃0

c/2
to 0. These bounds can of course be changed owing to material hardening or
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softening but we do not expect these changes to be significant. Therefore, we can
place a bound on the admissible compressive and tensile radial stresses that can
be applied to the surface of the elasto-plastic sphere.

The yield surface always passes through the origin (0,0) regardless of the
changes in the yield stress; thus we can consider this point to be stationary.
The yield surface intersects the hoop stress axis at two points s̃44 = 0 and
s̃44 = −6/13s̃0

c.
For calibrating a numerical solution of the problem of transient heat transfer, it

is useful to consider first the porous elasto-plastic sphere subjected to the uniform
temperature change [0, TC] applied instantaneously to the entire sphere because,
for this case, the analytical solution can be obtained. For this case, according to
(3.31) and (3.34), the initial values of stresses for the poro-elastic sphere are

s̃44(R0, 0) = 6KDGD

[KD + (4/3)GD]4(af − as)TC; s̃RR(R0, 0) = 0

and s̃RR(R, 0) = s̃44(R, 0) = 3KD4[af − as]TC; 0 ≤ R < R0.

⎫⎪⎬
⎪⎭ (5.2)

It is clear that the loading path for the elastic sphere makes an acute angle with
the outward normal to the yield surface at the zero stress point if

1√
2
(s̃RR + s̃44) ≥ 0. (5.3)

From (5.2), this inequality holds if af > as. Therefore, given that af > as, the
loading path for the elasto-plastic sphere cannot be within the yield surface and
plastic deformations must be involved; on the other hand, the loading path cannot
go outside the yield surface because the zero stress point is stationary and there is
no expansion or contraction of the yield surface at this point. Hence, the loading
path for the elasto-plastic sphere must either remain at the zero stress point or
continue to move along the yield surface. Let us assume that s̃RR = s̃44 = 0 and
show that this is in fact the correct solution if af > as.

Consider a porous elasto-plastic sphere with af > as subjected to the uniform
temperature change [0, TC] applied instantaneously. Suppose that the effective
stresses are zero, i.e. s̃RR = s̃44 = 0. From the equilibrium equations (2.4), it
follows that the fluid pressure must be uniform; however, since p = 0 at the
boundary, the fluid pressure must be zero throughout. The traction boundary
condition sRR(R0, t) = 0 is trivially satisfied. The fluid flow equation (2.7) can be
satisfied if we set the volumetric strain equal to

e(R, t) = 3[4af + (1 − 4)as]TC, 0 ≤ R ≤ R0. (5.4)

Owing to the uniform character of the stress state, the strain components are
equal and can thus be obtained from (5.4) as

3RR(R, t) = 344(R, t) = [4af + (1 − 4)as]TC. (5.5)

The elastic components of the strain tensor can be derived from the stress–strain
relationships (3.22), using the fact that the effective stresses are zero. This gives

3e
RR(R, t) = 3e

44(R, t) = asTC. (5.6)
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Therefore, the plastic strains are given by

3
pl
RR(R, t) = 3pl

44(R, t) = 4(af − as)TC, af > as. (5.7)

If, however, af ≤ as, the plastic strains are initially equal to zero, and the loading
path must lie within the yield surface; the solution sought has thus been obtained.
Clearly, this solution is not dependent on the value of the yield stress and
hardening.

Consider now the original problem of the porous elasto-plastic sphere subjected
to the temperature change T0 prescribed on the external surface. The radial stress
s̃RR and fluid pressure p are zero at the boundary. It is clear that the loading path
for the external surface will always lie on the s̃44 axis. The initial hoop stress for
the elastic range is given by (3.27), and the temperature that corresponds to the
onset of yielding on the external surface can be derived from

s̃44(R0, 0) = − 6
13

s̃0
c, (5.8)

which for an initial yield stress of 40 MPa, gives

T0 = s0
c

13
KD + (4/3)GD

KDGDas
= 25.95 ◦C. (5.9)

