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Simulation of Mastic Erosion from Open-Graded Asphalt Mixes Using a
Hybrid Lagrangian-Eulerian Finite Element Approach
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Abstract: This paper presents a numerical ap-
proach for the modeling of water flow induced
mastic erosion from a permeable asphalt mix and
is part of an ongoing effort to model moisture-
induced damage in asphalt mixes. Due to the
complex composite structure of asphalt mixtures,
moisture can infiltrate in various ways into the
components and have an adverse effect on its me-
chanical performance. Depending on the grada-
tion of the asphalt aggregates and the mixing pro-
cedure, asphalt structures with a variable perme-
ability may result. Open-graded asphalt mixes are
designed with a high interconnected air void con-
tent to serve as a drainage layer on the pavement
and are therefore frequently exposed to fast water
flow fields. This paper demonstrates a numerical
procedure to simulate the effects of an advection-
dominated transport process on the mastic con-
centration within an open-graded asphalt mix.
A Hybrid Lagrangian-Eulerian finite element ap-
proach is implemented with a single step reverse
particle tracking scheme to solve the Lagrangian
concentration tensor. The procedure is validated
with two analytical studies and a numerical simu-
lation is shown for the advective transport of mas-
tic from an asphaltic system.

Keyword: Moisture-induced damage, Hybrid
Lagrangian-Eulerian finite elements approach,
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1 Problem identification

In countries that experience excessive rainfall
each year, the asphalt wearing surfaces on roads
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are often constructed of open-graded asphaltic
mixes. The high permeability of these wearing
surfaces ensures a rapid drainage of the water
away from the surface, thereby increasing road
safety, Figure 1. This water infiltration, however,
has a negative effect on the material characteris-
tics of the individual components of the asphaltic
mix, damages the bonds between the components
and leads to premature separation of the aggre-
gates from the wearing surfaces, named raveling
or stripping, Figure 2. To prevent this damage
from occurring, insight into the different phenom-
ena that cause raveling is needed to design more
sustainable asphalt mixes and develop improved
road maintenance strategies.

Figure 1: Drainage with an open graded asphalt
wearing surface versus a densely graded asphalt
surface [Jong 1999]

For this reason an extensive, experimental and an-
alytical investigation on water damage in open-
graded asphaltic mixes is being undertaken at
Delft University of Technology in The Nether-
lands. The main focus of this project is the de-
velopment of a Finite Element tool (acronym-
RoAM; Raveling of Asphalt Mixes) as a sub-
system of the finite element system developed at
TU Delft, CAPA-3D [Scarpas 2000]. RoAM en-
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Figure 2: Raveling of the asphaltic wearing sur-
face

ables the simulation of damage due to water flow
through asphaltic mixes. The raveling failure of
asphaltic wearing surfaces is a complex process
that involves the washing away of mastic parti-
cles from the mix, the diffusion of water through
the mastic films towards the mastic-aggregate in-
terfaces, the deterioration of both the material
and the chemical characteristics of the individual
components of the mix, as well a deterioration of
their (physio-chemical) bonds. Furthermore, the
interaction between the mechanical loads and the
water pressures in the voids of the mix needs to
be addressed properly.

Realizing that an asphaltic mix is frequently ex-
posed to a water flow through the mix, it is im-
portant to identify the moisture damage inducing
mechanisms that may occur in the mix. In a pre-
vious study [Kringos and Scarpas, 2005 (a), (b)]
a scouring action of the mastic due to high water
pressure fields was identified as one of the dom-
inant mechanisms which contribute to the over-
all moisture induced damage. This paper focuses
on the simulation of the erosion of the mastic and
gives a detailed explanation about the numerical
model that has been implemented in RoAM to
simulate this loss of mastic concentration due to
a water flow though the asphalt mix.

