
Transp Porous Med (2008) 71:161–172
DOI 10.1007/s11242-007-9117-4

O R I G I NA L PA P E R

Interface porosity and the Dirichlet/Neumann pore fluid
pressure boundary conditions in poroelasticity

A. P. S. Selvadurai

Received: 27 February 2006 / Accepted: 12 February 2007 / Published online: 27 March 2007
© Springer Science+Business Media B.V. 2007

Abstract In this note we examine, through idealized computational modelling, the
influences of the interface porosity in the contact between a free-draining non-deform-
able porous region and a poroelastic medium, as it relates to the specification of the
Dirichlet/Neumann boundary conditions applicable to a porous interface.
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1 Introduction

The classical theory of poroelasticity proposed by Biot (1941) occupies an important
position in the engineering sciences. The mathematical foundations of Biot’s theory
are well-documented in the literature in geomechanics and applied mechanics and
it represents one of the most successful theories in classical continuum mechanics,
second only to the classical theory of elasticity (Selvadurai 1996, 2007a; Lewis and
Schrefler 1998; Coussy 2000; Auriault et al. 2002). The conventional pore fluid pressure
boundary condition at the interface between a poroelastic medium and a free-drain-
ing porous medium is the Dirichlet condition applicable to pore fluid pressure at that
surface. No distinction is made with regard to the microstructure of the contacting
regions. This assumption is consistent with the idealization of the poroelastic medium
where the pore fluid and the porous solid can occupy the same position at any given
time.
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When considering the microstructural features of the contact between the poroelas-
tic medium and a free-draining porous medium, it is clear that pore fluid dissipation
can occur only through the pore space of the boundary that allows the dissipation
(Fig. 1). If the solid phase of the free-draining porous medium in contact with the
poroelastic medium is impervious and this solid phase has a perfect contact, then the
process of excess pore fluid pressure dissipation will be influenced by the reduction in
the surface area available for its dissipation. This observation is not new. Quite early
in the development of the theory of poroelasticity, Deresiewicz (1960, 1961, 1962)
considered the effect of the interface condition on the propagation of Rayleigh-type
surface waves in a poroelastic halfspace. These studies were extended by Deresiewicz
and Skalak (1963) to consider uniqueness in dynamic poroelasticity, particularly in the
presence of a dissimilar interface. Controversy has existed with regard to the correct
forms of interface conditions that are necessary and sufficient for well-posedness of
the interface condition (Cruz and Spanos 1989). In an informative and seminal paper,
Gurevich and Schoenberg (1999) re-examined the issue of the interface conditions
related to those posed by Deresiewicz and Skalak (1963) and they came to the con-
clusion that the limits of either partially blocked or completely impermeable interfaces
can be resolved by considering the interface as a thin layer where the permeability
is proportional to the layer thickness, as its thickness approaches zero. The issue of
interface conditions at a porous interface also arises in classical fluid dynamics dealing
with fluids that are bounded by permeable boundaries. Examples of such studies are
given, among others, by Joseph and Tao (1964), Gheorghitza (1966), Beavers and
Joseph (1967), Jones (1973), Saffman (1971) and Hsu et al.(2004).

This paper examines a three-dimensional problem in poroelasticity where Dirichlet
boundary conditions are prescribed for the pore pressure on one part of the free-drain-
ing surface corresponding to the void region and either Dirichlet or Neumann pore
pressure boundary conditions are prescribed respectively on the remainder of the
surface that corresponds to either a free-draining or impervious solid region. A com-
putational approach is used to examine the influence of the respective areas, which
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can be interpreted as an area porosity effect for the interface, on the overall degree of
consolidation of the three-dimensional element.

