
Stress-induced permeability evolution in a quasi-brittle
geomaterial

T. J. Massart1,2 and A. P. S. Selvadurai3

Received 21 February 2012; revised 23 May 2012; accepted 31 May 2012; published 20 July 2012.

[1] This paper presents the application of a computational homogenization technique to
examine the stress-induced permeability evolution in a quasi-brittle material susceptible
to damage. The concepts involved in the constitutive modeling and the computational
procedures are summarized. The developments are applied to investigate the response of the
model in simulating experimental investigations of permeability evolution in a granitic rock.
The influence of both the isotropic and the deviatoric stress states on the evolution of
the spatially averaged permeability is derived from the computational simulations and is
compared with experimental observations. It is shown that with the provision of supplemental
material parameters the computational approach is able to satisfactorily match the
experimental results.

Citation: Massart, T. J., and A. P. S. Selvadurai (2012), Stress-induced permeability evolution in a quasi-brittle geomaterial,
J. Geophys. Res., 117, B07207, doi:10.1029/2012JB009251.

1. Introduction

[2] The mechanical behavior of fluid-saturated porous
media constitutes an important development in the study of
geomaterials. The classical theory of poroelasticity due to
Biot [1941] takes into account the mechanics of coupling
between the porous fabric and the fluid saturating the pore
space. It has been successfully applied to many areas of
engineering geosciences ranging from the study of soil con-
solidation to the examination of factors that can contribute to
earthquake phenomena. The literature in this area is exten-
sive and no attempt will be made to provide a comprehensive
review. The review articles and volumes by Scheidegger
[1960], Paria [1963], Rice and Cleary [1976], Detournay
and Cheng [1993], Selvadurai [1996, 2007], Coussy [1995]
and Schanz [2009] can be consulted for accounts of recent
developments. A fundamental assumption in the theory
proposed by Biot [1941] is that the material properties
remain unchanged during the coupled interaction between
the porous skeleton and the saturating fluid; properties such
as the porosity, deformability and permeability are assumed
to remain unchanged even though the fabric of the porous
medium itself can experience change. In modern environ-
mental geomechanics it becomes necessary to consider the

alterations in the properties of the porous medium resulting
from actions at various scales of interest. For example, the
porous fabric can experience micro-mechanical damage due
to transport of reactive fluids that can lead to changes in the
deformability, strength and permeability characteristics. By
far the most common action that can alter the properties of the
porous medium is the micromechanical damage resulting
from the application of stresses. Experimental results of
Zoback and Byerlee [1975], Shiping et al. [1994] andKiyama
et al. [1996] conducted on granite and limestone indicate
variations in permeability with an increase in deviatoric
stress states. Results presented by Souley et al. [2001]
also point to alterations in the permeability of the porous
medium at stress states well below the peak failure loads. The
micro-mechanical damage that contributes to the alteration
in the permeability in particular has important implications
for poromechanical applications including the develop-
ment of fracture in fluid-saturated materials [Mahyari and
Selvadurai, 1998; Selvadurai, 2004; Selvadurai and Shirazi,
2005]. In particular, the duration of transient processes
involving pore fluid pressure dissipation can be influenced
by the changes in permeability. There are two options that
can be adopted to account for stress-induced alteration in
the permeability: either (i) conduct physical experiments to
capture all modes of permeability evolution with stress,
leading to experimentally derived relationships that are state-
space representations of permeability with appropriate stress
invariants, which can also account for permeability reduction/
increase with isotropic compression [e.g., Zhu and Wong,
1997; Selvadurai and Glowacki, 2008; Zhu et al., 2007;
Selvadurai et al., 2011] or (ii) develop a computational
approach for examining permeability evolution, taking into
consideration the micromechanical processes that contribute
to permeability evolution; these can include local fabric
heterogeneity of geomaterials, the interface phenomena
between heterogeneous domains, including slip, separation
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and locking, intra-domain brittle fracture and damage
development in the form of inter-granular micro-cracking of
the heterogeneous fabric itself. The former approach is the
most straightforward but requires access to sophisticated
experimental techniques that can examine both the evolution
of permeability and its anisotropy. The second approach is
both modeling and input parameter intensive but merits fur-
ther investigation in view of the possible development of
an approach that can supplement or confirm experimental
results. Several investigators have applied damage mechan-
ics concepts to examine the evolution of permeability of
rocks and examples of such studies, including references to
further works, are given by Shao et al. [1999], Zhou et al.
[2006], and Hu et al. [2010].
[3] In this paper we present a computational approach for

investigating permeability evolution in a heterogeneous
porous medium. A three-dimensional Voronoi tessellation
technique is used to idealize the geomaterial with a hetero-
geneous fabric. A computational homogenization technique
is used to examine the fabric; the interface mechanical
behavior is modeled by a Coulomb failure condition with
a tension cut-off and the damage evolution law, based on
a cohesive crack model, incorporates measurable micro-
mechanical parameters including the tensile strength, cohe-
sion, the Mode-I tensile fracture energy and the interface
stiffness parameters that can be related to the elasticity
characteristics of the grain. The details of the computational
procedures are summarized in the paper. The procedures are
used to estimate the variation of permeability of the hetero-
geneous fabric with confining pressure and deviator stress
applied in triaxial testing and the developments are compared
with experimental results for the permeability evolution in
granite samples.

2. Fine-Scale Modeling

2.1. Failure Modeling

[4] Modeling failure in quasi-brittle materials using con-
tinuum descriptions requires the use of constitutive laws that
can account for softening. This results in complex compu-
tations, potentially requiring advanced path-tracking tech-
niques [Geers, 1999] when the post-peak response has to
be traced. In mathematical terms, the use of softening laws
in continuum descriptions is known to result in the loss of
the ellipticity of the partial differential equations of the
equilibrium problem, and the loss of well-posedness of the
corresponding boundary value problem. In computational
modeling exercises, this results in a pathological mesh
dependency of the results [Peerlings et al., 1996], with an
unrealistic increase in the brittleness of the fracture process
that depends upon discretization refinement. Various regu-
larization remedies have been proposed to restore the well-
posedness of the equilibrium problem; these range from
the introduction of non-locality in the constitutive response
[Peerlings et al., 1996] to the introduction of cohesive crack
models within a non-localizing matrix, both at predefined
locations [Lotfi and Shing, 1994] or using so-called XFEM
enrichments [Wells and Sluys, 2001].
[5] To capture the influence of cracking, a trade-off

between accuracy and computational efficiency is necessary.
Continuum-based non-local descriptions are generally com-
puting intensive because fine mesh refinement is required in