2 Mastic transport equation

Considering an asphaltic mix that has been ex-
posed to a water flow field, the asphalt mastic (i.e.
the mix of bitumen and fine aggregate fillers) par-
ticles may be present in an adsorbed or desorbed
state. Adsorbed mastic particles are still part of
the mix and contribute to the overall mix char-
acteristics. Desorbed mastic particles have been
separated from the mix and are, via the water, be-
ing transported out of the mix. They are therefore
no longer contributing to the mechanical or phys-
ical material characteristics of the asphalt.

In the following, the mastic that is desorbed from
the mix, and is no longer contributing to the
mechanical strength of the mastic, is defined as
the dissolved mastic concentration Cd and is ex-
pressed as mass of desorbed mastic Md over a unit
volume:

Cd =
Md

Vw
(1)

The mastic which is still part of the asphalt is
shown as the adsorbed mastic content Ca:

Ca =
ρm

ρm
0

(2)

where ρm
0 is the reference (undamaged) density

of the mastic and ρm is the current density of the
mastic.

Consider the spatial scalar field C = C(x, t) that
describes the concentration of the mastic in space
and time. Assuming C to be continuously differ-
entiable, the current amount of mastic mass m(t)
in a three-dimensional region Ω with volume v
given time t may be characterized by the scalar-
valued function

m(t) =
∫
Ω

C(x, t)dv (3)

In general, a mastic concentration at a given loca-
tion in the asphalt mix consists of both desorbed
and adsorbed mastic phases; i.e.

C(x, t) = φSCd +ρm
0 Ca (4)

where φ is the porosity and S is the degree of sat-
uration at time t on location x.
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The change of mastic mass in the volume Ω might
take place as a result of an advective and a dif-
fusive/dispersive flux across the boundary surface
∂Ω.

The advective flux Fa is defined as

Fa =
∫

∂Ω

Cdv ·nds (5)

where v is Darcy’s flow velocity.

The diffusive flux Fd is defined as

Fd = −
∫

∂Ω

Dm∇Cd ·nds (6)

where Dm is the mastic diffusion/dispersion ten-
sor and n denotes the outward unit normal acting
along the boundary surface ∂Ω.

Based on the mastic concentration field and the
above described fluxes, the mastic mass balance
can be written as

D
Dt

∫
Ω

(φSCd +ρm
0 Ca)dv =

−
∫
Ω

div(Cdv−Dm∇Cd)dv (7)

The term on the left hand side of Eq. (7) is the
total time derivative of the spatial distribution of
the mastic mass. By assuming incompressibility,
the total time derivative is equal to the partial time
derivative

D
Dt

∫
Ω

(φSCd +ρm
0 Ca)dv =

∫
Ω

∂
∂ t

(φSCd +ρm
0 Ca)dv (8)

Applying the divergence theorem to Eq. (8) and
after substituting in Eq. (7) gives

∫
Ω

∂
∂ t

(φSCd +ρm
0 Ca)dv +

∫
Ω

div(Cdv)dv

−
∫
Ω

div(Dm∇Cd)dv = 0 (9)

From the Dubois-Reymond Lemma (Selvadurai,
2000), Eq. (9) is equivalent to

∂
∂ t

(φSCd +ρm
0 Ca)+div(Cdv)−div(Dm∇Cd)= 0

(10)

Replacing the moisture content φS by θ for sim-
plicity, the governing equation becomes

∂ (θCd +ρm
0 Ca)

∂ t
+div(Cdv)−div(Dm ·∇Cd) = 0

(11)

The change of the mass accumulation term of Eq.
(11) can be expanded into

∂ (θCd +ρm
0 Ca)

∂ t
=

∂ (θCd)
∂ t

+
∂ (ρm

0 Ca)
∂ t

= θ ∂Cd

∂ t
+Cd

∂θ
∂ t

+ρm
0

∂Ca

∂ t
(12)

The advective flux term of Eq. (11) can be written
as

div(Cdv) = Cddivv+v∇Cd (13)

The divergence of the velocity field on the r.h.s.
of Eq. (13) is known from the balance of water
mass

divv = −θ̃
∂h
∂ t

(14)

whereby again incompressibility is assumed, h is
the pressure head and θ̃ is the water capacity,
equal to