2 Problem formulation

Ideally, when considering the contact between a free-draining but non-deformable
porous medium and a poroelastic medium, it is necessary to consider a variety of con-
tact conditions resulting from the penetration of the non-deformable porous medium
into the poroelastic region. These can involve advancing contacts, receding contacts
and other non-linear frictional constraints associated with the mechanics of contact
between interfaces (Duvaut and Lions 1976; Selvadurai and Boulon 1995). The objec-
tive here is to adopt a much simpler version of an interface by representing it as
a collection of rigidly interconnected impermeable/permeable disk-shaped contact
regions, which are subjected to an external load. These disks are in contact with the
poroelastic medium, thereby imposing either Dirichlet or Neumann conditions for
the pore water pressure at the contact locations of the disks, and Dirichlet boundary
conditions at the empty space between the disks. The disks can be arranged either
in a square or a hexagonal pattern as shown in Figs. 2 and 3. The arrangement of
these disks allows for the consideration of a variety of area porosity conditions at the
interface, simply by altering the dimensions of the disks in relation to their spacing.
The disks, which can be considered as the analogue of the solid grains of the free-
draining porous medium, are considered to be either fully pervious or impervious.
The latter boundary condition is the more realistic representation applicable to situa-
tions where the grains in contact with the poroelastic medium are impervious. For the
purposes of illustration, however, the computational treatment will also examine the

L

0=•∇ np
0=•∇ np

0=•∇ np

0p

h
45=α

α

a

b

σ0H(t)

σ0H(t)

a

a

a a

b

Saturated poroelastic medium

Idealized contact2b 2(a-b)

Fig. 2 The modelling of the contact between the poroelastic medium and the free-draining porous
boundary: Square arrangement of contacting disks
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Fig. 3 The modelling of the contact between the poroelastic medium and the free draining porous
boundary: Hexagonal arrangement of contacting disks

case where the contacting disk itself is assumed to be a rigid but completely porous
region. The contact between the assembly of rigid interconnected disks and the poro-
elastic medium is achieved by the application of an external stress in the form of a
Heaviside step function of time. The problem is effectively reduced to the consid-
eration of a representative sector of the poroelastic medium and the free-draining
porous interface, which is idealized by a segment of a disk. We consider a poroelastic
layer of thickness L, which is in contact with an idealized interface consisting of a
set of identical rigid disk-shaped elements of radius b that are arranged either in a
square or a hexagonal planform. In view of the symmetries associated with the con-
figuration of the rigid indentors, the uniform loading and the boundary conditions
applicable to the drainage conditions, we can examine the consolidation response of
the layer by restricting attention to representative elements as shown in Figs. 2 and
3 where appropriate displacement and pore fluid pressure boundary conditions are
prescribed at the planes of symmetry. The rigid plate through which contact is estab-
lished between the poroelastic medium and the pervious or impervious disks is also
constrained to establish one-dimensional overall deformations of the medium.

For completeness, the initial boundary value problems that will be modelled using a
conventional Galerkin finite element approach for the solution of the resulting poro-
elasticity problem are described. We consider the problem of a poroelastic medium
consisting of an elastic porous skeleton that is saturated with a compressible pore
fluid. The displacement field u(x, t) and the pore fluid pressure p(x, t) are taken as the
dependent variables, and x and t are the position vector and time, respectively. The
partial differential equations governing these dependent variables are

µ∇2u + µ

(1 − 2ν)
∇ (∇ · u) + α∇p = 0 (1)



Interface porosity and Dirichlet/Neumann pore pressure boundary 165

and

k β

γw
∇2p − ∂p

∂t
+ αβ

∂

∂t
(∇ · u) = 0 (2)

where

β = 2µ (1 − 2ν) (1 + νu)2

9 (νu − ν) (1 − 2νu)
; α = 3 (νu − ν)

B (1 − 2ν) (1 + νu)
(3)