the potential localization zones. Consequently, in this research,
the process of cracking is incorporated by means of cohesive
laws in a priori positioned interface elements. Note that this
choice is physically consistent with discrete orientation-based
approaches [Hu et al., 2010], with the difference here being
that spatial connectivity and cracking is explicitly modeled.
The remainder of the material is discretized with linear elastic
elements. This is motivated by the existing fabric of the
material; the polycrystalline rock joints can be represented
using this discretization technique. To minimize the compu-
tational effort, the attention will be restricted to a priori posi-
tioned potential cracks at the grain boundaries of the
polycrystalline rock. Subgrain cracking, fragmentation and
crushing will not be included in this contribution, yet devel-
oping the upscaling relations (see Section 3) in a flexible
manner will allow the potential incorporation of grain cracking
and crushing in future developments. Conversely, this tech-
nique can also be used to represent crack development within
geomaterials with cemented zones between grains. In the latter
case, sufficient randomness in the incorporation of potential
cracks in a medium is required to avoid any bias in the
anisotropic degradation patterns obtained. As will be demon-
strated in Section 5, this choice, therefore, requires verifying
the ability of the Representative Volume Element (RVE) to
produce general cracking schemes.
[6] In order to restrict as much as possible the number

of fine-scale material parameters, and since the main focus
of this approach is on the stiffness degradation, a 3D scalar
damage model with an exponential evolution law will be
considered for the potential cracks. This law links the traction
vector ~T across the interface to the relative displacement
vector~d

~T ¼ ð1� DÞH �~d ð1Þ

where D is a scalar damage variable that increases from zero
(virgin material) to unity (complete failure). Note that for the
behavior of potential cracks, the use of (1) implicitly intro-
duces the simplifying assumptions that no pre-peak dissipa-
tion is present, that no stiffness recovery is considered under
cyclic loading, and that the normal and tangential stiffnesses
are degraded at the same rate. Also note that the use of
(1) requires the implicit assumption that only the cracking
evolution is examined, without accounting for the presence
of potential initial cracks. In (1), H is a 3D elastic stiffness
(second-order tensor) that depends on the normal and tan-
gential elastic stiffnesses kn and kt of the cohesive zone

H½ � ¼ diag kt; kt; knð Þ ð2Þ

Such elastic parameters of the cohesive zone can be obtained
from properties of rock joints, or from the bulk elastic prop-
erties if an initially homogeneous material is assumed. The
latter assumption will be used in the present contribution. To
allow reproducing macroscopically the rock elastic proper-
ties with the presence of thin joints, the elastic properties of
the interface elements will be deduced as

s ¼ E

h
hɛ|{z}
dn

¼ kndn; tt ¼ G

h
hgt|{z}
dt

¼ ktdt; ts ¼ G

h
hgs|{z}
ds

¼ ktds

ð3Þ
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where E and G are the bulk properties, and h is an assumed
thickness of the cracking zone (cemented zone between
grains for instance). This operation could theoretically be
avoided by the introduction of the cohesive response at
damage initiation by resorting to XFEM approaches based
on partition of unity concepts, see [Wells and Sluys, 2001].
However, such formulations are difficult to implement,
especially when multiple cracks have to be considered
simultaneously.
[7] In order to account for the different behaviors in

tension and compression, a damage threshold consisting of
a Mohr-Coulomb criterion with tension cut-off is considered
as illustrated in Figure 1 in the space of stress components
of the cohesive zone. For the purpose of its implementation
in a damage mechanics setting, it is translated in the space
of relative displacement components of the cohesive zone.
The damage-controlling parameter k is therefore taken as the
most critical value of an equivalent relative displacement
defined by

deq ¼ max
ft
c

tanjð Þdn þ ft
c

kt
kn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2s þ d2t

q
; dn

� �
ð4Þ

where dn and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2s þ d2t

q
are the magnitudes of the normal

and tangential relative displacements, respectively; ft is the
tensile strength, c is the cohesion, and j is the angle of fric-
tion. Note that the use of this criterion implicitly introduces
the assumption that the frictional behavior of the crack is
constant during sliding. The damage evolution law for the
cohesive crack is given by Mercatoris and Massart [2011],
allowing exponential decay of the stress across the cohesive
zone to be accounted for in mode I loading:

DðkÞ ¼ 1� ft
knk

e
� ft

Gf ;I
ðk � ft

kn
Þ

for k ≥
ft
kn

ð5Þ

whereGf,I is the mode-I tensile fracture energy. In the present
formulation using relationship (4), the strength properties
( ft, c) and the mode-I fracture energy Gf,I implicitly define
the energy dissipation under pure shear which is given by

Gf ;II ¼ c

ft

� �2 kn
kt

� �
Gf ;I ð6Þ

The detailed developments leading to relationships (4) to (6)
are reported in Appendix A.

2.2. Transport Modeling in a Damaged Medium

[8] The objective of the paper is to assess the ability of
computational homogenization techniques to reproduce the
effective permeability increases observed in experiments,
using the same discretization as in the mechanical problem,
i.e. the matrix material will be modeled with 3D elements
with fixed permeability, whereas the potential cracks will be
represented by interface elements, with variable permeabil-
ity. As in Souley et al. [2001], Zhou et al. [2006], and Jiang
et al. [2010], a unilateral coupling will be assumed, i.e. the
local permeability properties of potential cracks will be
dependent on the actual damage state deduced from mech-
anical actions. For each equilibrium configuration obtained
from the mechanical simulation, a modified Darcy assump-
tion will be used as

~qm ¼ �K Dð Þ
m

~rmp ð7Þ

where the local permeability tensor K of points of the inter-
face elements depends on their (fixed) damage state D, p is
the fluid pressure, m is the dynamic viscosity and ~rm is the
gradient operator. Hydraulically, the interface is considered
to be planar and isotropic (i.e. diagonal local permeability
tensor). The transport problem within the RVE therefore
reads

~rm: �K Dð Þ
m

~rmp

� �
¼ 0 ð8Þ

In interface elements, the pressure gradients used in the for-
mulation are defined as follows: the normal pressure gradient
is taken as the pressure jump between two nodes of the
interface initially located at the same place and divided by the
thickness h attributed to the damaging zone. The pressure at
each in-plane position of the interface is found as the average
of the pressure of the upper and lower nodes of the interface.
The in-plane pressure gradients are then obtained, based on
the derivatives of the in-plane interpolation functions.
[9] Finally, the evolution of the permeability of potential

cracks as a function of damage is postulated. In Selvadurai
[2004], a quadratic relation between the damage-controlling
parameter and the permeability was assumed within the
framework of a stationary damage analysis. Here, a quadratic
dependency on the damage variable itself will be considered
as

k ¼ k0 1þ bD2
� � ð9Þ

where k0 is the initial permeability of the potential crack,
and b is a factor that allows the fitting of the rate at which
damage increases to the local permeability. The exponential
damage evolution law (5) implies a lower damage develop-
ment rate at the end of the softening slope, which will cause a
saturation in the permeability increase at high damage values
as is often observed in experiments, see Section 5. Note that
this choice for the coupling between the mechanical and fluid

Figure 1. Damage criterion used for the cohesive zones
expressed in the stress space.
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transport processes is essentially related to the assump-
tion that the dominant macroscopic permeability alteration is
mainly dictated by the evolution of cracking. This means that
the pore changes within the grains themselves are assumed to
be of a lower order. The choice of the quadratic relation (9) is
mainly motivated by earlier experimental evidence available
in [Zoback and Byerlee, 1975; Shiping et al., 1994]. A linear
dependency in (9) could also be used, delivering a proper fit,
although slightly less accurate, with macroscopic experi-
mental observations.

