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Mechanics of polymeric membranes subjected to chemical exposure
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Abstract

The mechanics of polymeric hyperelastic membranes that are subjected to uniform transverse pressure loading are discussed. The paper
also focuses on the membrane behaviour when there is loss of hyperelasticity resulting from the removal of plasticizer from the polymeric
material as a result of chemical exposure. Constitutive models presented describe the influence of both hyperelasticity and rate-sensitivity on
the mechanical behaviour of the polymeric membrane in its natural and chemically exposed states. The constitutive models developed through
experimental investigations are implemented in computational techniques to develop solutions to the membrane deformation problems.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Polymeric membranes are used extensively as components
of geo-environmental barrier systems that are used to prevent
the migration of contaminants and hazardous wastes. A char-
acteristic feature of polymeric membranes is their hyperelas-
ticity, which is a beneficial attribute particularly in situations
where the engineered membrane barrier can experience large
deformational behaviour during ground movement. The hyper-
elasticity and the accompanying rate-dependency of polymeric
membranes is a result of plasticizers that are introduced into
the material during its manufacture; its depletion, particularly
due to leaching by chemicals, can result in the embrittlement
of the polymeric membrane. Fig. 1 illustrates the progressive
time-dependent embrittlement of a PVC membrane material
during exposure to pure ethanol. The loss of hyperelasticity
during chemical action is a cause for environmental concern,
particularly because geo-synthetic membranes are used exten-
sively for perpetual geo-environmental containment, without
due attention being paid to the issue of loss of hyperelasticity
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due to embrittlement. This paper develops a constitutive the-
ory that can describe the hyperelastic behaviour of the rate-
sensitive polymeric membrane material in its intact condition
and examines the changes that account for the loss of hy-
perelasticity and embrittlement during exposure to chemicals
such as ethanol. The constitutive theories, developed and val-
idated by appeal to experimentation, are implemented in a
research-category computer code to examine the mechanics of
edge-supported circular membranes both in their intact and
chemically exposed conditions. Both axisymmetric and off-axis
indentations of polymeric membranes have been used to vali-
date the constitutive models. In this paper, the computational
procedures are applied to examine the mechanics of square and
triangular edge-supported membranes that are subjected to uni-
form pressure. Further applications include the fluid pressure
loading of a membrane, where a circular patch of the membrane
experiences embrittlement due to the leaching of the plasticizer
by chemical exposure. The stress analysis of the problems is
performed by implementing the relevant constitutive models in
the ABAQUS finite element code.

2. Constitutive modelling

Modern mechanics of hyperelastic materials can be traced
to the seminal studies of Rivlin, which are documented in his
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Fig. 1. Uniaxial stress–strain behaviour of a PVC membrane material subjected
to chemical (ethanol) exposure.

collected works edited by Barenblatt and Joseph [1]. The ma-
jority of research in the area is applicable to pure rubber-like
hyperelastic materials, which have imperceptible irreversible
phenomena in terms of non-coincidence of loading and unload-
ing paths, resulting in both energy dissipation during cycles of
loading and the development of irreversible deformations upon
removal of loads. The constitutive potentials associated with
rubber-like hyperelastic materials including those attributed to
Mooney–Rivlin, neo-Hookean, Blatz–Ko, Yeoh, Ogden, Gent
and others are well documented in classical literature in finite
elasticity [2–5]. Reviews and extensive discussions of the range
of constitutive models that have been proposed to describe hy-
perelastic responses of rubber-like materials can be found in
the articles by Deam and Edwards [6], Ogden [7], Lur’e [8],
Drozdov [9], Dorfmann and Muhr [10], Boyce and Arruda [11],
Fu and Ogden [12], Besdo et al. [13], Busfield and Muhr [14],
Saccomandi and Ogden [15], Selvadurai [16] and Rivlin [17].
In addition, the adequacy of the Mooney–Rivlin form of a strain
energy function for examining transverse deflections of rub-
ber membranes that experience moderately large strains was
recently documented by Selvadurai [18].

In contrast, glassy polymeric materials, such as PVC, exhibit
appreciable irreversible effects that include the development of
permanent strains during loading–unloading cycles and strain
rate effects [19,20]. The modelling of materials that exhibit ir-
reversible, path-dependent, rate-sensitive effects has been the
subject of much research, both past and recent, and examples
of the development of constitutive models are given by Boyce
and Arruda [11], Arruda et al. [19], Sweeney and Ward [20],
Boyce et al. [21], Wineman and Rajagopal [22], Rajagopal and
Wineman [23], Bergström and Boyce [24], Septanika and Ernst

