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INTRODUCTION

This paper examines the axisymmetric problem related to the dis-
placement of a penny-shaped rigid inclusion embedded in bonded

contact with a transversely isotropic elastic medium of infinite
extent. The solution of this problem is achieved by employing the
classical integral transform formulation which reduces the problem

to a system of dual integral equatibns. Explicit results are de-

rived for the load-displacement relationship for the penny-shaped
rigid inclusion.

ANALYSIS

The class of problem which examines the behaviour of disc-shaped

inclusions embedded in elastic media has received considerable

attention. The solution to the problem of a thin rigid circular

disc embedded in an infinite isotropic elastic solid and subjected
to a constant displacement normal to its plane was examined by
Collins [1]. Keer [2] has considered a similar problem in which

the bonded disc is displaced in its own plane. Kassir and Sih [3]
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subsequently extended these investigations to problems relating to
elliptical disc inclusions. The class of problem in which separa-
tion or debonding phenomena occur at the elastic medium-circular
inclusion interface is examined in the informative papers by Hunter
and Gamblen [4] and Keer [5]. Also, solutions to problems associated
with circular inclusions embedded in elastic media may be recovered
as limiting cases of results developed for certain ellipsoidal and
spheroidal rigid inclusion problems [6-8]. This paper examines the
axisymmetric problem of the displacement of a penny-shaped rigid
circular inclusion embedded in bonded contact with a transversely
isotropic infinite elastic medium. The plane of the penny-shaped
inclusion is assumed to coincide with the plane of transverse iso-
tropy. In essence, this paper generalizes Collins' [1] result to
include effects of transverse isotropy; In contrast to the complex
potential function formulation adopted in [1], here we make use of
the antisymmetry of the disc inclusion problem to reduce it to a
mixed boundafy value problem associated with a halfspace region.

Using a:Hankel transform development, this mixed boundary value
problem. is furthe: reduced to a pair of dual integral equations,
the solution of which is readily obtainable from the generalized

;. results given by Iitchmaréﬁ [9] and Sneddon [10,11].

: . _The load-displacement relationship for the bonded rigid
disc inclusion is obtained in exact closed form. This result is
_of importance in connection with the analysis of the translational
stiffness of bonded rubber mountings or in the geotechnical study
of foundations embedded in soil and rock media.

FUNDAMENTAL FORMULAE
';Thg methods of analysis of three-dimensional problems in trans-

_versely isotropic elastic materials make extensive use of the po-
tential function techniques proposed by Elliott [12,13] and Lekhnitskii

~{14].7 Complete gccounts of these developments are given by Green
‘and Zerna [15], Kassir and Sih [16] and Eubanks and Sternberg [17].

It can be shown that in the absence of body forces, the axisymmetric
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displacement and stress fields can be expressed in terms of two

harmonic functions ¢,(r,z) and ¢,(r,z) which are solutions of

2 32 .
voo+ ¢.(r,z) =0 ; (i=1,2) (1)
1 32 L
i
where
2
v o= 2 +lsi sz, = 2 (2)
1 ap2 T dr i \A;;—

and v; and v, are roots of the equation

2 -
C11Cyy V° + [lla(zcuu + C13) - C11C33] V + C33C4y = O

(3)

The cylindrical polar coordinate system (r,8,z) is chosen such that
the z-axis is parallel to the material axis of symmetry. The roots
v; may be real or complex depending upon the elastic constants cii,
Ci2, C13, C33 and cy4y. The displacement and stress fields in the

transversely isotropic elastic material can be represented in terms
of the harmonic functions ¢i(r,z). For axial symmetry the displace-

ment and stress components reduce to the forms

9 9

U, = ap {01 + 02} u, = 5;'{k1¢1 + Koty (4)

and
B 32 Ci2 P ] 82 {k « }
= —_— — 2 + - +

Orr c11 o * Br‘ (d1+92) + C133z2 191 2021},
[ 82, Sy 3 2

Ogg = [C12 =+ “%l a7 | (d1+d2) + C13Ji“ {kigy + ko¢o}
i ar? J 9z2
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8%¢, 8%¢,
0, = {kjc33 - vic13} ==+ {kyc33 - vycy3} s
922 922
(5)
3%, %9,
Opz = Cuu [(1 *+ ki) araz (1 + k2) 3rdz
respectively, where k; and k, are given by
c,,V. - C
ki=__.—1“1 RARE i=1,2 (6)
Ci13 ¥ Cyy

THE PENNY-SHAPED INCLUSION PROBLEM

We consider the axisymmetric problem related to a penny-shaped
rigid inclusion embedded in bonded contact with a transversely
isotropic elastic medium of infinite extent. The disc (radius a)

is subjected to a total load P which acts in the z-direction and the
resulting rigid body displacement of the disc is denoted by &
(Figure 1). It is evident that the inclusion problem thus formu-
lated is antisymmetric in normal stress o,, and radial displacement
u., about the plane z = 0. We may therefore restrict the analysis
to a halfspace region of the transversely isotropic elastic in-
finite medium, in which the plane z = o is subjected to the mixed

boundary conditions

ur(r,O) =0 3 r>0 (7a)
uz(r,O) =6 5 0<r<a (7b)
ozz(r,o) =0 ; a<r<e (7¢)
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We shall restrict our attention to the halfspace region z > o.
Following Sneddon [11], we introduce the zero order Hankel transform

of ¢i(r,z) as follows:

Eg (€,2) = H {&; ¢;(r,2)} = f: r ¢;(r,z) J (Er/a) dr .
: (8a)

The appropriate Hankel inversion theorem is

6;(rz) = H)' {r; 35 (£,2)} = ;%-f: £ @2(5,Z)JO(£r/a)d£-
(8b)

Operating on (1) with the zero order Hankel transform we obtain a
second-order ordinary differential equation for 62(5,2); choosing
the solution appropriate for the region z > 0 it can be shown that

¢i(r,z) take the form
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-A.z :
T (er/a)de 5 (= 1,2)

(9)

1 ()
(bi(r,z) = ;’2' fO 3 AI(E") €

where Ai(g) are arbitrary functions and'Ai = E/a\/vi. From (4) and
(9) it is evident that, in order to satisfy the boundary condition

(7a), we require

AL(E) = - Ap(E) (= ACE)) . " (10)

By making use of the above result in the general expression (9) and
with aid of the expressions for uz(r,z) and ozz(r,z) given by (4)
and (5) it can be shown that the boundary conditions (7b) and (7c)

are equivalent to

{kivVz2-k2vV1} -
- S E2A(E)J (&r/a)dE=§ ; for r < a
Viva a3 (o} (¢] —

(11a)

f: g3 A(g)JO(ET/a)dE =o; forr >a
’ (11b)

Introducing the substitutions

6a3V ViVa

T

; E2A(E) = C(8) , (12)
{k1\/62_- k2v/V1}

the equations (11) can be reduced to the following pair of dual

integral equations:

ST I Ep) dE =W 3 0<p<l
(0]

ITECE) I (E0) dE=0 ;5 p 2] . (13)
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The solution of this system of dual integral equations is given by
Sneddon [10,11] and the details of the method of solution will not
be pursued here. It can be shown that the general solution of (13)
is
2w _sin £
C(g) = ———= £2A(E) . (14)
mE
Formal integral expressions for the displacement and stress fields
in the halfspace region z > o can be determined by making use of
equations (4), (5), (9) and (14).

LOAD-DISPLACEMENT RELATIONSHIP FOR THE PENNY-SHAPED INCLUSION

In this note we are primarily interested in establishing the load-
displacement relationship for the disc inclusion embedded in bonded
contact with the transversely isotropic elastic/hedium. Using the
results derived in the previous section, it can be shown that the

normal stress 9, acting on the plane z = o is given by

2c33{k1vo-kov1 18

o (r,o) = - — /¥ sin £ J_(Er/a)dE
zz ma'vive {k1¥V, -kp,"v1} © ° (15)

From Erdelyi et al,[18] the value of Ozz(r,o) given above reduces

to the following:

2C33{k1\)2—k2\)1 1S

— p— —_——_ T
TYV1V2 {k1‘/\)2 - kz/\)]_} /a2~r2 -
9,,(r,0) = (16)

[} ;T > a

By considering the behaviour of the halfspace region z < o a result

similar to (16) can be obtained for the normal contact stress
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distribution at the plane surface of the circular region z = o-.
The normal stress component on the penny-shaped inclusion is given
by

2c33{kavi-k1v218
TYV1V2 {kl/J; - szG?} Vaz-ri

[Ozz]z = Ot =t s a7
where the upper and lower signs refer to the plane faces z = 0" and
z = 0 of the inclusion. The force exerted by the transversely

isotropic medium on the penny-shaped inclusion is given by

P=2'ﬂfgr[(0 ) - ©. ) ]dr ) (18)

zz2° 0+ zz°0-

Evaluating (18) we obtain the load-displacement relationship for the

penny-shaped rigid inclusion as
8c3s 8a {kovi - kvl

P =
Wivze {k1Vs - k21t

(19)

In the limiting case when Vi, V2 > 1, we recover from (19) the
solution to the problem of a penny-shaped inclusion embedded in an

isotropic elastic medium. We note that as vi, v, »+ 1,

kavi - kyv2 2Cyy
= - ) (20a)
kK12 - kaYV) Ci11 * Cuy
where
Cyy; = c33 = (A +2u) ; cyy = U (20b)

and A, u are Lame's constants for the isotropic elastic material.

Making use of these results in (19) we obtain the following result
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for the load-displacement relationship for a rigid penny-shaped
inclusion embedded in bonded contact with an isotropic elastic in-
finite medium:

326 pa (1 - v)

P=- (21
(3 - 4v)

This relationship is in agreement with the results obtained by
Collins [1], Kanwal and Sharma [7] and Selvadurai [8] for the penny-
shaped inclusion problem, by making use of complex potential func-
tion techniques, singularity methods and direct spheroidal harmonic

function techniques, respectively.
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