3. Computational Homogenization

3.1. Multiscale Modeling for Coupled Problems

[10] The use of multiscale computational and homogeni-
zation techniques has received increasing attention over the
past decade. These methodologies first emerged in the field
of mechanics of materials [Smit et al., 1998], and were used
to extract average properties of heterogeneous materials
based on the properties of their constituents. They avoid the
formulation of macroscopic constitutive laws by using scale
transitions applied to RVEs, based on averaging theorems
and laws postulated for constituents of the microstructure.
Essentially, they transfer experimental parameter identifica-
tion to lower scales on which phenomenologically simpler
laws can be used, and require knowledge of the micro-
structural features. Such methodologies were used with
various objectives, including the identification of average
(macroscopic) material properties based on microstructural
descriptions and postulated fine-scale laws, and the inves-
tigation of the microstructural origin of experimentally
observed macroscopic effects.
[11] To date, geomechanical applications of multiscale

techniques have mostly focused on the extraction of average
properties of non-evolving microstructures for uncoupled
mechanical properties of geomaterials [Bouchelaghem et al.,
2007], as well as for the mechanical behavior of porous
materials with a weak coupling [Benhamida et al., 2005].
Average permeability properties were derived using asymp-
totic homogenization procedure for uncoupled properties
[Santos and Sheen, 2008]. Multiscale approaches coupling
several scales originated because of difficulties in developing
usable forms of constitutive models in simulations. Com-
putationally, coarse discretizations can be supplemented
with enriched basis functions deduced largely from micro-
structural features for uncoupled transport problems [Zhang
and Fu, 2010]. Computational homogenization was refor-
mulated to allow nested scale computational schemes in
which finite element discretizations are used at both the
macroscopic and fine scales simultaneously. This is achieved
by scale transitions based on averaging theorems; applying
macroscopic quantities on the RVEs in an average sense to
construct a fine-scale boundary value problem. The respon-
ses obtained enable the replacement of a priori postulated
macroscopic laws, when they are too complex to formulate,
with closed-form constitutive relations at the fine scale only.
This methodology was initially applied to mechanical pro-
blems, and was recently adapted for diffusive phenomena
such as multiscale thermal conductivity [Ozdemir et al.,
2008a], assuming a stationary response at the fine scale,
and by Larsson et al. [2010] for transient behavior at all
scales.

3.2. Computational Homogenization for Mechanical
Behavior

[12] In the mechanical description of a heterogeneous
microstructure, a homogeneous equivalent material may be
identified by means of computational homogenization tech-
niques [Anthoine, 1995; Kouznetsova et al., 2001]. Such
techniques essentially apply a loading stimulus to an RVE
containing the main microstructural features of the material.
An equilibrium problem is then solved on the scale of the
RVE, thereby allowing the identification of the properties of
an equivalent averaged material. Based on a macroscopic
strain E applied to an RVE of a given heterogeneous mate-
rial, a displacement field within the microstructure is postu-
lated as

~u ~xð Þ ¼ E:~x þ~uf ~xð Þ ð10Þ

where~x is the position vector of a point within the RVE and
~u f is a fluctuation field caused by the heterogeneity of the
material. Computational homogenization classically rests on
scale transition consistency arguments, among which is the
requirement that the macroscopic strain is obtained as the
volume average of the mesoscopic strain field ɛ derived from
(10). Assuming a Cauchy continuum description, and with
the help of the Green-Gauss theorem, this translates into

1

V

Z
V
ɛ dV ¼ Eþ

Z
�
S
~uf~n
� �sym

dS ð11Þ

Various choices can be made to ensure that the last integral of
(11) vanishes. The most common choice consists of forcing
the fluctuation~uf to be periodic at the boundary of the RVE.
Using this periodicity assumption and the Hill-Mandel energy
equivalence between the fine-scale and macroscopic descrip-
tions, the macroscopic stress tensor is naturally obtained as
the volume average of the microstructural stress tensor

S ¼ 1

V

Z
V
sdV ð12Þ

These averaging operations do not depend on the material
behavior postulated at the fine scale: any type of material
behavior can be postulated at the fine scale. In the context
of the finite element method, the periodicity of the micro-
fluctuation field can be enforced by homogeneous linear
connections between corresponding nodes of the boundary,
if one ensures that identical meshes are used on the opposite
faces of the RVE. In 3D, four controlling points, denoted 1
to 4 in Figure 2a, can be used to control the rigid body
displacements and the macroscopic quantities (stress and
deformation tensor) on the RVE. With these boundary con-
ditions, the RVE equilibrium problem under macroscopic
stress control can be solved by imposing forces ~f (a) at the
controlling points, which represent the action of the neigh-
boring continuum on the RVE. The displacements of the
controlling points energetically conjugated to the imposed
controlling forces can be used to extract the macroscopic
strain. The macroscopic stress is obtained as [Kouznetsova
et al., 2001]

S ¼ 1

V

X4
a¼1

~f
ðaÞ
~xðaÞdV ð13Þ
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The macroscopic stiffness of the material can be obtained as
a by-product of solving the RVE boundary value problem.
Upon convergence of the equilibrium iterations, the fine-
scale discretized system of equations can be condensed
at the controlling points. With such a condensed system
[Kouznetsova et al., 2001]

K*M

h i
dup
	 
 ¼ df *p

n o
ð14Þ

where [KM*] is the discretized fine-scale stiffness condensed
at the controlling nodes and {dup} and {dfp*} represent the

variations of displacements and tying forces at these nodes.
The macroscopic tangent stiffness that relates variations
of macroscopic stress to variations of macroscopic strain is
obtained as

4LM ¼ 1

V

X4
a¼1

X4
b¼1

~xðaÞKðabÞ
M ~xðbÞ

 !ðrsÞ
ð15Þ

where the summations range over the control points and
where (rs) indicates that only the right symmetric part of the
tensor is taken. If damage laws are used at the fine scale, as is
the case here, relations of the same type can be used to extract
the (damaged) secant stiffness for a given state of the RVE.