Figure 9 shows the loading path for the external surface when the applied
temperature T0 = 20 ◦C. Because this temperature is smaller than the critical
temperature (5.9), the loading path starts at a point within the yield surface
and no yielding will occur in the short term. For t > 0, the hoop stress starts
to decrease until the loading path hits the zero stress point. From this time on,
deformation on the external surface takes place at the constant zero stress state,
i.e. s̃RR = s̃44 = 0, and accumulation of the plastic strain takes place at this point.
Note that, at this point, the normal to the yield surface always measures 45◦ to
the horizontal axis and therefore, the radial and circumferential components of
the plastic strain must be equal, i.e. 3

pl
RR = 3pl

44.
Figure 10 shows the hoop stress–hoop strain curve for the external surface

of the porous sphere subjected to the temperature change T0 = 20 ◦C at the
boundary R0 = 10 m. At time t = 0, the hoop stress is −14.22 MPa as follows
from (3.27). The permeability of the sphere is K = 3 × 10−19 m2, and therefore,
for the analagous poro-elastic sphere, as was shown in figure 4, the hoop stress
is a monotonic function. In the long term, this stress reduces to zero and the
value of the hoop strain is asT0 = 1.66 × 10−4. For the poro-elasto-plastic sphere,
however, the accumulation of the plastic strain takes place at the point of zero
stress, which results in the development of the horizontal segment on the graph.
Because the stress is zero on this part of the curve, the increment of the elastic
strain is also zero. The final value of the strain for the poro-elasto-plastic sphere
is approximately equal to 4.9E − 4. This result was obtained using the ABAQUS
finite-element program. Dashed lines indicate the position of the initial yield
surface for s̃0

c = 40 MPa.
Figure 11 shows the evolution of the surface displacement of the poro-elasto-

plastic sphere subjected to the temperature change T0 = 20◦C at the boundary.
The permeability of the sphere is K = 3 × 10−19 m2. Results are shown for two
values of the thermal expansion coefficient of the solid phase, as = 8.3 × 10−6◦C−1
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Figure 10. Hoop stress–hoop strain curve at the boundary R = 10 m of the poro-elasto-plastic
sphere. The temperature change of 20◦C is applied on the external surface. The modified Cam-Clay
model with the initial yield stress equal to 40 MPa is used. (Online version in colour.)
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Figure 11. Surface displacement of the poro-elasto-plastic sphere of radius 10 m subjected to the
temperature change of 20◦C at the boundary. The modified Cam-Clay model with the initial yield
stress equal to 40 MPa is used. (Online version in colour.)
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Figure 12. Fluid pressure at the centre of the poro-elasto-plastic sphere of radius 10 m subjected
to a temperature change of 20◦C at the boundary. The modified Cam-Clay model with the initial
yield stress equal to 40 MPa is used. (Online version in colour.)

and as = 0. The thermal expansion of the fluid phase is af = 6.9 × 10−5◦C−1. As
was shown in figure 10, deformation on the external surface of the sphere with
as = 8.3 × 10−6◦C−1 is initially elastic until the hoop strain reaches 344 = asT0,
and the loading path reaches the zero stress point. After the loading path has
reached the zero stress point, the plastic strain begins to accumulate with no
further increment in the elastic strain. Therefore, in the long term, the total
surface displacement can be written as

u(R0, t) = R0(asT0 + 3pl
44), (5.10)

where 3pl
44 is the plastic hoop strain.

For the elasto-plastic sphere with as = 8.3 × 10−6◦C−1, the surface displacement
in the long term is u(R0, t = ∞) = 0.0049 m and for the elasto-plastic sphere
with as = 0, u(R0, t = ∞) = 0.0035 m. These values can be compared with the
displacement of the elasto-plastic sphere heated uniformly and instantaneously to
the temperature T0 = 20◦C. From (3.32), the surface displacement of such a sphere
is equal to u(R0, t) = R0[4af + (1 − 4)as]T0 which gives the value of 0.0047 m if
as = 8.3 × 10−6◦C−1 and 0.00345 m if as = 0. Although these displacements are
very close to those of the elasto-plastic sphere heated at the boundary, it is
worth noting that in the case of the elasto-plastic sphere subjected to a uniform
temperature change, the strain is entirely plastic, whereas in the case of the
sphere heated at the boundary, part of the total strain, namely 344(R0, t) = asT0,
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is elastic. The present results do not depend on the value of the hardening
modulus because all plastic deformation is accumulated at the state of the
constant zero stress.

