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This paper examines the effective elasticity properties of a unidirectionally reinforced carbon fibre–
polyester composite. A computational simulation of an experimentally determined fibre arrangement
is used to derive the effective elasticity properties of the transversely isotropic composite. The computa-
tional estimates for the elastic constants are compared with several theoretical estimates for the effective
elasticity properties that are based on regular arrangement of the reinforcing fibres, their volume fraction
and the elasticity properties of the constituents.
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1. Introduction

Fibre-reinforced composites consist of bonded layers of unidi-
rectionally reinforced sub-elements, which are configured to pro-
vide the optimum deformability and resistance to failure [1–4].
Although purely unidirectionally reinforced composites are rarely
used as primary load carrying components, the mechanical behav-
iour of such elements can contribute significantly to the develop-
ment of load transfer mechanisms and the integrated action
required of a composite [5,6]. In idealised assessments of the effec-
tive elasticity properties of unidirectionally reinforced composites,
it is invariably assumed that the spatial arrangement of fibres is
regular, which enables the application of effective elasticity esti-
mates that are usually developed by modelling the mechanics of
a representative elemental cell. Experiments conducted in connec-
tion with this research and others (see e.g. [1,7,8]) indicate that the
fibre arrangement in unidirectionally reinforced composites is far
from regular and that the spatial positions of the fibres invariably
occur in an irregular pattern. This irregularity in the spatial
arrangement of the fibres can influence the estimation of the
mechanical properties of the unidirectional composite, in that
the effective elasticity properties will now be influenced by a Rep-
resentative Area Element (RAE) of the unidirectionally reinforced
composite used to model the material. In particular, the transverse
mechanical behaviour of a unidirectionally reinforced element rep-
resents the weakest link in the load transfer capabilities of the
composite and thus merits detailed attention, in terms of the eval-
uation of its deformability, damage initiation and fracture. Despite
ll rights reserved.

: +1 514 398 7361.
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this importance, experimental evaluations of the transverse prop-
erties of unidirectionally reinforced materials are rare and atten-
tion has mainly focused on the evaluation of deformability and
failure characteristics in the fibre direction.

In this paper we estimate the elasticity properties of a unidirec-
tionally reinforced polyester–carbon fibre composite, considering
the spatial arrangements of fibres determined from Scanning Elec-
tron Microscope (SEM) studies. The SEM studies provide visual
records of the arrangements of the fibres at any transverse section,
which enables the accurate geometric representation of the fibre
positions in the RAE. Furthermore, the availability of SEM images
of the cross-sections enables the examination of the dimensions
of the RAE in relation to the area of a single fibre. The SEM data,
together with an image analysis, are used to construct a computa-
tional model of the RAE, which itself can have an arbitrary orienta-
tion. The computational modelling is performed using the general
purpose finite element code ABAQUS™. The RAE is subjected to dif-
ferent modes of homogeneous straining and the computational
estimates for the strain energy are used to compute the effective
elasticity properties of the composite with an irregular fibre
arrangement. The study is an exercise in multi-scale modelling,
which has been highlighted in a number of investigations dealing
with both deformability and failure assessments. For example,
Gonzalez and LLorca [9] have examined the process of fracture in
unidirectionally reinforced composites using multi-scaling tech-
niques. Sansalone et al. [10] use a multi-field model to computa-
tionally examine the influence of local micro-fibre orientation on
stress and strain distribution in fibre-reinforced composites. Trias
et al. [11] use computational approaches to identify RAEs where
the periodicity in the boundary conditions is relaxed to account
for statistical influences, including clustering. The research in the
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current paper also points to the minimum fibre area fraction nec-
essary to ensure the validity of the idealised continuum concept
in estimating the transverse elasticity properties of the composite
using analytical and computational means.