3.3. Computational Homogenization for Steady State
Flow Problems

[13] The objective is to identify the macroscopic averaged
permeability tensor for a given local permeability distribution
within the RVE. The homogenized permeability of the RVE
can be evaluated using the upscaling scheme developed in
Ozdemir et al. [2008a, 2008b] for heat conduction. A steady
state balance equation is considered at the scale of the com-
ponents within the RVE (non-transient), requiring the solu-
tion of the problem

~rm:~qm ¼ 0 ð16Þ

where ~qm is the flux vector at the micro-scale. Assuming
Darcy flow with a local permeability modified by the local
damage state of the material, the following equation for the
RVE level has to be solved

~rm: �Km ~xð Þ
m

:~rpm

� �
¼ 0 ð17Þ

A periodic fluctuation pf (~x) of the pressure field is assumed
[Ozdemir et al., 2008a] to describe the pressure profile in the
RVE as

pm ~xð Þ ¼ pkm þ ~rMpM : ~x �~xk
� �þ pf ~xð Þ ð18Þ

where ~rMpM is the macroscopic pressure gradient applied
on the RVE, and pm

k is the pressure of an arbitrary point in
the RVE.
[14] Averaging constraints between the scales have to be

defined in the same way as they were for the mechanical case.
Since the pressure gradient is the driving force for flux,
an averaging relation for the pressure gradient is required as

~rMpM ¼ 1

V

Z
V

~rmpmdV ð19Þ

[15] Using the relation (18) and the Green-Gauss theorem,
the average of the fine-scale pressure gradient can be
expressed as

1

V

Z
V

~rmpmdV ¼ ~rMpM þ 1

V

Z
�
S
pf~ndS ð20Þ

Figure 2. RVE definition: (a) control points of the 3D RVE,
(b) Periodic Voronoi tesselation of 64 grains for a bounding
box of 10 � 10 � 10 mm3 - initial periodic set of grains,
and (c) cubic arrangement of the set of grains obtained by
trimming the initial set of grains.
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where the last integral of (20) vanishes and relation (19) is
satisfied. The periodicity constraint on the pressure fluctua-
tion field can be enforced by relations of the type

pSm � pMm ¼ ~rMpM : ~x
S �~xM

� � ð21Þ

between any pair of nodes related by a periodicity condition
on a master (M) and a slave (S) surface. In contrast to the
mechanical case, the relations (21) now require that non-
homogeneous dependencies be defined between opposite
RVE faces. Following Ozdemir et al. [2008a] the ensuing
additional averaging relation is used to impose the consis-
tency between scales of the product of the pressure gradient
by the flux

~rMpM :~qM ¼ 1

V

Z
V

~rmpm:~qm dV ð22Þ

Combining the pressure gradient averaging (20) with the
relationship (22), it can be shown that the macroscopic flux is
automatically obtained as the RVE average of the fine-scale
fluxes [Ozdemir et al., 2008a]. Integrating (22) by parts and
using fine-scale equilibrium (16), the averaging relation (22)
can be expressed in boundary terms on the RVE

~rMpM :~qM ¼ 1

V

Z
�
S

pmqmn dS ð23Þ

where qmn
is the normal flux at the boundary. Splitting this

boundary integral in terms related to each face of the RVE,
using the pressure periodicity constraints and local normal flux
relations, and using the identity ~rm: ~xm~qmð Þ = ~rm:~xm:~qm +

~xm ~rm:~qm

� �
=~qm, the macroscopic flux is indeed identified

as the RVE average of the fine-scale fluxes:

~qM ¼ 1

V

Z
V
~qm dV ð24Þ

The detailed steps of the derivation of relationship (24)
starting from relationship (23) are given in Appendix B.
The non-homogeneous linear constraints (21) can be directly
implemented by means of a ‘ghost’ node procedure; thereby
allowing the application of the macroscopic pressure gra-
dients on the RVE. The homogenized permeability tensor of
the RVE can be identified based on the link between the
applied macroscopic pressure gradient terms at the ‘ghost’
nodes and the fluxes developing as a reaction to them. At
equilibrium, the discretized system of equations for the
transport problem can be condensed toward the ‘ghost’
nodes. Assuming that the origin of the axis system is located
at one of the control nodes (i.e. xj

M = 0 and xj
S = xj in the

periodicity connections), and using superscripts to denote
‘ghost’ (control) nodes and subscripts for dimensions in
Einstein’s summation convention, this condensation expres-
ses fluxes at the controlling node (a) in terms of the applied
macroscopic terms at the controlling node (b) as

q að Þ
mn

¼
Xb¼4

b¼1

k abð Þ rjp xj
� � bð Þ ð25Þ

where the summation spans the control nodes. Starting from
the expression of the macroscopic flux

qMi ¼
1

V

Z
�
S
qmnxidS; ð26Þ

and using periodicity, the averaged flux is obtained from
the ‘reaction’ fluxes at the controlling nodes similarly to the
mechanical case as

qMi ¼
1

V

Xa¼4

a¼1

q að Þ
mn
x að Þ
i ð27Þ

Substituting the condensed relation (25) into (27) allows
the identification of the macroscopic (averaged) permeability
KMij as

KMij ¼
m
V

Xa¼4

a¼1

Xb¼4

b¼1

x að Þ
i k abð Þx bð Þ

j ð28Þ

It is emphasized that the fact that the macroscopic flux is
expressed in terms of a boundary integral and subsequently
in terms of controlling nodes quantities is merely a conse-
quence of the periodicity assumption used in the develop-
ments. However, the macroscopic flux is obtained as a
volume average of the fine-scale flux. As a result, all the local
damaged permeabilities of the RVE are taken into account
in the volume averaging procedure underlying relationship
(28). This can be further realized by the fact that the con-
densed stiffness k(ab) actually takes them into account, being
the condensation of the entire RVE microstructural stiff-
ness which involves the permeability coefficients associated
with all the RVE positions. This transport homogenization
framework is equivalent to the asymptotic expansion tech-
niques used in Bear and Cheng [2010]. Its flexibility, how-
ever, allows for subsequent incorporation into multilevel
nested finite element solution schemes (known as FE2) as
illustrated in Ozdemir et al. [2008b], and it requires the fine-
scale system to be solved (only once) for the entire perme-
ability tensor to be extracted. As in the mechanical case, any
modeling choice (constitutive laws, discretization technique)
can be adopted for the fine-scale modeling. Note also that
by its structure, the relation (28) yields a symmetric positive-
definite averaged permeability tensor since the fine-scale
condensed discretized stiffness k(ab) is itself symmetric and
positive-definite.