θ̃ = φ
dS
dh

(15)

Substituting Eq. (14) into the advective flux term
Eq. (13) yields

div(Cdv) = −Cdθ̃
∂h
∂ t

+v∇Cd (16)

Substituting Eq. (16) and Eq. (12) into Eq. (11)
yields the governing equation of the mastic:

θ
∂Cd

∂ t
+ρm

0
∂Ca

∂ t
+v∇Cd −div(Dm ·∇Cd)

=
(

θ̃
∂h
∂ t

− ∂θ
∂ t

)
Cd (17)
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The relationship between the adsorbed mastic
content Ca and the desorbed concentration of mas-
tic Cd can be described via an isotherm. The type
of isotherm that is used in an analysis to define
this relationship (e.g. linear, Langmuir or Fre-
undlich type) can be based on experimental data
and shows the desorption characteristics of the
mastic in the presence of a water field.

For simplicity, in this paper a linear relationship
will be assumed

Ca = KdCd (18)

where Kd is the desorption coefficient.

For this linear relationship Eq. (17) becomes

(θ +ρm
0 Kd)

∂Cd

∂ t
+v∇Cd =

div(Dm ·∇Cd)+
(

θ̃
∂h
∂ t

− ∂θ
∂ t

)
Cd (19)

This equation describes the transport of mastic
from an Eulerian (or fixed) framework.

3 Numerical formulations

3.1 Numerical instability

The mastic transport equation, as presented in Eq.
(17) combines advective (i.e. flow-field or pres-
sure gradient driven) and diffusive (i.e. concentra-
tion gradient driven) transport of the mastic par-
ticles. This combination of advective and diffu-
sive terms is known to cause numerical difficul-
ties, which generally are not encountered in the
governing equation of the flow field, Eq. (14).
The nature of diffusion-advection equations can
be conveniently characterized by the dimension-
less Péclet number

Pe = |v|h/αm (20)

where v is the velocity vector, h is a characteris-
tic length and αm is the molecular diffusion co-
efficient. For example, in the case when an in-
ert species is spreading due to molecular diffusion
and advection in a one-dimensional velocity field,
the governing equation can be written as

∂C
∂ t

=
∂ 2C
∂x2 −Pe

∂C
∂x

(21)

where C is the concentration of species.

Clearly, when Pe is small, diffusion dominates
and the equation has a parabolic character. How-
ever, when Pe is large, advection dominates and
the equation has a hyperbolic character. In
non-uniform flow fields, like the ones occurring
through an asphalt mix, where the velocity is not
constant, Pe may vary from location to location
both in space and time. As a result of this vari-
ation, the diffusion-advection equation may vary
in character within a given field and time, being
predominantly parabolic in some regions and pre-
dominantly hyperbolic in others. Physically, this
means that the path of transport of a particle can
vary from location to location as well as in time.
This poses a challenge on the capabilities of a nu-
merical tool to capture the concentrations accu-
rately. Since this problem is known for quite some
time, several methods have been developed over
the years to treat this problem. The most conven-
tional numerical methods for solving this problem
can be classified into three major categories: Eu-
lerian, Lagrangian or mixed Lagrangian-Eulerian
[Selvadurai and Dong 2006(a), 2006(b)].

In the Eulerian approach, the equation is dis-
cretized by a finite difference or finite element
grid fixed in space, where the Eulerian form of
the transport equation is solved at the nodes of
the grid. Since the advective and diffusive terms
in this method still need to be solved simulta-
neously, the numerical instabilities as described
above need to be avoided. The Eulerian approach
often uses weighting functions that are one or two
orders higher than the base functions as a form of
stabilization, where the weighting factors are de-
pendent on the direction of the flow. A popular
method within this category is the streamline up-
winding by the Petrov-Galerkin method (SUPG)
[Hughes 1987; Belytschko 2000].