2. Experimental characterisation of fibre configurations

The experimental research programme involved the study of
the fibre arrangement in a cross section of a Carbon Fibre-
Reinforced Plastic (CFRP) multi-laminate plate. The plate used in
the research investigations was supplied by a composites products
manufacturer in the USA. The supplied multi-ply plates had differ-
ent thicknesses, different fibre directions in the individual plys and
a relatively constant fibre volume fraction. The properties of the
composite constituents (i.e. resin and fibre) in the as supplied con-
dition were provided by the manufacturer and these are given in
Table 1.

The particular objectives of the research were to examine the
arrangement of fibres in a cross-section of a composite and to focus
more specifically on a transverse section of the laminate containing
the uni-directional fibre reinforcement. The imaging of the fibre
Table 1
Mechanical properties of resin matrix and fibre.

Property Specific
gravity

Tensile
strength
(MPa)

Tensile
Young’s
modulus
(GPa)

Ultimate
tensile
strain (%)

Poisson’s
ratio

Resin 1.20 78.6 3.1 3.4 0.35
Fibre 1.81 2450.4 224.4 1.6 0.20

Epoxy 

CFRP Specimen  

    1cm

Fig. 1. Sample prepared for SEM scanning.

21
6 

μm

Fig. 2. Scan of the CFRP composite and
arrangements was performed using a SEM. Samples of the 3.6
mm thick multi-laminate CFRP plate were cut into coupon sizes
measuring 25.4 mm by 5.0 mm. These were cast in epoxy that
hardened within 24 h and they were then polished using silicon
carbide paper (220 grits) (Fig. 1). The finishing was done using a fi-
ner silicon carbide paper (600 grits). The final polishing operation
was performed with diamond solutions (15 lm and 0.05 lm).
The polished samples were carbon coated with a layer of less than
30 nm, to eliminate the charging effect of the non-conductive
materials used in a SEM environment.

In electron microscopy, the interaction of electrons and the
material under investigation can produce different signals, includ-
ing secondary, backscatter and Auger electrons, characteristic X-
rays, breaking radiation, etc. The backscatter electron signals were
used to obtain chemical information of the constituents. The theo-
retical procedures used in the interpretation of the SEM data are gi-
ven by Goldstein et al. [12]. An Everhart–Thornley detector was
used to record the secondary electrons, which are emitted from
the surface of the materials. To increase the quality of the signal,
the acceleration voltage of the microscope and the probe current
were decreased. The tension was set to 2 kV and the current was
adjusted to a low value. The backscattered electron coefficient
(i.e. the ratio of the back-scattered electrons to the primary elec-
trons) is a function of the mean atomic number of the emitted sig-
nal. The fibres in the composite have a higher mean atomic number
than the surrounding matrix; thus, on the image the fibres appear
brighter than the resin. Better quality backscattered electron
images were obtained with a higher acceleration voltage and high-
er current. The voltage was set to 10 kV and the current was ad-
justed to a higher value. For each frame, the brightness and
contrast were manually adjusted before acquisition of an image.
Fig. 2 shows typical scan of an intact specimen.

The image processing toolbox in the MATLAB™ software was
used to estimate the fibre volume fraction. All scans were con-
verted into binary black and white images and filter commands
were then used to eliminate noise associated with each image.
The filtered binary image was then used to estimate the fibre vol-
ume fraction. The diameter of an average fibre was approximately
8 lm. Some fibres, however, had a smaller diameter although their
proportions in a control region, such as the one shown in Fig. 2, did
not exceed 5%. The fibre area fraction was estimated by using
square sub-regions with varying dimensions of 0.5D, 1D, 2D,
3D, . . . , to nD, where D is the fibre diameter and n depends on
the dimensions of the photographic image. The orientation of the
sub-region with respect to the global view of the image was
selected at 0� and 45� (Fig. 3).