4. Representative Volume Element Generation

[16] A complete state of the art for the generation of
particulate media Representative Volume Elements (RVEs)
can be found in He [2010]. Depending on the modeling
strategy chosen for crack development (interface elements
with cohesive laws), a specific RVE generation tool is required.
Several RVE generation methodologies for random materials
are available in the literature, mainly for inclusion-based
systems. They are usually specific to the type of material
under investigation, i.e. Random Sequential Addition in a
RVE container (RSA) [Cooper, 1998; Sherwood, 1997],
Discrete Element Method (DEM) [Jia and Williams, 2001;
Williams and Philipse, 2003; Stafford and Jackson, 2010]
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for particulate media and Voronoi tessellation methods for
polycrystalline microstructures [Rycroft et al., 2006; Rycroft,
2009; Fritzen et al., 2009].
[17] For the representation of local failure within the RVEs

based on interface elements, as presented in Section 2.1, a
three-dimensional Voronoi tessellation is the most conve-
nient RVE generation strategy, as it allows for the generation
of random assemblies of grains that completely fill a pre-
scribed space, based on an initial population of points. The
generated grain boundaries consist of straight planar facets
with random orientations and areas, depending on the origi-
nal seed population [Fritzen et al., 2009].
[18] In this paper, we use 3D RVEs based on the VORO++

library, see Rycroft [2009]. An illustration of a 64 grain
assembly within a periodic unit cell of 10 � 10 � 10 mm3 is
given in Figure 2b. In order to use the homogenization
framework presented in Section 3, a parallelipipedic assembly
is required. The periodic assembly obtained from VORO++
can be trimmed and re-organized according to the dimensions
of the required RVE. This process results in a periodic cubic
assembly of grains as illustrated in Figure 2c, and is equivalent
to the original distribution. The RVE is nextmeshed in order to
solve the mechanical and transport problems. The meshes
were obtained using the GMSH mesher [Geuzaine and
Remacle, 2009]. A surface periodic mesh at the boundary of
the RVE is obtained using an extrusion functionality, before
generating a complete 3D mesh.
[19] The grains are assumed to be linear elastic, without

provisions for transgranular cracking. To assess the degree of
validity of this assumption, by verifying that the probability
of grain failure is indeed low as compared to intergranular
failure, the sphericity of the grains within the aggregate can
be used. The sphericity of a grain can be defined as the ratio
of the surface area of a sphere (with the same volume as the
grain) to the surface area of the grain

Sg ¼
p

1
3 6Vg

� �2
3

Ag
ð29Þ

where Vg and Ag are the volume and surface area of the grain,
respectively, with a spherical grain giving Sg = 1 and these
are expected to require a higher energy to induce failure than
elongated particles that can fail by flexure. The distribution
of sphericity for the 64 grain assembly is shown in Figure 3.
As can be seen, the sphericity distribution is centered on a
value slightly above 0.8, indicating a low likelihood of trans-
granular fracture.

5. Damage-Induced Permeability Evolution

5.1. Problem Statement

[20] The ability for computational homogenization to rep-
resent damage-induced permeability evolution will now be
considered. In order to provide a meaningful set of results,
the principles presented in Section 3 will be applied to a RVE
generated using the procedure described in Section 4 and
material properties corresponding to a granite. Most of the
fine-scale material properties are available in the literature.
The 64 grain RVE generated in Section 4 is used. The grains
are discretized with tetrahedral elements with quadratic
interpolation of the displacement field (respective pressure
field) in the mechanical (respective fluid transport) part of
the analysis. Nodes are doubled and quadratic triangular
cohesive interface elements are automatically incorporated
at the planar boundaries between the grains. In order to use
a physically realistic set of parameters, experimental results
available for granitic materials are considered. The original
set of experimental results for the mechanical properties and
permeability evolution used are from Souley et al. [2001].
The elastic properties of the grains and of the cohesive
interfaces are equal to the macroscopic ones and are taken
from Jiang et al. [2010]. Typical fracture properties of
granite can be obtained from the literature. Macroscopic
values of the cohesion and of the friction angle in Lac du
Bonnet granite were measured and discussed in Martin and
Chandler [1994]. They showed that friction and cohesion
are not activated simultaneously during the fracture process.
As a result, the maximum cohesion that can be relied on for
engineering purposes is less than half the unconfined com-
pressive strength. From these tests, the average cohesion
ranged from 30 MPa to 40 MPa, with the friction angle j
varying between 40� and 50�. Similar values were found for
Barre granite [Mahabadi et al., 2010] with a cohesion of
50 MPa, and a friction angle of 35�. The results obtained in
Martin and Chandler [1994] were analyzed assuming a strain
energy release rate at failure of 10�3 N/mm. Compressive
properties reported in Vasconcelos et al. [2009] range from
26 to 160 MPa for the (unconfined) compressive strength
with compressive fracture energies ranging from 2.3 N/mm
to 10 N/mm for the pre-peak component and from 11 N/mm
to 45 N/mm for the post-peak response. In Vasconcelos et al.
[2008], the tensile strength of granite ranged from 2 MPa to
8 MPa, with a Mode-I fracture energy ranging between
0.1 N/mm and 0.3 N/mm, while tensile strengths in the range
6 MPa–10 MPa were reported for Barre granite [Goldsmith
et al., 1975] and for Lac du Bonnet granite [Duevel and
Haimson, 1997]. Based on these sources, the values of the
mechanical parameters for modeling potential cracks in
subsequent computations were selected from the mentioned
ranges and are reported in Table 1.

Figure 3. Sphericity distributions of the particles generated
by the Voronoi 3D tesselation procedure within a 10 � 10 �
10 mm3 bounding box.
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[21] With these values of the mechanical parameters, and
for the 64 grain RVE generated in Section 4, the initial
(undamaged) secant stiffness obtained through the homoge-
nization procedure is nearly isotropic. The variation in the
directional Young’s moduli is less than 0.2%, showing that a
sufficient number of grains is present within the RVE to
avoid any bias related to the RVE size or interface orientation
in the elastic range. Note that the mechanical properties of
Table 1 will be assigned to all the cohesive interfaces present
in the model. The heterogeneity in computations will there-
fore appear from the distributed orientations of the cohe-
sive zone elements, and from their progressive degradation
causing in turn stress redistributions in the microstructure.
Since the RVE is obtained as a space tessellation, all grains
are initially assumed to be in contact with their neighbors.