In the Lagrangian approach, either a deforming
grid or a fixed grid in deforming coordinates is
used, where the physical quantities are computed
at a set of point moving with the fluid. The numer-
ical instabilities are in this case avoided because
the advective term is no longer treated explicitly
by solving the Lagrangian form of the transport
equation in grids moving with the particles. Even
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though the Lagrangian approach is more power-
ful than the Eulerian, it is less popular because of
the complexities arising from the highly distorting
grid, including mesh tangling.

In a mixed Lagrangian-Eulerian approach [Neu-
man, 1981], [Neuman, 1984], [Hughes, 1987],
[Belytschko, 2000], a combination of the two
above methods is used, whereby the benefits
of both are combined without their disadvan-
tages. The method employs, just like the Eule-
rian method, a fixed grid. However, the advec-
tive term is computed via a Lagrangian approach
using a particle tracking method. This way the
advective term vanishes from the governing equa-
tion, which then can be solved with either a finite
difference or a finite element or other variant nu-
merical method.

3.2 Stabilized hybrid Lagrangian-Eulerian
formulation

In the research described in this paper, a Hy-
brid Lagrangian-Eulerian approach has been im-
plemented, where the Lagrangian concentrations
are computed via a single-step reverse tracking
method [Galeati, 1992] and the diffusive part is
computed via a Eulerian finite element method.

Lagrangian-Eulerian methods generally solve the
advective part of the problem by a ‘method of
characteristics’ and the diffusive part by Eule-
rian grid methods, such as finite elements. The
traditional method of characteristics is explicit
and tracks particles forward in a manner which
is computing intensive. Therefore, in this pa-
per a modified method is used which is implicit
and known to be unconditionally stable. In this
method the path lines of the particles are traced
backwards according to a single step reverse al-
gorithm [Neuman 1981], [Douglas and Russel
1982], [Baptista et al. 1984], [Casulli 1987].

Following Neuman [1981, 1984], the total time
derivative of Cd is computed by

DCd(x, t)
Dt

=
∂Cd(x, t)

∂ t
+

∂Cd(x, t)
∂xi

∂xi

∂ t

=
∂Cd(x, t)

∂ t
+∇Cdv∗

(22)

where v∗ is the velocity of a particle that moved

in the flow field, also known as the ‘seepage ve-
locity’ and is equal to

v∗ =
v(

θ +ρm
0 Kd

) (23)

Eq. (22) describes changes with time along parti-
cle lines. For convenience, the arguments (x, t) of
the tensor quantities are suppressed in the follow-
ing.

The partial derivative ∂Cd
∂t can therefore, accord-

ing to the above, also be written as

∂Cd

∂ t
=

DCd

Dt
−∇Cd v∗ (24)

By substituting Eq. (24) into the l.h.s. of Eq. (19),
the l.h.s. of the governing equation with the linear
isotherm becomes

(θ +ρm
0 Kd)

∂Cd

∂ t
+v∇Cd

= (θ +ρm
0 Kd)

(
DCd

Dt
−∇Cdv∗

)
+v∇Cd

=
DCd

Dt
(θ +ρm

0 Kd)+∇Cd (v−v∗ (θ +ρm
0 Kd))

(25)

Substituting the seepage velocity, Eq. (23), into
Eq. (25), the advective term vanishes

(θ +ρm
0 Kd)

∂Cd

∂ t
+v∇Cd =

DCd

Dt
(θ +ρm

0 Kd)

(26)

Back substituting Eq. (26) into Eq. (19) gives the
governing equation in a Lagrangian formulation

DCd

Dt
(θ +ρm

0 Kd)

= div(Dm ·∇Cd)+
(

θ̃
∂h
∂ t

− ∂θ
∂ t

)
Cd (27)

This no longer includes the hyperbolic advective
term. The mastic transport equation could now
be solved using a full implementation of the La-
grangian approach, i.e. using a moving coordi-
nate system. Because of the challenges that may
occur due to a highly deforming grid, in this re-
search a mixed Lagrangian-Eulerian approach is
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implemented, whereby the advective term of the
total material time derivative DCd

Dt is separately
evaluated in a Lagrangian manner by a single-
step reverse particle tracking methodology. In
the following the principle of the particle tracking
methodology is explained..