Fig. 4 illustrates the variation of the experimentally determined
fibre area fraction as a function of the orientation and area of the
60 μ
m

79 μm

a region selected for FEM analysis.
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Fig. 3. Estimation of fibre area fractions using squares in two different orientations.
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Fig. 4. Estimation of the effective fibre area fraction in orientations normal to the
fibre direction; representative areas aligned at two different orientations (As = Area
of the control square; Afib = Area of individual fibre).
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control region. As is evident from Fig. 4, the fibre area fraction con-
verges approximately to 66% for the image shown in Fig. 3. Fibres
were non-uniformly distributed in different layers of the laminated
composite.

A series of tension tests (ASTM D3039 [13]) were also per-
formed on single lamina strips of the composite, which measured
25.4 mm in width and 203.2 mm in effective length, to determine
10 μm 

Fig. 5. The fractur
the elastic properties of the composite material. The experimen-
tally determined longitudinal Young’s modulus of a single lamina,
E11, was 138.26 ± 5.26 GPa; Poisson’s ratio, m12 was 0.23 ± 0.01, and
the tensile strength, r1T, was 1442.5 ± 110.3 MPa, where the sub-
script 1 refers to the fibre direction and subscripts 2 and 3 refer
to transverse directions, which together with the direction 1, form
an orthogonal basis.

The bond between the fibre and the matrix is the main process
that contributes to the transverse strength and deformability char-
acteristics of the unidirectional fibre-reinforced material. This
property cannot be determined from bulk tests and special inter-
face adhesion measurements are required. Some knowledge of
the load transfer characteristics of the interface or bond integrity
can be gleaned by observation of the fracture topography. As is evi-
dent from Fig. 5, the failure of the fibre-reinforced material in-
volves fibre breakage rather than fibre pull out. This points to a
fibre-reinforced material with adequate fibre–matrix bond.

3. Theoretical estimates

Theoretical modelling of the elastic behaviour of unidirection-
ally fibre-reinforced materials has been an active topic of research
over the past seven decades. The unidirectional positioning of the
parallel reinforcing fibres in either a random or regular arrange-
ment, permits the description of the overall elastic behaviour of
the composite by appeal to the classical theory of elasticity for a
transversely isotropic material. When the axis of symmetry of
the transversely isotropic elastic material is aligned with the fibre
direction, five independent elastic constants are necessary and
sufficient to characterise the complete linear elastic behaviour.
The general theories that relate these elastic constants to the elas-
ticity properties of the fibres and the respective area fractions, con-
tiguity effects, etc., are many and varied; they depend to a large
extent on the assumptions used in modelling the representative
element and the analytical techniques used to arrive at either a
variational or other elementary analysis based on structural repre-
sentations of the composite action between the fibres and the ma-
trix. Comprehensive accounts of these developments can be found
in the texts and articles by Hill [14,15], Hashin and Rosen [16], Hal-
pin and Tsai [17], Whitney and Riley [18], Spencer [19], Sideridis
[20], Sun and Vaidya [21] and accounts of recent developments
can be found in the articles by Selvadurai [5,6].

3.1. Equations governing transversely isotropic elasticity behaviour

If the fibre direction is designated as 1, the equations of trans-
versely isotropic elasticity can be written as
    10 μm

e topography.
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r11 ¼ C11e11 þ C12e22 þ C12e33; r12 ¼ 2C66e12

r12 ¼ C12e11 þ C22e22 þ C23e33; r23 ¼ ðC22 � C23Þe23

r13 ¼ C12e11 þ C23e22 þ C22e33; r31 ¼ 2C66e31

ð1Þ

and the elastic constants Cij can be related to the five independent
measurable elastic moduli E11, m23, K23, G12, and G23 as follows

C11 ¼ E11 þ 4m2
12K23; C12 ¼ 2K23m12; C22 ¼ G23 þ K23

C23 ¼ �G23 þ K23; C66 ¼ G12
ð2Þ

Also, the elastic constants in the 2–3 plane, or the plane of isot-
ropy, are generally assumed to satisfy the usual relationships
applicable to isotropic elastic materials. In the description of the
elastic properties in the plane of isotropy, it is also customary to
define the plane strain bulk modulus, K23, which is given by