[25,26], Makradi et al. [27], Amin et al. [28], Gurtin and Anand
[29] and Selvadurai and Yu [30]. Also of interest are recent
studies by Shaw et al. [31] that examine the chemorheological
behaviour of elastomers at elevated temperatures. In this paper
we adopt and extend the model proposed by Boyce et al. [21]
to develop plausible constitutive models for the PVC material
in both its intact and chemically exposed states. A fundamental
assumption in the modelling is that the path-dependency and
irreversibility associated with the mechanics of the PVC ma-
terial can be captured by a model that is used to describe the
hyperelastic behaviour of an elastic material with added con-
straints to account for the rate-sensitivity and path-dependency
effects. Other examples along these lines are the studies by Og-
den and Roxburgh [32,33] that use the concept of an internal
variable, associated with deformation-related damage develop-
ment to provide a rational explanation of the Mullins effect
observed in the mechanical behaviour of certain types of hy-
perelastic rubber-like materials (see also [34,35]).

The visco-plastic constitutive model for PVC proposed in this
paper considers large strain elasticity phenomena, irreversible
deformation and strain rate effects. The results of experiments
conducted for constitutive model development were presented
byYu and Selvadurai [36] and the associated constitutive model
development was discussed in greater detail by Selvadurai and
Yu [30]. Studies presented in [30] and [36] suggest that PVC
materials can undergo strains moderately large enough to render
an approach based on an incremental rate-dependent theory of
material behaviour of limited value. Therefore, we formulate
a constitutive model that accounts for finite deformations of
the PVC material. The position of a generic particle in the
reference configuration is denoted by the Cartesian coordinates
XA (A=1, 2, 3) and its position in the deformed configuration
is denoted by xi (i = 1, 2, 3). The deformation gradient tensor
is given by

F = �xi

�XA

. (2.1)

We restrict attention to PVC materials that are largely incom-
pressible, which requires that det F = 1. Following the ap-
proaches proposed by Kröner [37] and Lee [38] to describe
the mechanics of continua undergoing finite deformations that
exhibit both reversible and irreversible components (see also
[29,39–43]), we assume that the total deformation gradient ten-
sor F admits a product decomposition into its elastic (e) and
irreversible (u) components, i.e.

F = FeFu. (2.2)

The strain tensors associated with the elastic and irreversible
deformations are defined by Be and Bu, respectively, where

Be = Fe(Fe)T, Bu = Fu(Fu)T (2.3)

and the strain rates are defined by [44,45]

L = ḞF−1 = D + W = Ḟe(Fe)−1 + Fe[Ḟu(Fu)−1](Fe)−1,

Lu = Ḟu(Fu)−1, Du = 1
2 [Lu + (Lu)T]. (2.4)
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Fig. 2. Schematic representation of the constitutive components.

The invariants of Be and Bu are

Ih
1 = (�h

1)2 + (�h
2)2 + (�h

3)2, I h
2 = 1

(�h
1)2

+ 1

(�h
2)2

+ 1

(�h
3)2

,

Ih
3 = �h

1�h
2�h

3 = 1, (h = e, u) (2.5)

and �e
i and �u

i (i = 1, 2, 3) are, respectively, the principal
stretches of the elastic and irreversible components. The gen-
eral form of the constitutive model for the PVC material has
been selected to conform to a generic version with components
as shown in Fig. 2.

2.1. A constitutive model for the untreated PVC

The calibration of experimental results [30,36] with a wider
class of strain energy functions indicates that for moderately
large strains, the constitutive behaviour of the PVC mate-
rial can be adequately characterized by choosing an internal
energy function with a mathematical form similar to the
Mooney–Rivlin type [18,46–48]. Thus, component C of the
model shown in Fig. 2 is represented by a pseudo-elastic be-
haviour with an internal energy function of the Mooney–Rivlin
type. We also note that it is sufficient to characterize the consti-
tutive behaviour of the PVC material during monotonic load-
ing without unloading. In this case, there are no irreversible
effects and the total deformation gradient F can be interpreted
as an elastic deformation gradient Fe. The stress TC associated
with the model C, which is the total Cauchy stress T in the
material, is assumed to be an isotropic function of the elastic
strain tensor Be and takes the form

T = TC = −p̃eI + �e
1Be + �e

2(B
e)2,

�e
1 = 2

(
�W e

�I e
1

+ I e
1
�W e

�I e
2

)
, �e

2 = −2
�W e

�I e
2

, (2.6)

where p̃e is a scalar pressure. Considering the approach pro-
posed by Sweeney and Ward [20] to account for the influence
of the strain rate effects on the strain energy function, we adopt
the following form of internal energy function for the PVC ma-
terial:

W e(I e
1 , I e

2 ) = C′
1(I

e
1 − 3) + C′

2(I
e
2 − 3), (2.7)

where

C′
1 = C1 +

{
�1 ln(|�̇0|/�̇c) (|�̇0|� �̇c),

0 (|�̇0| < �̇c),

C′
2 = C2 +

{
�2 ln(|�̇0|/�̇c) (|�̇0|� �̇c),

0 (|�̇0| < �̇c).
(2.8)