3.3 Particle tracking methodologies

In the original particle tracking method, suggested
by Gardner [Gardner et al., 1964], advection is
handled by the method of characteristics applied
to a set of moving particles. The diffusion part
of the problem is solved by an explicit finite dif-
ference scheme on a fixed grid. Although this
method is virtually free of numerical dispersion,
it becomes unstable when the time step size ex-
ceeds a certain limit. In order to avoid the need
for an independent set of moving particles, Hin-
strup et al. [1977] suggested redefining the par-
ticles at discrete time intervals so as to make
them coincide with the nodes of a fixed differ-
ence grid. The position of each particle at in-
termediate times is obtained by polynomial in-
terpolation between concentration values at sur-
rounding grid points. In the method suggested
by Neuman [1981], the advection term is decou-
pled in an unambiguous manner. Since the advec-
tion and the diffusion problems require different
treatments, they are solved on separate space-time
grids. The nodes of these grids may coincide at
selected points. The spatial grids are fixed, but
there is nothing in the method to prevent them
from being deformed. The method consists of
solving the advection problem on one grid by the
method of characteristics and projecting the re-
sults back. Because of its numerical advantages
and its ability to handle a deforming grid, this
method has been applied to the research described
in this paper.

3.4 Single-step reverse particle tracking
methodology

By formulating the total material time derivative
of the desorbed concentration and replacing the
partial time derivative of the governing equation,
Eq. (27) no longer include the advective term.

The material time derivative DCd
Dt can be approxi-

mated by

DCd(x, t)
Dt

=
Cd (xt+Δt , t +Δt)−C∗

d (x∗t , t)
Δt

(28)

To find the concentration C∗
d at time t, consider a

fictitious particle that moves from a location x∗i at
time t to a new location xi at time t +Δt, the latter
coinciding with node n, Figure 3.

n

*
*

i t tx

i tx

*
*

i t tx

i tx

Figure 3: Movement of a fictitious particle

Since the movement of the particle is along the
characteristic line with the seepage velocity v∗,
Eq. (23) , the initial particle location x∗i (t) can
be found from

x∗i (t) = xi (t +Δτ)−
t+Δτ(x∗i )∫

t

v∗dt (29)

where the time integral is taken along the particle
flow path. If x∗i (t) is located outside of the ele-
ment under consideration Δτ (xt) shall be reduced
such that x∗i (t) will be located within the element
boundaries.

Once the backward particle position x∗i (t) is
known, the corresponding concentration C∗

d (x∗i , t)
can be obtained by interpolating between nodal
values according to

C∗
d (x∗i , t) =

n

∑
j=1

Cj(t)Nj (x∗i (t)) (30)

The diffusion equation div(Dm ·∇Cd) is then
solved using a fixed (Eulerian) coordinate system.
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For a steady-state simulation, where Δt → ∞, the
logic is implemented by multiplying the transient
storage term by zero and evaluating the advection
term in a fixed coordinate system.

3.5 Weighted residual formulation

The weak form of the governing equation with the
linear isotherm, can be found by multiplying Eq.
(27) with a weighting function wi and integration
over the domain

∫
V

wi

[
DCd

Dt
(θ +ρm

0 Kd)−div(Dm ·∇Cd)
(

θ̃
∂h
∂ t

− ∂θ
∂ t

)
Cd

]
dV = 0 (31)

Integrating by parts and making use of the diver-
gence theorem, Eq. (31) yields

∫
V

wi
DCd

Dt
(θ +ρm

0 Kd)dV −
∫
S

nwiDm ·∇CddS

+
∫
V

(Dm ·∇Cd∇wi)dV

−
∫
V

wi

(
θ̃ ∂h

∂ t
− ∂θ

∂ t

)
CddV = 0 (32)

The variable desorbed concentration term can be
approximated by a summation of the nodal values
j multiplied by a shape function Nj

Cd =
n

∑
j=1

NjCd
j (33)