K23 ¼
1
2
ðC22 þ C33Þ ð3Þ

The choice of the plane strain bulk modulus, K23, is an idealisa-
tion, which implies that e11 = 0. This assumption is rigorously sat-
isfied if either E11 ?1 or the loading conditions of the composite
ensures, through symmetry considerations, that e11 = 0. Neither of
these conditions is rigorously satisfied and the plane strain bulk
modulus therefore can only be regarded as an idealisation. The
in-plane shear modulus G23 is regarded as the second elastic con-
stant. The other elastic constants can be related to K23 and G23

through the relationships

E22 ¼ E33 ¼
4K23G23

K23 þ wG23

m23 ¼
K23 � wG23

K23 þ wG23
; m21 ¼ m31 ¼

1
2

C11 � E11

K23

� �

w ¼ 1þ 4K23m2
12

E11

ð4Þ
3.2. Effective elasticity parameters

Several theoretical models have been proposed in the literature
for estimating the elasticity properties of unidirectionally rein-
forced composites. Extensive accounts of these developments can
be found in the literature cited previously. Some typical estimates
for the elastic constants applicable to unidirectionally reinforced
composites will be presented.

3.2.1. Voigt and Reuss estimates
The simplest equations used for estimating the effective proper-

ties of a composite are the upper and lower bounds proposed by
Voigt and Reuss, respectively, as given in [4]. The general relation-
ships can be applied universally for estimating any of the elastic
properties of the composite. For example the, Voigt and Reuss
bounds for the effective bulk modulus K23 of the unidirectionally
fibre-reinforced composite in the plane of symmetry can be esti-
mated from the result

1
Vf

Kf
þ ð1�Vf Þ

Km

6 K23 6 Kf Vf þ ð1� Vf ÞKm ð5Þ

where Vf is the volume fraction of the fibres and Kf and Km are,
respectively, the bulk moduli of the fibre and matrix phases. These
bounds are the simplest but not necessarily the best, since the re-
sults may vary by a wide margin depending on the volume fraction
of the fibres. Similarly, other elasticity properties G12, G13, G23, E11,
E22, E33, m12, m13, m23 can be bounded by the Voigt and Reuss esti-
mates; e.g.
1
Vf

Ef
þ ð1�Vf Þ

Em

6 E22 6 Ef Vf þ ð1� Vf ÞEm ð6Þ
3.2.2. Hashin and Rosen estimates
The most widely used estimates for the elastic constants of a

unidirectionally reinforced composite are due to Hashin and Rosen
[16], and take the following forms:

K23 ¼ ðkm þ GmÞ
fð1þ 2mmVf Þ þ 2mmVm

fVm þ Vf þ 2mm

� �
ð7Þ

E11 ¼ Vf Ef þ VmEm þ
4Vf Vmðmf � mmÞ2Gm

VmGm

Kfþ
Gm

3ð Þ
þ Vf Gf

Kfþ
Gm

3ð Þ
ð8Þ

m12 ¼ m13 ¼
Vf Ef L1 þ VmEmL2mm

Vf Ef L3 þ VmEmL2

� �
ð9Þ

G12 ¼ G13 ¼ Gm
gð1þ Vf Þ þ Vm

gVm þ Vf þ 1

� �
ð10Þ

and

G23 ¼ Gm
ðaþ bmVf Þð1þ qV3

f Þ � 3Vf V
2
mb2

m

ða� Vf Þð1þ qV3
f Þ � 3Vf V

2
mb2

m

( )
ð11Þ

where

ki ¼
miEi

ð1þ miÞð1� 2miÞ
; bi ¼ ð3�4miÞ�1; ði¼m; f Þ

f¼ kf þGf

km þGf

� �
; a¼ gþ bm

g�1

� �
; q¼

bm � gbf

1þgbf

 !
; g¼ Ef ð1þ mmÞ

Emð1þ mf Þ

L1 ¼ 2mf ð1� m2
mÞ þVmmmð1þ mmÞ; L2 ¼ 2Vf ð1� m2

f Þ
L3 ¼ 2mf ð1� m2

mÞVf þVmð1þ mmÞ
ð12Þ

It should be noted that the model for the composite used by
Hashin and Rosen [16] assumes that the fibres are surrounded by
a matrix material, thereby ensuring non-contiguity between adja-
cent fibres. In the experimental evaluations conducted in connec-
tion with this research, it was observed that there is a spatial
variation in the contiguity factor, which can influence the assess-
ment of the effective transverse elasticity properties.

3.2.3. Halpin and Tsai estimates
Halpin and Tsai [17] used an interpolation procedure to esti-

mate elasticity properties of a unidirectionally fibre-reinforced
composite:

E11 ¼ ð1� LÞKf Ef ð2Km þ GmÞ � KmEmðKf � GmÞVm

Kf ð2Km þ GmÞ � GmðKf � KmÞVm

þ L
Kf Emð2Kf þ Gf ÞVm þ Kf Ef ðKm � GmÞVf

Kf ð2Km þ Gf Þ � Gf ðKm � Kf ÞVm
ð13Þ

m12 ¼ ð1� LÞKf mf ð2Km þ GmÞ � KmmmðKf � GmÞVm

Kf ð2Km þ GmÞ � GmðKf � KmÞVm

þ L
Kf mmð2Kf þ Gf ÞVm þ Kf mf ðKm � GmÞVf

Kf ð2Km þ Gf Þ � Gf ðKm � Kf ÞVm
ð14Þ

where L is defined as the contiguity factor,

E22 ¼ Em
1þ ngVf

1� gVf
ð15Þ
m23 ¼ mm
1þ ngVf

1� gVf
ð16Þ
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G12 ¼ Gm
1þ ngVf

1� gVf
ð17Þ

and n and g depend on fibre and matrix elasticity, geometry, pack-
ing condition and loading patterns.

3.2.4. Whitney and Riley estimates
Whitney and Riley [18] presented estimates for the elastic con-

stants of a unidirectionally fibre-reinforced elastic matrix. These
developments are based on structural mechanics models of the
representative elements and are less rigorous than the procedures
developed by Hill, Hashin and Rosen and others [14–16], which are
based on variational theorems in elasticity. These authors also
present the results of experiments and comparisons with experi-
mental results conducted on an epoxy resin reinforced with boron
fibres. The expressions for the elasticity constants can be deduced
from the expressions given below by Whitney and Riley [18] and
the results (1)–(4):

K23 ¼
½ðKf þ GmÞKm � ðKf � KmÞGmVf �
½ðKf þ GmÞ � ðKf � KmÞVf �

ð18Þ

E11 ¼ Vf ðEf � EmÞ þ VmEm ð19Þ

G23 ¼
½ðGf þ GmÞ þ ðGf � GmÞGmVf �
½ðGf þ GmÞ � ðGf � GmÞVf �

ð20Þ

m23 ¼ Vf mf þ Vmmm ð21Þ

m12 ¼ mm �
2ðmm � mf Þð1� mmÞ2Ef Vf

Emð1� Vf ÞL1 þ Ef ½Vf L2 þ ð1þ mmÞ�
ð22Þ

where;
(a)  Fibre Matrix

AA

(b)
Fig. 6. FEM Computational models for identification of: (a) Transverse properties (two-d
mesh (detail at A) (Number of elements: 12,251, Element type: 4-node bilinear quadrila
L1 ¼ 1� mf � m2
f ð23Þ

L2 ¼ 1� mm � m2
m ð24Þ
4. Computational modelling

An objective of the research was to use the information on the
fibre configurations, derived from SEM scans, to develop a geomet-
ric model of the fibre arrangement in the composite which can be
used to computationally estimate the effective elasticity properties.