The thermodynamic basis for introducing the dependency of
W e on �̇0 is discussed in Selvadurai and Yu [30]. In (2.8), �̇0
is a generalized form of a combined stretch rate that depends
only on the principal stretches �̄i (i = 1, 2, 3), such that

�̇0 = d�0

dt
, �0 = [(�1 − 1)1/� + (�2 − 1)1/� + (�3 − 1)1/�]�,

(2.9)

where �̄i (i = 1, 2, 3) have a conditional dependence on the
total principal stretches �i to take into consideration either the
stretching or the unloading response, i.e.

�̄i =
{

�i (�i �1) i = (1, 2, 3),

1 (�i < 1) i = (1, 2, 3)
(2.10)

and � is a material parameter that accounts for combined stretch.
We note that when a specimen is subjected to a uniaxial stretch,
the principal stretches in the lateral directions are less than unity
and therefore the definition of �0 reduces to that of the uniaxial
strain ε0. In (2.8), C′

1 and C′
2 are the modified Mooney–Rivlin-

type parameters; �1 and �2 are parameters that define the
strain rate sensitivity and �̇c is defined as the rate-independent
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threshold strain rate, i.e. a parameter that controls the manifes-
tation of strain rate effects. At loading rates |�̇0|� �̇c, the strain
rate effects are disregarded. The loading behaviour was exam-
ined by considering the uniaxial response of a specimen of PVC
tested up to failure at loading rates ε̇0 = 0.4, and 40%/min.
The material parameters required to define C′

1 and C′
2 were de-

veloped using experimental data and the specific values deter-
mined were as follows:

C1 ≈ 0.23 MPa; C2 ≈ 0.53 MPa; �1 = �2 = � ≈ 0.13;

�̇c ≈ 5.67 × 10−7 s−1.

PVC materials invariably exhibit permanent strains at any level
of applied strain. Therefore, a visco-plastic model, character-
ized by an elastic recovery component A in parallel with a visco-
plastic component B should be incorporated in series with the
component C. Since the component A accounts for elastic un-
loading at moderately large strains, we can conclude that the
model, which accounts for the unloading response, can also be
described by an internal energy function of the Mooney–Rivlin
form, i.e.

TA = −p̃uI + �u
1Bu + �u

2(B
u)2,

�u
1 = 2

(
�W u

�I u
1

+ I u
1

�W u

�I u
2

)
, �u

2 = −2
�W u

�I u
2

, (2.11)

where p̃u is a scalar pressure and

W u(I u
1 , I u

2 ) = E′
1(I

u
1 − 3) + E′

2(I
u
2 − 3) (2.12)

with the superscript ‘u’ signifying the unloading mode. In
(2.12), we apply a conditional constraint to E′

1, i.e.

E′
1 =

{ → ∞ (�̇0 � − �̇v
c ),

0 (�̇0 < − �̇v
c )

(2.13)

and E′
2 is treated as a constant. The strain rate-dependent E′

1
in (2.13) takes into account the asymmetric behaviour of the
elastic recovery component A during a loading–unloading re-
sponse. The stress TB in the component B is defined in terms of
the finite plastic strain rate Du, which is assumed to be related
to the deviatoric component of the normalized effective stress
tensor NB . Considering the component B, the visco-plastic ef-
fects are modelled through a relationship of the form (see e.g.
[49,29])

Du = �̇NB, NB = 3

2�B

T′
B, �B =

{
3

2
tr[(T′

B)2]
}1/2

(2.14)

and T′
B is the deviatoric component of the Cauchy stress ten-

sor TB applicable to visco-plastic phenomena, as depicted in
Fig. 2. Also, in (2.14) the visco-plastic strain rate �̇ is consid-
ered to be a function of the effective stress �B and the strain
rate �̇0, i.e.

�̇ =
(

�B

q

)1−s

|�̇0|
{ 1

(|�̇0|/�v
c )

s (|�̇0|� �̇v
c ),

1 (|�̇0| < �̇v
c ).

(2.15)

In (2.15), s is the viscous sensitivity to the strain rate effect. At
extremely low loading rates |�̇0|� �̇v

c , and the dependency of
�̇ on the strain rate �̇0 is neglected; therefore, the parameter q
can be interpreted as the static yielding stress of the material.
We note that when s ≈ 0, the value of �̇v

c is inapplicable, and
the response of the material reduces to that of a purely plastic
material.