Since the weighting functions wi can be taken
equal to the shape functions Ni, in the Galerkin
method

wi = Ni (34)

Replacing Eq. (33) and Eq. (34) into Eq. (32)
and summing over the volumes of the individual
elements, the finite element approximation of the

governing equation becomes

n

∑
j=1

⎛
⎝∫

V

Ni (θ +ρm
0 Kd)NjdV

⎞
⎠ DCd

j

Dt

+
n

∑
j=1

⎛
⎝∫

V

(∇NiDm ·∇Nj)dV

⎞
⎠Cd

j

−
n

∑
j=1

⎛
⎝∫

V

Ni

(
θ̃

∂h
∂ t

− ∂θ
∂ t

)
NjdV

⎞
⎠Cd

j

=
∫
S

nNiDm ·∇CddS (35)

This equation is solved using a pointwise iterative
solver which employs the basic successive itera-
tive method, including the Gauss-Seidel method
[Bathe, 1996], [Press et al. 1986].

4 Numerical analyses

4.1 Numerical oscillation and numerical dis-
persion

The accurate computational modeling of an
advection-diffusion transport equation, especially
in the presence of an advection-dominated term,
with either a discontinuity or steep gradient of
the dependent variable, has been addressed to
varying degrees of success in the field of com-
putational fluid dynamics [Ahrem et.al. 2007];
[Arefmanesh et.al 2008]; [Han et.al 2007] [LeV-
eque 1992], [Morton 1980]; [Quarteroni and Valli
1976], [Ganzha and Vorozhtsov 1998], [Wang and
Hutter 2001]; [Atluri 1998, 2006]; [Selvadurai
and Dong 2006 (a),(b)]; [XueHong et.al 2007].
Higher-order methods require the size of the do-
main discretization element to be small enough,
such that the elemental Péclet number, Eq.(20),
should not be greater than unity.

When the elemental Péclet number is greater than
unity the methods give rise to unrealistic numeri-
cal phenomena such as oscillations, negative con-
centrations and artificial diffusion at regions close
to a leading edge with a discontinuous front. For
this reason, in conventional higher-order meth-
ods for advection dominated problems, a finer
mesh is invariably used throughout the region,
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since the velocity field is usually not known a
priori. This places a great demand on compu-
tational resources, particularly in simulations in-
volving three-dimensional problems. The first or-
der methods such as the Lax-Friedrich scheme, on
the other hand, eliminate the oscillatory behavior
at discontinuous fronts, where there is no physical
diffusion (i.e. Pe = ∞ ), but gives rise to numerical
dispersion in the solution. This feature is gener-
ally accepted for purpose of the engineering usage
of the procedures, but from a computational point
of view gives rise to strong reservations concern-
ing the validity of the procedures developed for
the advection-diffusion transport equation for the
solution of the purely advective transport prob-
lem. Furthermore, if physical diffusive phenom-
ena are present in the transport problem, it be-
comes unclear as to whether the diffusive patterns
observed in the solution are due to the physical
process or an artifact of the numerical scheme.

Evaluating the accuracy of the purely advective
transport problem is therefore a necessary pre-
requisite to gaining confidence in the applica-
tion of the computational scheme to the study
of the advection-diffusion problem. The real
test for a computational scheme developed for
modeling the advection dominated transport prob-
lem is to establish how accurately the computa-
tional scheme can converge to the purely advec-
tive transport problem at zero physical diffusion.

4.2 Validation of purely advective transport

The validation of the presented numerical ap-
proach is made by comparing the computational
results with two one-dimensional exact closed
form solutions involving the advective transport
problem.

Validation 1

For the first validation, a finite element mesh of
length Lx= 10 mm with negligible y and z dimen-
sions is exposed to a water flow field of constant
velocities vx = v0 and vy = vz = 0.0mm/s, Figure
2. The region is assumed fully saturated and the
diffusion tensor Dm is zero. At time t = 0.0s the
region is subjected to a discontinuous desorbed
mastic concentration front at the boundary in the
form of a Heaviside step function H(t).

