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The displacement of a rigid circular foundation
anchored to an isotropic elastic half-space

A. P. S. SELVADURAI*

. F

This Paper examines the axisymmetric problem of a
rigid circular foundation, resting on an isotropic
elastic half-space which is subjected, simultancously,
to an external load and an internal anchor load. The
anchor load consists of constant, linear or parabolic
distributions of Mindlin forces of finite length,
located along the axis of symmetry. A Mindlin force
is defined as a concentrated force which acts at an
interior point of the half-space along the axis of
symmetry. The solution for the rigid displacement
experienced by the circular plate is obtained in an
exact closed form. This particular problem is of
interest in connection with the study of rock anchdrs

Cet article examine en axisymétric le cas d*une fonda-
tion circulaire rigide reposant Sur un semi-espace
élastique isotrope, soumise simultanément & un effort
externe et i un effort d'ancrage interne. L'effort
d'dncrage se compose des forces de Mindlin de
Iongueur finie, situées le long de 'axe de symétrie et
dont la répartition est constante, linéaire ou para-
bolique. Une force Mindlin se définit comnme étant
une force concentrée agissant en un point interne du
semi-espace le long de I’axe de symétrie. On traite le
déplacement rigide de la plaque circulaire grice &
I'emploi d'une forme exacte fermée. Ce probléme
spécifique présente un intérét pour 1’étude des ancrages

and in the examination of in situ tests such as the

en terrain rocheux et I’analyse d’essais in situ tels que
cable method of in situ testing.

Pessai utilisant ]a méthode par cable.

The a:usymmetnc problem of a ngld circular foundation resting in smooth contact with an
1sotrop1c elastic half-space was first considered by Boussinesq (1885). The samé problem was
subsequently investigated by Harding and Sneddon (1945) who employed a Hankel transform
technique for the solution of the elasticity problem. The results developed for this particular
interaction problem have found extensive application in the geotechnical study of settlement
of foundations and in the evaluation of in situ tests such as-plate load tests (Terzaghi, 1943;
Stagg and Zienkiewicz, 1968; Jaeger, 1972; Poulos and Davis, 1974; Selvadurai, 1979).

In the classical treatment of the interaction problem related to the rigid circular foundation
it is assumed that the elastic half-space is subjected to axisymmetric loads that are applied at
the surface of the plate. This Paper is concerned with the analysis of the settlement of a rigid
circular foundation resting in smooth contact with an isotropic elastic half-space and subjected
simultanqoilsljr to axisymmetric external and internal loads. The particular axisymmetric
internal loads correspond to constant, linear or parabolic distributions of Mindlin (1936)
forces, which are of finite length, located at a finite depth below the free surface of the half-space
(Fig. 1). The above problem is of some interest with regard to the examination of tests such.
as the ‘cable method of in situ testing’, utilized in the determination of in situ properties of
soil and rock media, or in the assessment of the mechanical behaviour of an anchor bolt
(Stagg and Zienkiewicz, 1968; Jaeger, 1972). Here, the distributions of Mindlin-type forces
represent, approximately, the influence of the anchor region. The effect of the anchor rod
placement and other frictional effects are neglected in the ensuing analysis.

The solution to the problem in the title of this Paper can be approached by making use of
the complex potential function formulation developed by Green (1949). Using such a tech-
nique, a normal contact stress distribution beneath the rigid foundation is sought, such that
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the normal surface displacement field resuiting from these contact stresses when combined
with the normal surface displacement due to the internal anchor load gives a constant displace-
ment within the foundation region r<a, where ¢ is the radius of the rigid foundation. The
solution for the plate displacement due to a concentrated Mindlin force is first developed; this
result is integrated to generate the results for the distributed internal loading. (Since only
internal load distributions are considered it implies that the anchor region is flexible.) In the
formulation of this interaction problem it is assumed that the contact between the rigid
foundation and the half-space is smooth. Accordingly, for the solutions developed to be
physically admissible, the location of the anchor region should be such that no tensile stresses
are generated at the interface. It is found that as the anchor region migrates to the boundary
of the half-space, tensile stresses do tend to develop at the interface,

The analytical formulation of the axisymmetric interaction between a circular foundation
and an internal load considered here yvields exact closed-form solutions for the settlement of
the rigid foundation. Numerical results presented illustrate the manner in which this settle-
ment is influenced by the depth of location and the length arid the load distribution in the anchor
region. . '

GOVERNING EQUATIONS

A comprehensive account of the complex potential function approach together with its
application to crack and indentation problems in classieal elasticity is given by Green and
Zerna (1968). Briefly, the class of problems in which the shearing stresses vanish at all points
in a plane, z =0, can be reduced to classical problems in potential theory. The displacement
and stress components for this class of problem can be uniquely represented in terms of a
single potential function ®(r, 8, z), where (7, 8, z) represents the cylindrical polar cocrdinate
system. The particular displacement and stress components of interest to the interaction
problem are u,, o, and o, For axisymmetric problems, these can be represented in the
forms

P¢ L
2Gu(r,z) =1z —(,3—2—5—2(1—1’) 5
(1)
. _za-“*qs_aZ_@. _ PP
=m0 T T pred?