4.1. Finite element models

The computational modelling was performed using the
ABAQUS™ software. Finite element models of the representative
area elements were constructed using the images derived from
the SEM scans (Fig. 6) and these elemental regions were subjected
to appropriate states of homogeneous strain to estimate, through
energy equivalence, the effective elasticity properties of the com-
posite. These computational estimates for the effective elasticity
properties for unidirectionally fibre-reinforced composites with
an irregular fibre arrangement were then be compared with com-
putational results and analytical estimates for an ideal unidirec-
tionally fibre-reinforced composite with the same fibre volume
fraction and fibre diameter.

Transverse properties, including the plane strain bulk modulus,
K23; the plane strain shear modulus, G23; the transverse Young’s
modulus, E22, and Poisson’s ratio, m23, were identified using two-
dimensional plane strain models. The longitudinal properties,
including the longitudinal Young’s modulus, E11, and Poisson’s ratio,
m12, were predicted using three-dimensional models. Discretizations
of two-dimensional models were performed using the standard
SEM Scan

(c)
imensional), (b) longitudinal properties (three-dimensional), and (c) Finite element
teral).
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4-node bilinear quadrilateral element available in ABAQUS™
(CPS4R), and for discretization of three-dimensional models, a 4-
node linear tetrahedron element (C3D4) was used. Perfect bonding
between the matrix and fibres was assumed and damage effects that
can result from matrix cracking, debonding at the fibre–matrix
interface, transverse cracking of fibres and other defects were not
considered in these models. The fibres and the matrix were mod-
elled as isotropic materials having elastic constants indicated in
Table 1. Details of boundary conditions and constraints for identifi-
cation of each elasticity property, along with the energy density
equation for a homogenous transversely isotropic section under
the same boundary conditions and constraints, are presented in
the following sections. Stress and strain distributions were achieved
and the strain energy density of the Representative Area Element
(RAE) was calculated using the general equation for arbitrary heter-
ogeneous isotropic materials [5,22].

U ¼ 1
2V

ZZZ
V
fr
�
gTfe

�
g dV ð25Þ
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Fig. 7. Normalised estimates of the transverse elasticity properties: (a) Young’s
modulus, E22 and (b) Poisson’s ratio, m23.
4.2. Boundary conditions and constraints

4.2.1. Plane strain bulk modulus, K23

The state of strain chosen to be applied to RAEs to computation-
ally estimate K23 was

e22 ¼ e33 ¼ e0; e11 ¼ 0; e12 ¼ e13 ¼ e23 ¼ 0 ð26Þ

By employing the plane strain conditions for an isotropic mate-
rial, the strain energy density expression can be simplified and
restated in terms of the effective bulk modulus as

U ¼ 2K23e2
0 ð27Þ

e0 was chosen to be 0.01 for all RAEs with different dimensions.

4.2.2. Plane strain shear modulus, G23

The state of strain associated with the plane strain shear mod-
ulus, G23, was chosen as pure shear in the x2-x3 plane (the coordi-
nate system is shown in Fig. 6).

e11 ¼ e22 ¼ e33 ¼ 0; e23 ¼ e32 ¼ co; e13 ¼ 0 ð28Þ

For prescribed boundary conditions, the macroscopic strain
energy density for an isotropic material can be expressed as:

U ¼ 1
2

G23c2
0 ð29Þ

and c0 was chosen to be 0.01.