5.2. Damage Evolution in a Quasi-Brittle Material

[22] The 64 grain aggregate illustrated in Figure 2c is
now subjected to triaxial tests at two confining stress levels.
The mechanical responses of the RVE for two values of
the confining pressure (10 MPa and 40 MPa) are given in
Figures 4 and 5. The initial stages of the curves match rea-
sonably well the experimental results obtained for Lac du
Bonnet granite [Jiang et al., 2010]. The transverse strains are
correctly reproduced only for low stress levels; this deviation
is related to the damage formulation used at the fine scale,
which does not incorporate dilatancy effects. For both con-
fining pressures, the stress-strain response of the RVE is
accompanied by two graphical interpretations of the damage
state. The cohesive interfaces for which the damage state is
higher than 0.2 are depicted at various stages of the loading
process (the deviatoric load is applied in the axial direction).
In addition, the damage state is represented in a stereographic
plot, illustrating the directional dependency of damage. A
colored dot is given for each cohesive surface or a given
orientation. The axial direction is perpendicular to the plane
of the plot, i.e. a cohesive interface with a normal vector

Table 1. Mechanical Parameters for Potential Cracks

E
(GPa) n

ft
(MPa)

c
(MPa)

j
(�)

Gf,I

(N/mm)
h

(mm)

Cracks 70 0.25 6 36 40 0.01 0.1

Figure 4. Stress-strain response and damage states of the RVE at confining pressure of 10 MPa. Only
cohesive zones with a damage level of at least D = 0.2 are depicted. For each damage state depicted by a
point on the stress-strain curve, the damage state is illustrated on a 3D view of the RVE. A stereographic
view representing damage as a function of the orientation of the potential crack is also given (the longitu-
dinal direction is perpendicular to the stereographic plot).
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aligned with the axial direction is at the center of the plot. The
distribution of points in the stereographic plot also illustrates
the cracking orientation representativity of the RVE used: all
cracking orientations are present, thereby allowing a general
average cracking scheme to develop. Note that the proposed
computations are well below the peak of the stress-strain
response, which is confirmed by the experimental peak
values reported for Lac du Bonnet granite [Wang and Tonon,
2009], where the peak values were 215 MPa, 350 MPa and
440 MPa respectively, for confining pressures of (0, 10 and
20) MPa.
[23] As can be seen in Figure 4, for a confining pressure of

10 MPa, an extended damage state is reached at a deviator
stress of 200 MPa. The directional plots show that vertically
oriented interfaces (i.e. parallel to the longitudinal loading
direction) are damaged the most (outer circumferential points
in stereographic plots). This agrees with the experimental
observations reported in Oda et al. [2002] for granite. Even
though the peak value of the stress-strain response has not
been reached, a continuous damage path can be found,
allowing an increase in the average permeability of the
sample (see below). For a higher confining stress level of

40 MPa, similar results are seen in terms of damage pro-
gression and preferential orientation (Figure 5). As expected
[Yuan and Harrison, 2005], the damage growth is delayed as
a result of the confining normal stress in the damage criterion
applied for the cohesive interfaces (Mohr-Coulomb-like
criterion). The damage state found at (s1 � s3) = 300 MPa
is much less extensive for the higher confining pressure
(Figure 5) than for the lower one (Figure 4).
[24] The directional dependency of damage can be asses-

sed quantitatively using the generalization of the relation (15)
to the homogenized secant stiffness. Based on the initial and
damaged homogenized secant stiffness tensors, the degra-
dation of the normal stiffness components in the axial and
transverse directions can be deduced. These degradation
ratios are depicted in Figure 6 for both confining pressures.
The normal stiffness degradation appears almost doubled in
the transverse directions with respect to the principal loading
direction for both confining pressure levels. This is consis-
tent with the observations from the stereographic plots, and
will be analyzed in relation to the directional permeability
evolution.

Figure 5. Stress-strain response and damage states of the RVE at confining pressure of 40 MPa. Only
cohesive zones with a damage level of at least D = 0.2 are depicted. For each damage state depicted by a
point on the stress-strain curve, the damage state is illustrated on a 3D view of the RVE. A stereographic
view representing damage as a function of the orientation of the potential crack is also given (the longitu-
dinal direction is perpendicular to the stereographic plot).
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5.3. Damage-Induced Permeability Evolutions

[25] Apart from the references cited previously, data on
permeability evolution with the stress state is relatively
scarce in the literature. For Lac du Bonnet granite, perme-
ability evolution data was obtained for a confining pres-
sure of 10 MPa in Souley et al. [2001]. This data was used in
Jiang et al. [2010] for illustration of a closed-form damage-
permeability model.
[26] Since no initial crack closure is incorporated in the

modeling and since crack closure effects are expected to
strongly depend on the level of confinement, a first attempt
was conducted to fit data for a single confining pressure
(of 10 MPa). An initial permeability of k0 = 10�21 m2,
corresponding to the lowest value obtained experimentally
[Souley et al., 2001], is used for both the grains and the
cohesive zones. The initial permeability tensor obtained
computationally for the 64 grain RVE is almost isotropic.
[27] Using the various damage states presented in Figure 4,

the coupling parameter b can be adjusted to fit the increase in
axial permeability caused by the damage development under
a confining pressure of 10 MPa. In Figure 7, an optimal fit is
found in the permeability vs. loading response for a value of
b = 5.104. A permeability increase from its lowest value by
almost three orders of magnitude is obtained with this value
of the parameter, consistent with most experimental obser-
vations for quasi-brittle rocks.
[28] The evolution of permeability as a function of the

applied loading strongly depends on the level of confinement
with a inhibited overall damage evolution for increasing
confinement. As noted in Yuan and Harrison [2005], this
results in an inhibited permeability evolution as a function
of the loading level for increasing confining pressures, as
illustrated experimentally in Jiang et al. [2010] for basalt.
This effect is properly reproduced by the RVE computa-
tions as illustrated in Figure 8, keeping the same value of the
coupling parameter b.
[29] Focusing on the damage-induced permeability evolu-

tion, the effect of the confining pressure can be ana-
lyzed using data reported in Souley et al. [2001] for a

confining pressure of 5 MPa for Senones granite, which has
approximately the same mechanical properties as the Lac du
Bonnet granite, Shao et al. [1999]. Keeping the value of the
coupling parameter b = 5.104 (Figure 7), a simulation is
performed for a confining pressure of 5MPa. As can be noted
from the experimental results given in Figure 9 [Souley et al.,
2001], the permeability at the start of the deviatoric phase of
loading is quite different for both confining pressures and
accompanied by a decrease in the permeability at the start of
the deviatoric loading for a confining pressure of 10 MPa.
This may be due, at least in part, to crack closure effects. No
initial crack closure effect is incorporated in the fine-scale
modeling within the RVE. To compensate for this fact while
focusing on damage-induced permeability change, a different
initial undamaged permeability of k0 = 2.10�19 m2 is used

Figure 6. Degradation of normal stress components.
Figure 7. Axial permeability evolution as a function of the
stress level for a confining pressure of 10 MPa for various
values of the damage coupling parameter b.