During a loading stage (�̇0 �0) and at extremely low loading
rates (|�̇0|� �̇v

c ), the visco-plastic deformation applicable to the
components A and B is constrained by the choice of an infinite
value for E′

1, with the result that only the elastic deformation of
component C is applicable to the PVC material. Upon unload-
ing, however, the visco-plastic deformation is fully activated
due to the zero value of E′

1 chosen in (2.13). All three compo-
nents A.C take effect during the unloading of the PVC mate-
rial. Following Boyce et al. [21], the stress states in the elastic
recovery response A (denoted by TA) and the visco-plastic re-
sponse B (denoted by TB ) are added to generate the Cauchy
stress T, i.e.

T = TC = TA + TB . (2.16)

The visco-plastic properties necessary to model the unloading
behaviour of the PVC can also be determined from the results
of uniaxial tests. The experiments were conducted at strain
rates of ε̇0 =4 and ε̇0 =40%/ min up to a peak strain of 140%,
followed by unloading. The specific material parameters appli-
cable for the PVC are as follows: q ≈ 2.0 MPa; s ≈ 0; E′

2 ≈
0.5 MPa.

The parameter �̇0 accounts for the influence of strain rates on
the mechanical response of untreated PVC. As is evident from
(2.9), the strain rate influences are controlled by the material
parameter �. In order to determine �, it is necessary to conduct
experiments where the PVC membrane material is subjected to
a state of inhomogeneous strain. The details of the experimen-
tal investigations are given in [30,36] and involve the uniaxial
monotonic stretching of a membrane fixed symmetrically along
oblique planes. A computational modelling of the experimen-
tal configuration can be used to estimate �. Since the elasticity
parameters C′

1 and C′
2 have a logarithmic dependency on the

combined stretch rate �̇0 (see e.g. (2.8)), there appears to be
only a marginal sensitivity of the computational results to the
parameter �. The correlations between the experimental results
and computational modelling were performed with different
values of the parameters � conducted at axial stretching rates
of 	̇ = 2 and 20 mm/min. At an extension of 	�7 mm, which
corresponds to a maximum biaxial stretch �1 ≈ �2 ≈ 1.15,
the computations show only marginal dependence on the value
of �. The parameter � has an influence on the computational
results only at larger extensions (	 > 7 mm) where slip takes
place between the metal grips and the PVC specimen leading
to unreliable estimates of the load—displacement responses. A
comparison between the computational predictions and the ex-
perimental results obtained at two extension rates indicate that
the parameter � ≈ 3.

The model parameters obtained were used to predict the be-
haviour of the untreated PVC subjected to uniaxial stretching at
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Fig. 3. Uniaxial stress–strain behaviour of an untreated PVC membrane
material tested at a strain rate ε̇0 = 160%/ min. The symbols represent
experimental results.

a strain rate of ε̇0 = 160%/ min. A comparison of experimental
results and model predictions is shown in Fig. 3.

2.2. A model for the ethanol-treated PVC

Results of uniaxial tests conducted on the ethanol-treated
PVC membrane materials indicate the gradual loss of hypere-
lasticity as the plasticizer leaches from the specimen (Fig. 1).
Therefore, in order to develop a comprehensive model of the
progressive evolution of loss of hyperelasticity, it is necessary
to incorporate the influences of chemical diffusion on the con-
stitutive responses. The experimental results, however, indi-
cate that beyond a certain duration of exposure to ethanol, the
stress–strain relationship for the PVC remains virtually unal-
tered. Considering this observation, it is feasible to focus on the
development of a constitutive model for the chemically treated
PVC by considering a threshold duration of a 7-month exposure
period. Experimental observations also showed a drastic loss of
hyperelasticity as ethanol diffused into the PVC membrane and
leached the plasticizer: In terms of the stress–strain response,
the hyperelasticity of the untreated material is replaced by a
nearly linear elastic response with a pronounced yield point
accompanied by both strain softening and strain hardening re-
sponses. As the chemically treated PVC deforms it is capa-
ble of sustaining appreciable post-yield strains without failure
and fracture. The development of a constitutive model for the
ethanol-treated PVC can be approached in a variety of ways:
for consistency, however, we develop a constitutive model fol-
lowing the basic framework used in developing the constitutive
model for the untreated PVC. We select a neo-Hookean form
of the internal energy function, which can be derived from an
internal energy function with C′

2 ≡ 0, which reduces to the
classical neo-Hookean isotropic model in situations where an
infinitesimal strain measure is used. Therefore, for the ethanol-
treated PVC, the internal energy function applicable to the

loading range associated with the experiments can be written as

W e(I e
1 , I e

2 ) = C′
1(I

e
1 − 3), (2.17)

where

C′
1 = C1 +

{
�1 ln(|�̇0|/�̇c) (|�̇0|� �̇c),

0 (|�̇0| < �̇c).
(2.18)

The results from a series of relaxation tests and uniaxial load-
ing tests conducted at loading rates ε̇0=0.4, 4 and 40%/min are
used to determine C′