‘where G and v are the linear elastic shear modulus and Poisson’s ratio, respectively.

When the contact between the rigid foundation and the elastic half-space (z > 0) is frictionless
it is sufficient that all the stresses and displacements derived from €(r, z) should decay as
z— 00 and that no shear stresses should act on the bounding plane z = 0. The third boundary
condition is of a mixed type where

(1-vos
u(r,0) = — i (*) onr<a
0 @
O'zz(",o)=—a—zz'=0 “onr>a
Following Green and Zerna (1968) we consider the representation
_(1 -v)d¢ 1 g(dt 3)

G 3z 2] [rP+(+iy]}
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Fig. 1. Therigid p]até—anchor system. Anchor load distribution p(). (i) ,.p(C) = PfAa, (ii) p({) = 2P{A\2a
[+ —], (D p(&) = 3P/Aa{(A+n)— L}, where P = total load

which satisfies V*®(r, z) = 0 and the regularity conditions at infinity. (In equation (3)i% = —~1.)
Then from (3) we have
(A-=vod [T glHd: )
—Tg— Uz—rz_—tzj-; onz=0;0<r<a
4
e =0 onz=0;r>
8z% 2=5 a
and the mixed boundary conditions in equation (2) reduce to the single integral equation

rog() dt
u*(r) = J; (?'gz_—f—zF e e e e e e (5)

in terms of thie unknown function g(f). The Abel integral, equation (5), can be inverted to
complete the solution. Assuming that u*(r) is continuously differentiable in the region
0<r<a, the solution of (5) is given by

g(f)=;a—!; Om e e e e e, (6)

The contact stress distribution at the interface of the circular foundation can be expressed
in terms of g(¢) in the form

2 d.J“ ru*(r) dr

G 18 '[ tg(t) dt

o‘zz=(1_v)-'—“a-—r rm . . . . . . . (7)

Using (7) it can be shown that the total force exerted by the rigid circular foundation is given

27:@ @
P=mj.og(t)dt e ]

In summary, once u*(r} is specified the load-displacement relationship for the circular founda-
tion can be obtained by making use of the results in (6) to 8).

THE ANCHORED FOUNDATION PROBLEM
We first consider the problem of the indentation of the half-space by an external load P
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and an internal concentrated Mindlin force Py, acting at a distance ¢ from the boundary of the
half-space. It is assumed that under the combined action of P and P, the rigid foundation
experiences a displacement w, and that no separation occurs at the interface region r<a.
The prescribed displacement function corresponding to #*(r) is given by

. Py(1—v) 1 c? _
wi(r)=wo+ 272G [(rz+cz)*+2(1—v)(r2+c2)*] R

Py f3 2y) .2t2 '
gy == { 4:!1:G[(t2+c1) (t2+cz)2:|} e (9 )

The rigid displacement of the circular foundation due to the combined action of P and P, can
be obtained by evaluating the expression (8) for the total load; we have

_PU—v)(, Po[2. _(a ac |
Vo= 426 {1 P[t (‘)+n(1—v)(a2+c2)]} - D

It may be noted that as c—oo the result (11) reduces to that of the classical Boussinesq
problem. Similarly as ¢—0 and P = P,, the rigid foundation is subjected to a doublet of
forces; as such wy = 0. The stress distribution beneath the foundation is similarly given by

P

o..(r, 0)=m[1+%ﬂ(r, c)] e (12

Using (9) in (6) we obtain

where

2 _fa ac ac
G o) = —[; tan”! (E) + (1 —v)(a? 4 cz)]+ a(l—v)(r? +c*)?

a2+ —r?)
(a®+c?)

)tan 1\/(?;—:_:;)} C (13)

The solution for the displacement of the rigid circular foundation under the action of
distributed line loads acting along the axis of symmetry can be generated from the integration
of the result in equation (11) within appropriate limits. Three particular forms of internal
load distributions are examined (Fig. 1)

(2) the anchoring load P, (= P) is distributed along a finite length with a constant load
intensity
(b) the anchor load varies linearly along a finite length
(c) the anchor load varies parabolically along a finite length.
The procedure could no doubt be extended to include other variations in the distribution of
the anchor load.