Figure 8. Confining pressure dependency of permeability
evolution for the coupling parameter identified in Figure 7.
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in the simulations for the 5 MPa confining pressure, while
the value k0 = 10�21 m2 is kept for the 10 MPa confining
pressure. Based on these values, the damage coupling
parameter fitted on the 10 MPa confining pressure allows
a reasonable fit of the experimental results at a confining
pressure of 5 MPa as well, which is illustrated in Figure 9.

6. Discussion

[30] The results reported in the paper show that compu-
tational homogenization allows a qualitative assessment
of permeability evolution caused by mechanical damage,
usually interpreted in terms of stiffness degradation. The
coupling between mechanical degradation and transport in
the joints of a polycrystalline material can indeed reproduce
an increase in permeability by several orders of magnitude as
a result of local damage within the microstructure of the
material, before the peak of the stress-strain response.
[31] A number of assumptions that are sometimes

introduced in closed-form models for the sake of simplicity
are avoided in computational homogenization techniques,
although at the expense of a greater computational effort.
Among such additional effects, the cohesive zones are free
to open/close depending on the local stress state with no a
priori assumption introduced concerning the connectivity of
cracks, i.e. continuous channels naturally appear in the for-
mulation. This generality is important in the context of fluid
transport since permeability increases are related to continu-
ous crack paths developing in the material. No additional
assumption is made on the relationship between the macro-
scopic and fine-scale pressure gradients, i.e. the local pres-
sure gradients are not taken equal to the macroscopic ones,
but are rather imposed by the local microstructural events.
The approach rests on postulated laws at the fine scale, with

the potential added benefit of ease of assessment of other
more physically motivated fine-scale constitutive laws. This
offers the possibility of introducing modeling assumptions
in a progressive manner, in order to single out fine-scale
features that can have a dominant influence on macroscopic
scale observations. It also allows effects of complex phe-
nomena to be quantified, such as damage-induced anisotropy,
without making predefined assumptions that are sometimes
difficult to verify.
[32] A typical question related to damage and permeability

evolution is the validity of a scalar damage description of the
degradation process, and hence of a scalar effective perme-
ability evolution. The proposed framework allows the degree
of validity of such an assumption to be assessed. The direc-
tional permeability evolution along the axial and transverse
directions, corresponding to the diagonal components of the
permeability tensor are plotted in Figure 10 for various con-
fining pressures. Even though a scalar damage description is
adopted at the local scale, the averaged mechanical response
of the material exhibits anisotropy as illustrated in Figure 6.
As can be noted from Figure 10, the validity of a scalar
description of the effective permeability evolution depends
on the applied deviatoric stress. Globally, and for the con-
sidered set of parameters, the increase of permeability in
all directions is several orders of magnitude for all three
diagonal components of the permeability tensor. However,
at intermediate stages of loading, differences can appear
between the axial and transverse directions, with the axial
permeability 2 to 3 times lower than the transverse compo-
nents [Simpson et al., 2001]. Depending on the application, a
scalar permeability evolution can therefore be considered, by
extracting the geometric mean of directional permeabilities,
as illustrated in Figure 10 [Selvadurai and Selvadurai, 2010].

Figure 9. Axial permeability evolution as a function of the stress level for a confining pressure of 5 MPa
and 10 MPa. Star markers denote experimental results reproduced after [Souley et al., 2001]. Experimental
results at a confining pressure of 5 MPa relate to Senones granite, while results at a confining pressure of
10 MPa relate to Lac du Bonnet granite.
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[33] An inherent limitation of the proposed approach is that
meaningful fine-scale behavior features are required, which
are sometimes difficult to determine experimentally in terms
of morphology (geometrical arrangements and shape of the
phases) and mechanical properties. The results presented
here are based on a purely phenomenological local coupling,
introducing stiffness degradation effects in local transport
properties by means of a coupling parameter b to be fitted
based on experimental results. The b parameter remains
a phenomenological parameter as no specific lower-scale
argument is used in order to derive its value at this stage. A
variation of this parameter can thus cover various lower-scale
origins of the macroscopically observed permeability
increase. Also note that a linear dependency instead of the
quadratic relationship (9) would, with the same value of
the local fully damaged permeability (i.e. same value of b)
deliver macroscopic permeability evolutions very close to
those reported here.
[34] The results shown in Figure 9, however, indicate that

the same parameter value appears to correctly reproduce the
permeability evolution for other confining conditions. It is
emphasized that the phenomenological nature of the fine-
scale coupling postulated here for cracking is not linked to
an inherent limitation of the upscaling methodology. With
the chosen periodicity assumption, the upscaling framework
presented in Section 3 is completely independent of the laws
postulated at the fine scale, as long as the RVE average
response remains in the pre-localization regime, and as long
as the mechanical and fluid transport problems can be solved
independently. It can therefore be used with more physically
motivated local mechanical laws, including dilatancy and
contractancy. Future improvements to the model could be
incorporated to address additional fine-scale phenomena,
such as grain cracking and crushing; or pore collapse and

initial crack closure that potentially leads to drastic perme-
ability decrease as reported in [Zhu et al., 2007; Zhu and
Wong, 1997; Jiang et al., 2010].

7. Concluding Remarks

[35] The permeability evolution of quasi-brittle geo-
materials can be assessed using computational homogeniza-
tion techniques applied on Representative Volume Elements
(RVEs) of typical microstructures. Based on a micro-scale
description of the internal structure of such materials and
based on classical closed-form mechanical and transport laws
postulated on their micro-scale, averaging theorems allow the
extraction of meaningful information on the degree of vari-
ation of the permeability with the degree of damage. The
general nature of the averaging framework allows the
potential appearance of complex behaviors such as anisot-
ropy at the macro-scale with simple isotropic laws postulated
at the micro-scale.
[36] With a periodic RVE generation tool based on 3D

Voronoi tesselation principles and with the help of fine-scale
constitutive laws and of a local coupling between damage
and permeability evolutions, the ability of the framework to
extract damage-induced macroscopic permeability evolution
is illustrated. Based on a set of mechanical and transport
parameters matching a granite-type material, the load-
induced evolution of averaged permeabilities by several
orders of magnitude can be fitted. Starting from the fitting of
the coupling parameter at a given confining pressure, com-
putational results show that the framework is capable of
reproducing the trend in the permeability evolution for other
confining stress states. The development of anisotropy in
both the mechanical and transport properties of the material is
a natural by-product of the methodology. The computations