4.2.3. Transverse Young’s modulus E22 and Poisson’s ratio, m23

The following boundary conditions were proposed for RAEs to
estimate the effective transverse Young’s modulus, E22, and
Poisson’s ratio, m23. The RAE was subjected to known displace-
ments, e0L, along an axis for the case when straining is in the
x2-direction.

e11 ¼ 0; e22 ¼ e0; e12 ¼ e13 ¼ e32 ¼ 0 ð30Þ

The following displacement boundary conditions were imposed
on the unstressed sides of the models to ensure the homogeneity of
the deformation:

U3ðX;Y;H=2Þ ¼ U3ðX;W=2;H=2Þ ð31Þ

U3ðX;Y;�H=2Þ ¼ U3ðX;W=2;�H=2Þ ð32Þ

where W and H are the dimensions of the selected area elements.
The transverse Poisson’s ratio, m23 was calculated using the val-

ues of the strains observed in the transverse direction and the im-
posed axial strain, i.e.
m23 ¼
�e33

e22
ð33Þ

For the proposed boundary conditions, the strain energy density
for an isotropic material can be expressed as:

U ¼ E22

2ð1þ m23Þð1� 2m23Þ
½ð1� m23Þðe2

22 þ e2
33Þ þ 2m23e22e33� ð34Þ
4.2.4. Longitudinal Young’s modulus, E11, and Poisson’s ratio, m12

The cuboidal specimen was subjected to the following state of
strain:

e11 ¼ e0; e13 ¼ e23 ¼ e32 ¼ 0 ð35Þ

The displacement constraints applied on the lateral surfaces of
the model to ensure homogenous displacement of the control ele-
ment were

U3ðX;Y ;H=2Þ ¼ U3ðX;W=2;H=2Þ
U3ðX;Y ;�H=2Þ ¼ U3ðX;W=2;�H=2Þ
U2ðX;W=2; ZÞ ¼ U2ðX;W=2;H=2Þ
U2ðX;�W=2; ZÞ ¼ U2ðX;�W=2;H=2Þ

ð36Þ

The longitudinal Poisson’s ratio can be estimated by dividing
the strain observed in the lateral surfaces to the applied strain in
the fibre direction:

m12 � m13 �
�e22

e11
� �e33

e11
ð37Þ
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The macroscopic strain energy density function for the equiva-
lent isotropic material therefore reduces to:

U ¼ 1
2

E11e2
0 ð38Þ
5. Results and discussion

Computational models were developed for square sub-regions
of cross sections of a composite with random fibre arrangements,
with dimensions 0.5D, 1D, 2D, 3D, . . . , nD, where D is the fibre
diameter. The orientation of the sub-region with respect to the glo-
bal view of the image of the fibre-reinforced composite generated
from a SEM scan was selected at 0� and 45�. A similar model was
developed for a section with an idealised regular fibre arrangement
corresponding to the same fibre volume fraction and fibre diame-
ters. As the area of the RAE increased, results for the elasticity
properties of the control squares with the random fibre arrange-
ments converged to the values of the composite block with a reg-
ular fibre arrangement. Fig. 7 illustrates that normalised transverse
elastic modulus, [(E22)Control Square/(E22)Largest Section], and norma-
lised Poisson’s ratio, [(m23)Control Square/(m23)Largest Section], for the
CFRP sections versus normalised area of the control squares,
as = As/Afib. Based on the results for the CFRP section examined in
this paper, it can be concluded that the transverse Poisson’s ratio,
m23, is more sensitive to the irregular fibre arrangement (i.e. con-
vergence at as � 65) compared to the transverse Young’s modulus,
E22, (i.e. convergence at as � 45).

Figs. 8–10 illustrate the stress and/or strain distributions result-
ing from the various boundary conditions discussed in the previous
section for the RAE; the results are for the scan where the control
area in relation to the fibre area is the largest (as � 100). In the
(a) (b
Fig. 8. Bulk modulus, K23, model: (a) Stress, r

(a)
Fig. 9. Transverse Young’s modulus, E22, and Poisson’s ratio, m23, mod
model to identify the transverse bulk modulus, K23 (Fig. 8) the
magnitude of the von Mises stress was considerably lower in those
areas with low fibre densities compared to the areas with a higher
fibre density. In the model for the identification of the transverse
Young’s modulus (Fig. 9) the magnitude of the strain, e22, in the fi-
bres was much lower than that in the matrix; however, the von
Mises stress showed a more uniform distribution in the composite
section. The maximum magnitude of the von Mises stress was ob-
served in the locations where the composite contained a higher fi-
bre density.