1 [30] and provide the following set of pa-
rameters defining the strain rate dependency: C1 ≈ 14.2 MPa;
�1 ≈ 12.06; �̇c ≈ 5.67 × 10−7 s−1. (We note here that con-
siderable time is required to reach failure; the experimental in-
vestigations cited were conducted mainly to examine the linear
elastic modulus of the chemically treated material, and the ex-
periments were terminated once yield was observed.) The mag-
nitude of the rate-independent threshold strain rate (�̇c) was
approximately the same for both the untreated and the ethanol-
treated PVC membrane materials. Furthermore, the departure
from elastic behaviour initiates with the yield of the ethanol-
treated PVC, with the yield strain roughly corresponding to
�y ≈ 2.8%. This suggests that �y is relatively uninfluenced by
the duration of chemical exposure. The yield strain thus cor-
responds to the state resulting from the fracture of the transi-
tional link, which can occur at a critical strain ε0 = �0 = �y .
Its dominant presence is then determined from the degree of
susceptibility of the transitional link to ethanol exposure. The
duration of ethanol exposure, however, has little influence on
the elasticity characteristics of the elastic recovery model A.
Changes in the elasticity characteristics of the recovery model
A will be influenced by the breakage of the transitional links.
Following the modelling adopted for the untreated PVC, the
elastic parameter E′

2 is considered to be a constant. The param-
eter E′

1, however, takes into consideration material yield and
can be represented in the form

E′
1 =

{ → ∞ (�̇0 � − �̇v
c and �0 ��y),

E′
y (�̇0 � − �̇v

c and �0 > �y),

0 (�̇0 < − �̇v
c ).

(2.19)

In (2.19), �y is the yield strain and E′
y can be interpreted as the

post-yield hardening modulus. This particular representation of
E′

1 takes into consideration the complete elastic behaviour of
the treated material before yield at a loading rate �̇0 � − �̇v

c ,
where the visco-plastic deformation is restricted by the value
of infinity assigned to E′

1. Beyond the yield point, E′
1 has a

finite value. This, however, results in the development of visco-
plastic deformations, contributing to the initial softening and
subsequent hardening behaviour, particularly in the large strain
range (e.g. ε0 = 100.150%). During unloading (i.e. �̇0 <− �̇v

c ),
visco-plastic effects are fully activated due to the fact that E′

1 =
0, and this contributes to significant irreversible visco-plastic
strains. We also consider the possible influences of the rate-
dependency on the hardening modulus E′

y , which is modelled
according to the relationship

E′
y = Ey +

{
�y ln(�̇0/�̇

v
c ) (�̇0 � �̇v

c ),

0 (−�̇v
c � �̇0 < �̇v

c ),
(2.20)
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Fig. 4. Uniaxial stress–strain behaviour of a chemically treated PVC mem-
brane material tested at a strain rate ε̇0 = 160%/ min. The symbols represent
experimental results.

where �y is the rate-sensitivity and Ey is the rate-independent
hardening modulus. To account for the visco-plastic responses
in the ethanol-treated PVC, we adopt the form of (2.15).
In contrast to the untreated PVC material, the visco-plastic
response dominates the unloading mode, and beyond the
yield point �y , also takes into consideration the softening
response.

In the parameter identification exercise we first examine the
time-independent behaviour of the PVC. In the ethanol-treated
PVC, there is a noticeable yield point associated with the pro-
posed time-independent stress–strain response. The absence of
softening suggests the applicability of the assumption concern-
ing the absence of a viscous effect at limiting loading rates less
than �̇v

c . We can determine the static yield stress q(=6C1�y) ≈
2.4 MPa from the time-independent stress–strain curve. The pa-
rameters Ey and E′

2 can be determined by matching the slope
of the hardening response of the time-independent stress–strain
curve; using this procedure we obtain Ey ≈ 1.1 MPa and
E′

2 ≈ 1.2 MPa. The parameter E′
y that accounts for the rate-

dependency can be obtained by matching the slope of the
hardening responses for a set of loading tests conducted at the
loading rates ε̇0 = 4 and 40%/min. Considering such a proce-
dure, the constitutive parameters required to characterize the
ethanol-treated PVC are obtained as follows: Ey ≈ 1.13 MPa;
�y ≈ 0.13; �̇v

c ≈ 3.2 × 10−10 s−1. The viscous sensitivity s is
the only remaining parameter introduced in (2.15). As s → 0,
the unloading behaviour of the material (with E′

1 = 0) is virtu-
ally uninfluenced by the loading rate. Considering the soften-
ing region, where E′

1 �= ∞, the rate-sensitivity is appreciable
even though s approaches zero. The value of s therefore has
a significant influence on the softening response of the mate-
rial, since, beyond the yield point, E′