Figure 10. Directional permeability evolution as a function of the stress level for various confining pres-
sures. Dashed lines represent the permeability along transverse directions, while continuous lines represent
the permeability in the longitudinal (axial) direction. The red lines represent the geometric mean of all three
diagonal components of the tensor.
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show that permeability anisotropy is a potential feature of
such materials, even though directional permeability evolu-
tion globally remains at the same order of magnitude for the
set of parameters considered.
[37] It is noted that the versatility of the framework allows

additional extensions to incorporate more physically based
fine-scale descriptions. In view of the experimental evidence
available in the literature, the following aspects could be
incorporated in the future to shed light on their relative
importance. First, existing (initial) crack (or pore) closure
could be incorporated in an average sense in the cohesive
zone formulation used here. This would allow the variability
of the permeabilities to be taken into account at the start of
the deviatoric loading phase for different confinement con-
ditions, as illustrated by the results reported in Souley et al.
[2001]. Secondly, the permeability evolution during the
deviatoric loading phase could be analyzed using physical
laws incorporating contractancy and dilatancy of poten-
tial failure zones, in an approach similar to Nguyen and
Selvadurai [1998] in terms of hydraulic aperture variations
in joints.

Appendix A: Mechanical Cohesive Law
Relationships

[38] The damage criterion illustrated in Figure 1 in the
space of stress components of the cohesive zone is a com-
posite criterion. It is translated in the space of relative
displacement across the cohesive zone, since the damage
formulation is strain-based. For the tension part of the crite-
rion expressed in the stress space, damage is assumed to
initiate if

s > ft ðA1Þ

where ft is the tensile strength. This condition is translated as

s
kn

>
ft
kn

or dn > ki ðA2Þ

where ki is defined as the threshold for the normal relative
displacement from which damage occurs. The shearing part of
the criterion is expressed in the space of stress components as

s tan jþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2s þ t2t

q
� c > 0 ðA3Þ

Expressing the stress components in terms of the relative dis-
placements (s = kndn, t = ktdt), one obtains

ft
c
dn tan jþ ktft

knc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2s þ d2t

q
>

ft
kn|{z}
ki

ðA4Þ

The composite criterion is obtained by combining both
expressions. The active part of the criterion is the one for
which the quantity to compare to ki is the largest. Relationship
(4) therefore expresses the scalar equivalent relative displace-
ment measure to compare to ki for the complete criterion).
[39] The derivation of equation (6) follows immediately

from relations (4) applied for mode I and pure mode II

loading with the exponential damage evolution given in (5).
Using the following notations to shorten the expressions

ki ¼ ft
kn

; q ¼ ft
Gf ;I

ðA5Þ

the exponential damage evolution law is written as

D kð Þ ¼ 1� ki

k
e�q k�kið Þ ðA6Þ

The mode I fracture energy can be recovered as the area
under the normal stress-normal relative displacement curve

Gf ;I ¼
Z þ∞

ki

sddnðkÞ ðA7Þ

Using the previous notations, and substituting the damage
evolution law with a purely monotonic loading (i.e. dn = k)
one finds Z þ∞

ki

knkie
�q k�kið Þdk ¼ knki

q
¼ Gf ;I ðA8Þ

Similarly, under pure mode II loading, the tangential stress-
relative displacement relationship is given by

t ¼ 1� DðkÞð Þktdt ¼ ki

k
e�q k�kið Þ

� �
ktdt ðA9Þ

Based on the damage criterion (4), for a pure shear case, the
shearing relative displacement is related to k according to

k ¼ deq ¼ ft
c

kt
kn

dt ðA10Þ

Isolating dt from this equation, substituting it in the expres-
sion of the tangential stress-relative displacement relation,
and defining the mode II fracture energy as the area under
that curve, one obtains

Gf ;II ¼
Z þ∞

ki

tddtðkÞ ¼
Z þ∞

ki

ki

k
e�q k�kið ÞktdtðkÞddtðdkÞ

¼ c

ft

� �2 kn
kt

� �
Gf ;I ðA11Þ

Appendix B: Averaging Relation for Fluid
Transport Problem

[40] Relationship (24) establishing the consistency of the
flux between scales can be demonstrated as follows. Starting
from relationship (23)

1

V

Z
V

~rmpm:~qm dV ¼ 1

V

Z
�
S
pmqmn dS ðB1Þ

the right-hand side can be developed by splitting the integral
along the faces of the RVE as (only one pair of opposite faces
of the RVE is explicitly written for brevity)

1

V

Z
�
S
pmqmn dS ¼ 1

V

Z
Sleft

pleftm qleftmn
dS þ 1

V

Z
Sright

prightm qrightmn
dS þ…

ðB2Þ
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Using the anti-periodicity of the normal flux at the boundary
of the cubic RVE, these terms can be reformulated as

1

V

Z
�
S
pmqmn dS ¼ 1

V

Z
Sleft

pleftm qleftmn
dS þ 1

V

Z
Sright

prightm �qleftmn

� �
dS þ…

ðB3Þ

Assembling the terms of the opposite faces, the closed inte-
gral becomes

1

V

Z
�
S
pmqmn dS ¼ 1

V

Z
Sleft

pleftm � prightm

� �
qleftmn

dS þ… ðB4Þ

Further, using relation (21), the pressure variation between
points of opposite faces can be related to the macroscopic
pressure gradient, and the boundary integral becomes

1

V

Z
�
S
pmqmn dS ¼ 1

V
~rMpM :

Z
Sleft

~xright �~xleft
� �

~qm~n
rightdS þ…


 �
ðB5Þ

The consistency between scales of the product of the pressure
gradient by the flux becomes

~rMpM :~qM ¼ 1

V

Z
�
S
pmqmn dS ¼ 1

V
~rMpM :

Z
�
S
~xqmndS ðB6Þ

As a result, the macroscopic flux can be expressed in terms
of a boundary integral involving the normal fluxes at the
boundary

~qM ¼ 1

V

Z
�
S
~xmqmndS ðB7Þ

It is emphasized that the averaging operation is a true volume
averaging, the simplification toward a surface integral being
the result of the periodicity assumption (and of the steady
state equilibrium at the fine scale). Further, the boundary
integral can be reformulated to show that the macroscopic
flux is the volume average of the fine-scale fluxes

~qM ¼ 1

V

Z
�
S
~xmqmndS ¼ 1

V

Z
�
S
~xm~qm:~ndS ¼ 1

V

Z
V

~rm: ~xm~qmð ÞdV

ðB8Þ

Using the identity

~rm: ~xm~qmð Þ ¼ ~rm:~xm:~qm þ~xm ~rm:~qm
� �

¼~qm ðB9Þ

in which the last term between parentheses vanishes due
to steady state equilibrium at the fine scale, the macroscopic
flux is finally obtained as

~qM ¼ 1

V

Z
V
~qm dV ðB10Þ
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