X {(1 —20(rt+c?)+c*+

+[(1=2v)(r2 +c2)+3¢%] \/ (

Constant load intensity
The displacement of the rigid foundation due to the combined action of the external load P
and the anchor load uniformly distributed over the length Aa is given by

F1 2 :
[w()]consmnl. %{1 [Il.('l’ ’7)'{' ( ! IZ(A ﬂ)]} L (140)
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where 5a is the depth of location of the anchor load (Fié. )] and
1 1 ;) 2
LA, ) =@+n) tan™! (——_)_,, tan—! (-)+lln [1+( +m ],
. At " —_—

2 I4+4?
1+(/1+r])2]

_ 1
LG, = 5 In [ Ton? (14b)

Linearly varying anchor load .
When the anchor load is linearly distributed over its length the displacement of the rigid
circular foundation is given by

1—
[wo:llinenr = Pg’a_Gv_), (1 - % {(J- + n)Il(l, ﬂ) _IS(A-; ﬂ)
1
oy [A+mIA, n)— L, n)]}) ... . (150)

where
I,(4 q)=l A+[1+(A+#)*]tan™! 1 ~(1+#* tan~? !
IS 2 0 . l"i“ﬂ 1 y
I{4,n) = A—tan™ (A +n)+tan™1(y) Y (1))
Parabolically varying anchor load

When the total anchor load exhibits a parabolic distribution over its length, the displacement
of the rigid circular foundation is given by

P(1- 6 |

[(Wolparabetic = —Eia—GV)' (1 BSE {(}I.+q)211()., =24+, m)+15(4, n)
) .

T [A+0)*To(A, ) —2Q+mILQ, 1)+ 16l n)]}) N ¢

where ' _
A 3 1 3 1 A 1 1+ z
15, 1) = ( ;") tan~* (m)—%- tan~1 (-';)+§ (+2p)—21n [—i'l(:;i)} .. (16b)
and
A 1, [1+G+n)?
I, n) = 3 (A+2n)—§ In [—I(Tn:-’l-]

THE CONTACT STRESS DISTRIBUTION

The contact stress distribution developed at the circular foundation—elastic half-space
interface due to the action of a combination of Mindlin forces can also be developed by inte-
grating the stress distribution due to the single concentrated force (equation (12)) within the .
appropriate limits. In general,

[0, 0] = o 1 L [ ap(t)ﬁ(r 0 dg | (1.7)
zz\Fy 2na P y . N .

[az - r2]-} na
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Fig. 2. The displacement of the rigid plate. Anchor load distribution constant we = [P(1 —v)[4aG]ﬁo
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Fig. 3. The displacement of the rigid plate. Anchor load distribution linear

where various expressions for p({) are given in Fig. 1. The integrals appearing in (17) do not
appear to reduce to any exact closed forms such as (14) to (16). The integral can, however, be
evaluated by adopting a numerical scheme based on Gaussian quadrature. Such an evaluation
is necessary to establish the critical values of na for which tensile contact stresses would
develop at the rigid foundation-elastic half-space interface r<a. Alternatively, the critical
values of na can be established by assuming that the entire anchor load P acts as a concentrated
Joad located at a depth na. Using such a technique it is found that tensile stresses develop, at
the interface at =06, for v =05, and n=04 for v=0. A numerical evaluation of the .
integral (17) for the three cases of internal anchor load distributions considered earlier gives
the following bounds for . No tensile stresses are developed at the interface for n0-52
when v = 0-5 and for #>>0:23 when v = 0. (These results are valid for 1=0-5.)
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Fig. 4. The displacement of the rigid plate. Anchor load distribution parabolic
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CONCLUSIONS

The axisymmetric interaction between a rigid circular foundation and a distribution of
internal Mindlin forces is examined within the context of the classical theory of isotropic
elasticity, This Paper presents closed-form analytical results for the rigid displacement
experienced by the circular foundation under the combined action of an external load P and
an internal load (=P) distributed uniformly, linearly or parabolically over a finite length.
The numerical results presented in Figs 2 to 4 indicate that the length of the anchor region,
its depth of location and the distribution of load within the anchor region have a significant
influence on the resultant displacement experienced by the rigid circular foundation. The
effects appear to be more pronounced when fa<84. When the depth of location of the anchor
region na exceeds 50a, neither the anchor load nor its distribution has any appreciable effect
on the rigid settlement. This value of 5z would then set a realistic limit for the depth of location
of an anchor region used for the purpose of providing the jacking load for a plate load test or
for the cable method of in situ testing. Also, the numerical results presented here deal with
the case where all the load on the footing is provided by the anchor. The theoretical develop-
ments, however, are also applicable to cases where an additional (positive or negative) external
load is applied to the foundation. These results can be achieved by adding suitable proportions
of a separate Boussinesq’s solution. The techniques outlined in this Paper could be further
extended to include frictional effects or complete bonding at the foundation interface or to
examine the analogous problem related to a transversely isotropic elastic half-space.
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