These conditions reduce the mastic transport
equation Eq. (19) to a one dimensional purely ad-
vective transport equation of the form

∂Cd

∂ t
+v0∇Cd = 0 (36)

With the boundary conditions

C (0, t) = C0H(t)
C (x,0) = 0.0

(37)

The exact analytical development of the desorbed
mastic concentration field can in this case be
found as [Selvadurai, 2008]

Cd(x, t) = C0H

[
t − x

v0

]
(38)

In Figure 3 the numerical solutions for v0 =
1.0mm/s and C0 = 1.0 at x = 10.0mm are com-
pared to the exact analytical solution for vari-
ous mesh refinements, whereby using a constant
Courant number, Cr, equal to 1.0

Cr =
|vx|dt

hx
(39)

where dt is the time step and hx is the element
size.

It can be seen from Figure 3 that with increased
mesh refinement, the numerical diffusion is re-
duced and the concentration front is simulated
quite accurately without oscillatory effects. It
may be observed that none of the discretizations
exhibit any numerical oscillation.

Varying Cr, i.e. the time-step, shows that for a
constant discretization of 50 elements, i.e. hx =
0.2mm, higher values of Cr actually lead to a
better approximation, Figure 4. This means that
the solution seems to improve for an increasing
time-step. The reason for this can be found in the
fact that for a larger time-step, less time-steps are
needed, which reduces the accumulating numer-
ical error. For Cr values smaller than 1, i.e. s
time step of dt ≤ 0.2s the solution converges to a
constant solution. Another comment that must be
made here is that the particle tracking algorithm
automatically reduces the time-step if the particle
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X

Y

Z 10 mm 

C(0,t)= 
C(x,0)= 0.0 

Figure 4: Finite element discretization for 10 ele-
ments, hx = 1.0 mm

is not within the boundaries of the element, Eq.
(29).

A finite element mesh with a chosen dt that is too
big to capture the particles will therefore automat-
ically be reduced. In this, the algorithm adjusts
the Courant number itself if necessary.

This observation is confirmed by plotting the
movement of the concentration front at time t =
2s for Cr values equal to 1.0 and 10, Figure 5. The
two curves show a distinct difference in numerical
dispersion, where the computation with Cr = 10
i.e. dt = 2.0s, approximates the advective front
quite accurately.
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Figure 5: Simulation of the advection front, Cr =
1.0

Validation 2

For the second validation, the same finite element
mesh is exposed to a changing flow field of

vx = v0 exp(−λ t) (40)

and vy = vz = 0.0mm/s, Figure 2. The region is
assumed fully saturated with negligible water ca-
pacity θ̃ and a zero diffusion tensor, Dm. At time
t = 0.0s the same boundary conditions as in the
first validation are assumed, Eq. (37).

These conditions simplify the mastic transport
equation to the form

∂Cd

∂ t
+v0 exp(−λ t)∇Cd = 0 (41)

and the developing desorbed mastic concentration
field under these conditions can be found analyti-
cally as [Selvadurai, 2008]

Cd(x, t) = C0H

[
[1−exp (−λ t)]

λ
− x

v0

]
(42)

Because the velocity field is time dependent, the
Courant number is not constant either and can be
found from

Cr = β exp(−0.02t) (43)

In Figure 6 the numerical solutions at x =
10.0mm with v0 = 1.0mm/s, C0 = 1.0, β = 1.0
and λ = 0.02s−1 are compared to the analytical
solution Eq. (42) for various mesh refinements.
It can be seen that for the case under consider-
ation an increased refinement of 500 elements,
with hx = 0.02mm and dt = 0.02s, approximates
the analytical solution with negligible numerical
dispersion. Again, none of the discretizations
showed any signs of numerical oscillations in the
approximation.
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Figure 6: Courant number analysis for the mesh
with 50 elements