1 transforms abruptly from
an infinite value to a finite value (i.e. ε0 = �y). The parameter
identification exercises performed on the stress–strain curves
derived at loading rates ε̇0 = 4 and 40%/min indicate that s ≈
0.1. The visco-plastic behaviour of the chemically treated PVC
can be defined by the parameters: q ≈ 2.4 MPa; s ≈ 0.1; �̇v

c ≈
3.2 × 10−10 s−1. The results for the time-independent response

Fig. 5. Fluid pressure loading of a PVC membrane fixed along a circular
boundary.

and the stress–strain curves derived up to failure at loading rates
of ε̇0 =4 and 40%/min by material parameters indicate that ac-
curate representations are obtained for the yield behaviour of
the material, followed by a material softening and a moderate
amount of hardening at large deformations (i.e. strains in the
range ε0 = 100.150%). The material parameters were further
used to evaluate the computational responses of a test speci-
men fixed along oblique directions and subjected to an axial ex-
tension rate of 	̇ = 2 mm/ min. The computational evaluations
were performed with different values of the parameter �. Since
the plasticizer loss appears to stabilize after 5 months of expo-
sure [50], it may be concluded that the material parameter �
is virtually uninfluenced by the duration of chemical exposure.
Considering the discussion pertaining to the evaluation of the
parameter � for the untreated material, it could be concluded
that the value � ≈ 3 is also applicable to the PVC membrane
material when exposed to ethanol for a period of 7 months.
This value is possibly indicative of equal contributions from
the three principal stretch directions of the polymeric material
in the definition of �̇0 in (2.19). The model parameters for the
ethanol-treated PVC membrane material developed using ex-
perimental data from tests conducted at strain rates of ε̇0 = 4
and 40%/min were used to predict the response that would be
obtained for a ethanol-treated PVC material uniaxial test con-
ducted at a strain rate of ε̇0 = 160%/ min. The comparison be-
tween experimental results and computational predictions are
shown in Fig. 4.
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Fig. 6. Hydraulic loading on an untreated circular membrane. Total number
of elements: 2402; maximum fluid pressure corresponds to 1 m of water.

3. Mechanics of PVC membranes

PVC membranes are used as engineered barriers; it is there-
fore instructive to apply the constitutive models presented
previously to examine the mechanics of membranes, both
untreated and ethanol-treated, to investigate the behaviour
of typical membrane configurations. The forms of the con-
stitutive models presented in the previous section are such
that analytical solutions for even the simplest axisymmetric
problems cannot be obtained conveniently. Consequently, a
computational approach is adopted to examine a range of
problems of engineering interest. The specific problems that
are examined here include the application of fluid pressures
to edge-supported membranes with circular, square and tri-
angular planforms. An additional problem considers the fluid
pressure-induced deflection of an edge-supported untreated cir-
cular PVC membrane containing a circular patch that has been
subjected to chemical exposure. These computations were per-
formed using the general-purpose finite element code ABAQUS
(ABAQUS/Standard [51]). There are several computational
features in ABAQUS/Standard relevant to the computational
modelling of the axisymmetric/asymmetric membrane loading
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Fig. 7. The deflected shape of the untreated circular membrane under the action
of fluid accumulation in the reservoir. Maximum fluid pressure corresponds
to 1 m of water.

Fig. 8. Hydraulic loading on a chemically treated circular membrane. Total
number of elements: 2402; maximum fluid pressure corresponds to 1 m of
water.
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Fig. 9. Hydraulic loading on an untreated square membrane. Total number
of elements: 2998; maximum fluid pressure corresponds to 1 m of water.

problems and include consideration of large strain phenomena,
and, most importantly, the ability to implement the constitutive
model derived in Section 2 in the computational algorithm.
Complete descriptions of these procedures are contained in the
supplied document in ABAQUS/Standard, which is discussed
in the User Subroutine UMAT (ABAQUS/Standard [51]). In
this study, only the last feature will be discussed. In the non-
linear analysis using the ABAQUS/Standard code, each step is
divided into iteration increments. In this analysis, we chose the
size of the first loading increment, and the ABAQUS/Standard
code automatically assigns the size of subsequent increments.
During each increment, the code employs a Newton–Raphson
algorithm to perform the iterations and the equilibrium is
determined through consideration of the principle of virtual
work, i.e.