In Eqs. (1)–(3) µ and ν are respectively the linear elastic shear modulus and Poisson’s
ratio for the deformable skeleton of the poroelastic medium; νu is the undrained
elastic shear modulus; k is the hydraulic conductivity of the porous medium; γw is the
unit weight of water and B is Skempton’s pore pressure parameter. We consider the
uniform indentation of the surface S∗ of the poroelastic halfspace by an array of rigid
disks of equal radius that are symmetrically arranged in either a square or a hexagonal
configuration (Figs. 2, 3). The radius of a circular disk is kept arbitrary, so that the
contact area can be considered a variable. The disks are connected to a rigid plate
that is subjected to a constant load in the form of a Heaviside step function of time,
σ0H(t). In view of the symmetry associated with the array of indenting circular disks,
we can restrict the computational modelling to the solution of a sub-domain of the
poroelastic layer where appropriate displacement, effective traction and pore pressure
boundary conditions are applied on the planes of symmetry. The region of contact
between the surface of the poroelastic layer and the circular rigid disk is denoted by
SD and the surface region exterior to the domain SD is denoted by SE. The surface
S = SD ∪ SE. Since the rigid disks enforce stationary contact, SD ∩ SE ≡ 0. For the
solution of the initial boundary value problem for the indented sub-domain, we con-
sider the following two types of boundary conditions at the surface of the poroelastic
medium.

For the completely porous smooth indenting rigid disk regions

uz(x, y, 0, t) = U(t); (x, y) ∈ SD; t > 0 (4)

σ ′
xz(x, y, 0, t) = σ ′

yz(x, y, 0, t) = 0; (x, y) ∈ S; t > 0 (5)

σ ′
zz(x, y, 0, t) = 0; (x, y) ∈ SE; t > 0 (6)

p(x, y, 0, t) = 0; (x, y) ∈ S; t > 0 (7)

where σ′(x, t) is the stress tensor for the porous skeleton and U(t) is an unknown
constant displacement in the indenting region, which can be determined from the
equilibrium condition for the disk region expressed in terms of the total stress tensor
σ(x, t): i.e.

∫ ∫
S
σ0 H(t) dS =

∫∫
SD

σzz (x, y, 0, t) dS (8)

The stress–strain relationship applicable to the poroelastic medium is given by

σ = σ′ + α p I = µ(∇u + u∇) + 2µν

(1 − 2ν)
(∇ · u) I + α p I (9)
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To complete the formulation of the initial boundary value problem we assume that
prior to the application of the external loads, the porous skeleton and the pore fluid
are unstressed: i.e.

u(x, 0) = 0; p(x, 0) = 0 (10)

For the completely impervious adhering indenting rigid disk regions

uz(x, y, 0, t) = U(t); (x, y) ∈ SD; t > 0 (11)

ux(x, y, 0, t) = uy(x, y, 0, t) = 0; (x, y) ∈ SD; t > 0 (12)

σ ′
zz(x, y, 0, t) = σ ′

xz(x, y, 0, t) = σ ′
yz(x, y, 0, t) = 0; (x, y) ∈ SE; t > 0 (13)

[
∂ p
∂ z

]
z=0

= 0; (x, y) ∈ SD; t > 0 (14)

p(x, y, 0, t) = 0; (x, y) ∈ SE; t > 0 (15)

The unknown displacement U(t) is obtained from the equilibrium condition (8).