The stress distribution in the model developed to identify the
transverse shear modulus, G23, is presented in Fig. 10a. In the shear
model, the maximum von Mises stress was observed in the corner
with the highest fibre density, whereas the minimum von Mises
stress was observed on the mid-side with the lowest fibre density.
In the three-dimensional model used in the computational estima-
tion of the longitudinal properties (Fig. 10b), the longitudinal
strain, e11, was identical in both the fibre and matrix, irrespective
of the fibre arrangement and the area of the transverse section.

Table 2 summarizes the values of the elasticity properties, cal-
culated using theoretical relationships and Representative Area
Element (RAE) methods for the largest representative area. Compu-
tational results for the properties of the largest block with both the
irregular fibre arrangement and the regular fibre arrangement
were almost identical. It was also noted that the analytical results
of Hashin and Rosen [16], which are based on rigorous energy var-
iational principles in mechanics, provided the closest correlation
for the elasticity properties in comparison to those derived using
the RAE technique for the relatively large RAE. However, the differ-
ences between the theoretical estimates and the RAE approach de-
creased as the size of the RAE increased in comparison to the area
of the fibre.
) (c)
vonMises, (b) Strain, e22, and (c) Strain, e33.

(b) (c)
el: (a) the deformation, U3, (b) Stress, rvonMises, and (c) Strain, e22.



(a) (b)
Fig. 10. Stress distribution, rvonMises, in the model used for determination of: (a) Transverse shear modulus, G23, (b) Longitudinal Young’s modulus, E11 and Poisson’s ratio, m12.

Table 2
Predicted elasticity properties for the largest RAE.

Elastic constants K23 (GPa) E22 (GPa) m23 G23 (GPa) E11 (GPa) m12

RAE irregular fibre arrangement 8.32 12.11 0.28 4.85 146.26 0.23
RAE regular fibre arrangement 8.36 12.36 0.28 4.73 146.26 0.23
Voigt and Reussa [4] 93.37 (6.77) 149.16 (8.88) 0.25 (0.23) 62.10 (3.30) 149.16 (8.88) 0.25 (0.23)
Hashin and Rosen [16] 8.73 12.72 0.27 5.01 149.17 0.23
Halpin and Tsai [17] 13.95 20.31 0.29 7.87 148.3 0.23
Whitney and Riley [18] 6.27 9.13 0.25 3.65 149.16 0.23
Experiment – – – – 138.26 ± 5.26 0.23 ± 0.01

a Numbers in parentheses indicate lower bounds.
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6. Concluding remarks

The present paper deals with the estimation of the transversely
isotropic elasticity properties of a unidirectionally fibre-reinforced
material. Computational modelling was used to replicate the irreg-
ular fibre arrangement of the cross section of a unidirectionally fi-
bre-reinforced material as determined from SEM data. The results
of the research indicate that a minimum representative area ele-
ment of the cross section is necessary to accurately model the trans-
verse elasticity properties. Guided by the results of the transverse
elasticity properties, the computational simulations were extended
to determine the longitudinal properties of the unidirectionally
fibre-reinforced material with an irregular fibre arrangement. The
computational estimates for the effective elastic parameters of a
composite compare well with established theoretical estimates.
The research also considered computational simulations of both
regularly and irregularly arranged fibres in the transverse cross
section of a unidirectionally reinforced composite. The theoretical
relationships of Hashin and Rosen [16] provide accurate estimates
of the elastic constants for the composite with an irregular fibre
arrangement, provided that the representative area element con-
sidered (i.e. cross sectional area of the fibre groupings to the cross
sectional area of an individual fibre) is approximately greater than
65. This estimate is also applicable for the regular fibre arrange-
ment and is almost always satisfied in unidirectionally fibre-
reinforced composites used in engineering applications.
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