∫
V 〈t+�t〉

T〈t+dt〉: 
D〈t+dt〉 dV 〈t+dt〉

=
∫

S〈t+�t〉
t〈t+dt〉 • 
v dS〈t+dt〉

+
∫

V 〈t+�t〉
f 〈t+dt〉 • 
v dV 〈t+dt〉, (3.1)
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Fig. 10. The deflected shape of the untreated square membrane under the
action of fluid accumulation in the reservoir. Maximum fluid pressure corre-
sponds to 1 m of water.

where T is the Cauchy stress, 
D is the incremental strain rate,

v is a vector of virtual displacements, t is a vector of externally
applied surface tractions on a unit surface of S, f is a body force
vector on a unit volume of V and 〈t+dt〉 denotes a state evaluated
at time t + dt . For the Newton–Raphson algorithm, we require
the Jacobian of the finite element equilibrium equations. The
Jacobian, which is obtained by taking the variation of Eq. (3.1),
can be written as∫

V 〈t+dt〉
(dT〈t+dt〉: 
D〈t+dt〉 + T〈t+dt〉: d
D〈t+dt〉) dV 〈t+dt〉

=
∫

S〈t+dt〉

(
dt〈t+dt〉 • 
v + t〈t+dt〉 • 
v

dA

A

)
dS〈t+dt〉

+
∫

V 〈t+dt〉

(
df 〈t+dt〉 • 
v + f 〈t+dt〉 • 
v

dJ

J

)
dV 〈t+dt〉

(3.2)

with

A = dS〈t+dt)

dS〈t〉 , J = dV 〈t+dt)

dV 〈t〉 , (3.3)

where A is the surface area ratio between time t +dt and t, and
J is the volume ratio between time t + dt and t. The right side
of Eq. (3.2) is defined by the boundary conditions involving
the loading conditions and displacement constraints. On the left
side, the expressions for the strain measure D and its variations
dD and d
D in terms of the virtual displacement are defined
by the displacement interpolation function used in the element
definition. It has been shown (ABAQUS/Standard [51]) that the
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left side of Eq. (3.2) can be expressed in a more explicit form:∫
V 〈t+dt〉

{
dD〈t+dt〉: C〈t+dt〉: 
D〈t+dt〉 − 1

2
T〈t+dt〉

: [2D〈t+dt〉 • D〈t+dt〉 − (Lt+dt )T • Lt+dt ]
}

dV 〈t+dt〉,

where C is the tangential stiffness and a fourth-order tensor
defined by

C = �(dT)

�(dD)
. (3.4)

The data on both C and T are defined by the constitutive
responses of the PVC material implemented through the sub-
routine UMAT available in the ABAQUS/Standard code. The
ABAQUS/Standard further utilizes a backward-Euler scheme
as a default finite difference scheme to update variables. Those
variables that are determined from previous iterations and do
not change during the iteration between [t, t + dt] can be
defined as state variables. The state variables adopted in this
analysis include the components of the irreversible deforma-
tion gradient Fu at time t and the stress tensors at time t, in the
visco-plastic component including models A and B. When a
fully backward-Euler finite difference scheme in time is imple-
mented, the updating of �̇0 requires information on the material
configuration at t + dt . The updated value of �̇0 will have a
direct influence on the elasticity parameters for the element C
in the chosen constitutive model, with the result that the com-
putations will exhibit non-convergence. The value of �̇0 is thus
assumed to remain unchanged during iteration and is taken as
a further state variable. For the problems examined here, the
PVC membrane only experiences incremental loading during
the initial stage where irreversible deformations are absent; the
initial values of the state variables can therefore be obtained
by treating the material as fully elastic. The state variables are
updated only when the iteration converges. Both a quadratic
triangular membrane element (3M6) and a linear solid triangu-
lar prism element (C3D6) were utilized in the computational
modelling. The results indicated no noticeable differences be-
tween the two types of elements. The computations presented
in the paper were developed using the solid triangular prism
element.

3.1. Uniform loading of an edge-supported circular membrane

In this example we consider the fluid loading of a circular
PVC membrane of radius 125 mm, which is fixed at the bound-
ary (Fig. 5). The membrane is loaded by fluid (water at a density
of �=1 g/cc) pressures that are applied through accumulation of
fluid in a reservoir at a prescribed rate Q=12 L/ min. Since the
membrane deflects a substantial amount during the application
of the fluid loading, the applied fluid pressure is non-uniform
with an axisymmetric variation roughly corresponding to the
height of the fluid in the reservoir. The maximum fluid pressure
applied to the membrane corresponds to 1 m of water. This is
a departure from the usual uniform air-pressurization approxi-
mation used in the testing of membranes but the example rep-

Fig. 11. Hydraulic loading on chemically treated square membrane. Total
number of elements: 2998; maximum fluid pressure corresponds to 1 m of
water.

resents a useful model of a condition that can be encountered
in practice. The unloading is carried out by the removal of the
fluid at the same emptying rate. The computational modelling
uses the finite element discretization of the circular membrane
region shown in Fig. 6. Fig. 7 shows the deflected shape of the
untreated PVC circular membrane for various levels of fluid
accumulation and fluid withdrawal. Analogous results for the
case involving the ethanol-treated PVC circular membrane are
shown in Fig. 8. It may be noted that the computational mod-
elling illustrates the development of permanent deformations
in both untreated and chemically treated membranes during the
loading–unloading process.