Figure 12 shows the fluid pressure at the centre of the elasto-plastic sphere as
a function of time. As before, the sphere is subjected to the heating T0 = 20◦C
at the boundary. The permeability of the sphere is K = 3 × 10−19 m2. The
results are depicted for two values of the thermal expansion of the solid phase,
as = 8.3 × 10−6◦C−1 and as = 0. The initial negative values of the fluid pressure
are larger for the sphere with as = 8.3 × 10−6◦C−1, which supports our assumption
that the thermal expansion of the solid phase causes negative fluid pressure
(compare this result with the elastic sphere in figure 6). After some time, owing
to the thermal expansion of the fluid phase, the fluid pressure becomes positive.
The value of the positive fluid pressure for the elasto-plastic sphere is expected
to be lower than that for the elastic counterpart owing to the loss of stiffness
of the skeletal structure of the material during plastic deformation. In fact, if
as = 8.3 × 10−6◦C−1, the maximum value of the positive fluid pressure is 4.17 MPa
for the elastic sphere (this can be deduced from figure 6), and only 0.692 MPa
for the elasto-plastic sphere (figure 12). The long-term value of the fluid pressure
is zero. As before, these results do not depend on hardening but depend on the
value of the initial yield stress.

It is important to recognize that the plastic deformations always take place
in the given elasto-plastic sphere subjected to heating, no matter how small the
applied temperature is. If the temperature is smaller than the critical temperature
(5.9), the plastic strain is confined in the short term to a region that does
not include the external surface and the centre of the sphere. In the long
term, however, the plastic strain becomes non-zero in the entire sphere. The
maximum of the plastic strain occurs some distance away from the external
surface, approximately equal to 1/4 of the radius. The plastic strain is minimal on
the external surface. The plastic deformations can be avoided if the compressive
stress is applied on the external surface along with the temperature change.

6. Concluding remarks

The coupling of thermo-poro-elasto-plastic effects in fluid-saturated porous media
continues to be of interest to many areas of geosciences and geomechanics. This
paper presents a benchmark problem that gives a comparison of results for the
transient heating of poro-elastic and poro-elasto-plastic spheres derived using
analytical techniques and two computational codes COMSOL and ABAQUS.
The results compare favourably.

The transient solution obtained for the fluid-saturated poro-elastic sphere
heated at the boundary shows that the consideration of thermo-poro-elastic
effects is important. First of all, poro-elasticity of the fluid-saturated material
gives rise to the pore fluid pressure as a dependent variable, which is absent
in the analogous thermo-elastic problem. Also, certain parameters, such as
the permeability and thermal expansion of the fluid, excluded from the
standard thermo-elastic analysis, have a considerable influence on the transient
values of the fluid pressure, hoop stress and surface displacement during the
heating process.
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For the present problem, we showed that the fluid pressure is dependent on
the permeability and thermal expansion coefficients of the phases. As expected,
for low permeabilities, the fluid pressure is significantly larger. Furthermore, the
thermal expansion of the solid phase in general leads to a negative fluid pressure
in the short term but the thermal expansion of the fluid results in positive fluid
pressure over the longer term. We also observed that for sufficiently small values
of permeability, the surface displacement can exceed the steady-state value that
is obtained by performing standard thermo-elastic analysis. Tensile hoop stress
can also be created on the external surface of the sphere if the permeability is
sufficiently small.

The importance of the elasto-plastic effects is emphasized by considering the
problem of a porous elasto-plastic sphere heated at the boundary and also the
problem of instantaneous uniform heating over the entire domain. The modified
Cam-Clay plasticity model is used for the elasto-plastic analysis. For the problem
of the uniform heating of a sphere, a simple analytical solution can be constructed,
which by itself can serve as a benchmark for the computational codes that include
plasticity models. The yield surface plotted in the radial–hoop stress space shows
that the range of admissible tensile radial stresses that can be applied safely
at the boundary of the elasto-plastic sphere is much smaller than the range of
admissible compressive stresses. For the problem of the sphere heated at the
boundary, we showed that the loading path for the external surface can initially
lie inside the yield surface but then it intersects the yield surface at the stationary
zero stress point in which accumulation of the plastic strain takes place. For the
elasto-plastic sphere, owing to the thermal expansion of the skeleton and positive
volumetric plastic strain, a negative fluid pressure is created in the short term,
and, because of the thermal expansion of the fluid, a positive fluid pressure is
induced subsequently. The magnitude of the positive fluid pressure in the poro-
elasto-plastic sphere is, however, smaller than that in the poro-elastic sphere
because the solid phase becomes less stiff in the elasto-plastic sphere.

The work described in this paper was supported by a Natural Sciences and Engineering Research
Council of Canada Discovery Grant awarded to the first author. The authors are grateful to the
comments of the reviewers that resulted in the new developments presented in the paper. The
use of the computational codes COMSOL and ABAQUS is purely for demonstration purposes
only. Neither the authors nor the research sponsors advocate or recommend the use of these codes
without conducting suitable validation procedures that test their accuracy in a rigorous fashion.
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