3 Computational modelling and results

The initial boundary value problems that result from these particular idealizations
of the poroelastic medium–porous medium interface are difficult to examine using
analytical approaches (Selvadurai 2007a). Some progress can be made by restricting
attention to the axisymmetric indentation of a circular column of a poroelastic mate-
rial by a rigid disk indentor of smaller radius (Selvadurai 2007b); this solution however
has limitations in capturing the complete geometry of the indented surface, which is
important to the present modelling exercise. An equivalence in the surface areas can
be imposed to generate an approximate result; this result, however, is not refined
enough for examining accurately the relative influences of the permeable and imper-
vious surface areas. For this reason, the poroelasticity problems associated with the
porous interface are examined using a computational approach. Any standard com-
putational code that has capabilities for solving poroelasticity problems and which
maintains stability of the time-integration scheme and the correct order of the basis
functions for the displacements and the pore fluid pressures can be used to obtain
the desired numerical results. Details of the finite element approach for the study of
poroelasticity problems are given in a number of standard texts (Lewis and Schrefler
1998) in computational methods and poromechanics and will not be described here.
Also, no attempt is made to incorporate singularity elements to capture the various
singularities in the contact stresses and pore pressure boundary conditions, which will
be introduced as a result of the rigid nature of the indenting region (Selvadurai 2007a).
Since the overall influence of the idealized porous interface is examined in relation
to the overall displacements of the contacting region, the computational modelling is
performed using conventional tetrahedral elements. The general purpose ABAQUS
finite element code is used in the computational modelling and the element discreti-
zations are shown in Figs. 2 and 3. For the purposes of developing the computational
results, the poroelastic parameters are assigned the following values:
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E = 2µ(1 + ν) = 10 MPa; v = 0.3; B = 1; vu = 1
2

;

κ = k
γw

= 0.2 mm4N−1s−1

For the presentation of the results, we use a non-dimensional time factor defined by
ct/a2, where a is the dimension of the sub-region shown in Figs. 2 and 3 and

c = 2(1 − v)(1 + vu)2

(vu − v)(1 − vu)
µκB2 = 2.222 mm2/s

Also the results of the modelling are examined in terms of the time-dependent vari-
ation in the non-dimensional degree of consolidation Ū(t) defined by [ U(t) − U(0)]/
[ U(∞) − U(0)] as a function of the non-dimensional time factor ct/a2. The choice of
this representation of the results is appropriate since the rate of consolidation of the
indented poroelastic layer is expected to be influenced by the area porosity of the
contact, represented by nA = SE/S.

We first examine the problem of the indentation of a porous layer by a hexagonal
arrangement of indenting disks. The height of the porous column is set equal to the
dimension a, which represents a relatively thin poroelastic layer. Figure 4 illustrates
the influence of the permeability boundary conditions within the indenting region on
the degree of consolidation Ū(t). The area porosity of the interface nA ≈ 0.7733 and
the indentor arrangement corresponds to the hexagonal configuration. In this case
the influence of the drainage boundary condition on the consolidation response is
marginal. Analogous results for the indentation involving the square arrangement
of the circular indenting regions are given in Fig. 5, and again the influence of the
permeability of the contacting region is marginal. We next consider the case of the
indentation of a poroelastic layer with L = a, where the indenting circular regions
are in contact with each other. This corresponds to an area porosity nA = 0.0931,
which represents a significant reduction in the area available for pore fluid drainage.
Figures 6 and 7 illustrate the variation of Ū(t) with ct/a2, for the disk contact arrange-
ments corresponding to the hexagonal and square configurations, respectively. In this
case both arrangements of the indentors illustrate an appreciable influence on the
rate of consolidation Ū(t). As expected, the final consolidation response is uninflu-
enced by the area porosity. Computations were conducted to examine whether the
differences observed in the rate of consolidation of the poroelastic layer were a result
of the aspect ratio of the layer thickness in relation to the radius of the indenting rigid
region. Figures 8 and 9 illustrate the consolidation response for the layer of thick-
ness L = 10a, where the indentor geometries correspond to the hexagonal and square
configurations, respectively. These results also take into consideration the influence of
the pore pressure boundary conditions within the indenting region, corresponding to
either fully draining or completely impervious cases. The computational results indi-
cate that the consolidation response in the initial stages of the consolidation process
is influenced by the area porosity of the contacting region. The impermeable indenta-
tion, which corresponds to the practical situation involving a free-draining boundary
of low porosity, would tend to impede the fluid migration at the interface, thereby
altering the effectiveness of the drainage and the time scales involved in achieving
complete consolidation.
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Fig. 4 Consolidation of a soil layer of finite thickness with a contact area porosity nA = 0.7733; hexag-
onal arrangement with α = 30◦ and geometry ratio L = a. [The solid symbols represent impermeable
indentation, i.e. ∇p · n = 0; unfilled symbols represent fully permeable indentation, i.e. p = 0]
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Fig. 5 Consolidation of a soil layer of finite thickness with a contact area porosity nA = 0.7733;
square arrangement with α = 45◦ and geometry ratio L = a. [The solid symbols represent imper-
meable indentation, i.e. ∇p · n = 0; unfilled symbols represent fully permeable indentation, i.e. p = 0]
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Fig. 6 Consolidation of a soil layer of finite thickness with a contact area porosity nA = 0.0931; hexag-
onal arrangement with α = 30◦ and geometry ratio L = a. [The solid symbols represent impermeable
indentation, i.e. ∇p · n = 0; unfilled symbols represent fully permeable indentation, i.e. p = 0]
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Fig. 7 Consolidation of a soil layer of finite thickness with a contact area porosity nA = 0.0931;
square arrangement with α = 45◦ and geometry ratio L = a. [The solid symbols represent imper-
meable indentation, i.e. ∇p · n = 0; unfilled symbols represent fully permeable indentation, i.e. p = 0]
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Fig. 8 Consolidation of a soil layer of finite thickness; hexagonal arrangement with α = 30◦ and geom-
etry ratio L = 10a. [The solid symbols represent impermeable indentation, i.e. ∇p · n = 0; unfilled
symbols represent fully permeable indentation, i.e. p = 0]
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Fig. 9 Consolidation of a soil layer of finite thickness; hexagonal arrangement with α = 45◦ and geom-
etry ratio L = 10a. [The solid symbols represent impermeable indentation, i.e. ∇p · n = 0; unfilled
symbols represent fully permeable indentation, i.e. p = 0]