3.2. Uniform loading of an edge-supported square membrane

In the second example we consider the problem of a square
PVC membrane that is fixed at the boundary and subjected to
fluid loading similar to that described in Section 3.1. The fi-
nite element model of the membrane region is shown in Fig. 9.
The deflected shapes of the square membrane along one of the
axes of symmetry, for both loading and unloading paths and for
both the treated and untreated PVC membranes are shown in
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Fig. 12. Hydraulic loading on an untreated equilateral triangular membrane.
Total number of elements: 1712; maximum fluid pressure corresponds to 1 m
of water.

Fig. 10. The maximum fluid pressure applied to the membrane
corresponds to 1 m of water. The deflection of the chemically
treated PVC is significantly lower (see Fig. 11). The results for
the deflection of the membrane during the loading–unloading
process display characteristics similar to those observed in con-
nection with the fluid loading of the untreated and chemically
treated circular membrane.

3.3. Uniform loading of an edge-supported equilateral
triangular membrane

In the third example we examine the deflection of an equi-
lateral triangular membrane that is fixed at the boundary and
subjected to fluid loading similar to that described previously.
The finite element model of the membrane region is shown in
Fig. 12. The deflected shapes of the untreated equilateral mem-
brane, along an axis of symmetry, for both loading and unload-
ing paths are shown in Fig. 13. The deflection of the chemically
treated PVC is limited (see Fig. 14). The results for the de-
flection of the membrane during the loading–unloading process
display characteristics similar to those observed in connection
with the fluid loading of the untreated and chemically treated
circular and square membranes.
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Fig. 13. The deflected shape of the untreated equilateral triangular membrane
under the action of fluid accumulation in the reservoir. Maximum fluid
pressure corresponds to 1 m of water.

Fig. 14. Hydraulic loading on a chemically treated equilateral triangular mem-
brane. Total number of elements: 1712; maximum fluid pressure corresponds
to 1 m of water.
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Fig. 15. Hydraulic loading on an untreated circular membrane with a central
circular patch. Total number of elements: 3770; maximum fluid pressure
corresponds to 1 m of water; ratio between diameter of patch and that of the
membrane: 0.32.

3.4. Fluid pressure loading of a membrane containing a
circular patch subjected to chemical exposure

In this section we examine the problem of the fluid pressure
loading of a PVC membrane that contains a circular patch that
has been subjected to chemical exposure. The ratio between
the diameter of the patch and that of the membrane is 0.32.
The geometry of the problem is shown in Fig. 15. The max-
imum fluid height applied to the membrane is 1 m. Fig. 16
shows the deflected shape of the untreated PVC circular mem-
brane for various levels of the fluid accumulation and fluid
withdrawal. The central patch zone deflects as a rigid region
and this contributes to a reduction in the overall deflections
and the corresponding permanent deflections. The junction be-
tween the two regions invariably exhibits sharp changes in the
curvature, which can be a source for concern, especially with
regard to the development of fracture and damage at those
locations.
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Fig. 16. The deflected shapes of the untreated circular membrane with a
central circular patch under the action of fluid accumulation in the reservoir.
Ratio between diameter of patch and that of the membrane: 0.32; maximum
fluid pressure corresponds to 1 m of water.

4. Concluding remarks

The use of PVC membranes as liners or engineered barriers
for landfill implicitly assumes that the hyperelastic attributes of
the liners remain unaltered throughout the lifetime of the barrier.
Experimental research points to the loss of hyperelasticity that
can result from direct contact of the PVC with chemicals such
as acetone and ethanol. The chemical leaching of plasticizer
from the PVC also results in a barrier material that exhibits dis-
tinct yield-like stress–strain characteristics. It is shown that the
mechanical behaviour of the untreated PVC can be modelled as
a rate-sensitive hyperelastic material with internal energy func-
tions that are loading path-dependent. The ethanol-treated PVC
can also be modelled using the general approach developed to
describe the constitutive behaviour of the untreated PVC. The
material parameters required to describe both responses can be
experimentally determined and the constitutive models them-
selves are amenable for implementation in general-purpose
finite element computational schemes that accommodate hy-
perelasticity and strain rate sensitivity. The computational
schemes are used to examine the mechanics of edge-supported
PVC membranes that are subjected to loading by fluid pres-
sure. The computational results show trends that are consistent
with those obtained from experiments involving transverse
indentation of both untreated and treated edge-supported PVC
membranes by fluid pressure. The problems examined pro-
vide further experimental arrangements for examining the
validity of the constitutive models and their computational
implementations.
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