By comparing the solution of the constant finite
element discretization of 50 elements with a Cr
values with β = 0.5 and β = 1.0, it can be shown
that a higher Cr value again leads to a more accu-
rate solution, Figure 7.
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Figure 7: Movement of the concentration front at
T = 2 s for Cr = 1.0 and Cr = 10

4.3 Advective transport in an asphaltic mix

To demonstrate the change in response of an as-
phaltic mix, when mastic erosion occurs, a finite
element mesh of two aggregates, coated in a mas-
tic film is made, Figure 10. Between the coated
aggregates a macro-pore is situated which is as-
sumed fully saturated. The macro-pore is simu-
lated with a porous media element [Liu 2005].
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Figure 8: Simulation of the advection front, with
Cr = exp(−0.02t)

Since the two aggregates are situated on the top
layer of the asphalt wearing surface, they are in
direct contact with the traffic loading. This load-
ing condition is simulated with a cyclic loading,
with a maximum compressive stress of 0.7 MPa
and a maximum shearing stress of 0.3 MPA, Fig-
ure 11.

The stones are assumed hyper-elastic and the mas-
tic film is simulated with a elasto-visco-plastic
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Figure 9: Courant number analysis for the mesh
with 50 elements
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Figure 11: Imposed loading conditions

material model [Scarpas 2000, 2005], [Scarpas
et.al 2006], [Kringos 2007]. The aggregates
are exposed to numerous loading cycles. Each
loading cycle, the saturated macro-pore devel-
ops excessive water pressure gradients, which in-
voke erosion damage at the mastic films which
are in direct contact with the water [Kringos
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and Scarpas 2005(a), 2005(b)], [Kringos 2007],
[Kringos et.al.2007].

Depending on the value chosen for Kd , see Eq.
(18), it can be shown that in addition to mechani-
cal damage due to the loading, additional damage
is generated. In Figure 12, the equivalent plastic
strain ξ , which is a measure for damage, is shown
for a node which is located in the mastic film for
various Kd values. Figure 13 shows the impact on
the resulting stress-strain response.
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Figure 13: Stress-strain response

5 Conclusions

A Hybrid Lagrangian-Eulerian method is used in
combination with a single step reverse particle
tracking algorithm to develop an oscillation-free
and non-diffusive computational solution for the

advective-diffusive transport of mastic particles
from an asphaltic mix when exposed to a water
flow field. It is shown from the numerical valida-
tions that the methodology can give an oscillation-
free and non-dispersive solution for the case of
a purely advective transport. A finer finite el-
ement mesh was shown to give better solutions
for constant Courant numbers. When keeping the
discretization constant, a higher Courant number
seemed to give a better solution. This can be ex-
plained by the fact that for a larger time-step, less
time-steps are needed, which reduces the accu-
mulating numerical error. For Cr values smaller
than 1, i.e. s time step of dt ≤ 0.2s the solu-
tion converges to a constant solution. Because
the particle tracking algorithm automatically re-
duces the time-step if the particle is not within the
boundaries of the element, the algorithm adjusts
the Courant number itself if necessary.

Even though the numerical validations showed
that to capture advection dominated transport a
relatively large time-step can be used, it should
be kept in mind that in general the diffusion ten-
sor Dm of the mastic shall not be zero. Since, for
the simulation of mastic diffusion, a smaller time
step will increase the accuracy of the approxima-
tion, an optimum value for the time-step must be
found when simulating transport due to both ad-
vection and diffusion.

Having shown that the algorithm implemented
in RoAM is able to accurately capture advec-
tive transport of mastic particles, the research
will continue with evaluating the importance of
the contribution of this phenomenon to the over-
all moisture damage in open-graded asphaltic
mixes. Currently experimental studies are being
performed toward relating the mix-permeability
to loss of mastic due to a fast water flow, which
will give a better insight into the desorption curve
of the mastic, Eq. (18).

The ultimate goal of this research is not only to
improve the insight of the causes and the effects of
the different phenomena that cause raveling in as-
phalt, but moreover to enable the road authorities
via determination of fundamental material param-
eters to make improved asphalt mix design and
better long-term road maintenance strategies.
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