4 Concluding remarks

This paper provides a relatively simple examination of the Dirichlet boundary
condition that is associated with an interface between a poroelastic medium and
a free-draining porous region. The contacting non-deformable porous medium is
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represented by an idealized array of rigid disks arranged in a regular fashion. These
disks can be either be completely free-draining (Dirichlet boundary conditions for
the pore fluid pressure at the contacting regions) or completely impervious (Neu-
mann boundary conditions for the pore fluid pressure at the contacting regions).
There is no consideration of variability of the size of the contacting regions or the
possibility of the penetration of the contacting region into the poroelastic medium,
which can give rise to moving boundary problems at the interface. The interface prop-
erty of interest is the area porosity of the interface and the consolidation process
is also influenced by the relative dimensions of the consolidating region in relation
to a characteristic length of the particle scale of the free-draining porous medium.
The objective of the study is to pose the question as it relates to the role of the
area porosity of the interface in controlling the form of a pore fluid pressure bound-
ary condition applicable to a consolidating poroelastic medium in contact with a
porous medium. Admittedly, the porosity of a porous boundary consisting of imper-
vious grains will exert an influence on the consolidation process, in as much as a
porosity of unity will correspond to a strict Dirichlet-type boundary condition and
a porosity of zero would correspond to a Neumann-type boundary condition. In
most applications of poroelasticity in the geosciences, however, the porosities of the
contacting regions for geologic materials would roughly correspond to the volume
porosities of free-draining porous media. These porosities can range from 0.5% to
30% depending on the type of geomaterial (Farmer 1968). The results of this inves-
tigation suggest that for porosities in the range of ten percent the influence of the
area porosity on the consolidation process can be appreciable, particularly in terms
of an alteration in the time-scales associated with achieving the same degree of con-
solidation. In this sense, when the porosity of the contacting region is relatively low,
a more accurate formulation of a boundary value problem in poroelasticity should
also take into consideration the possible development of fluid pressure transients in
the contacting porous medium itself. Such an interface can be described as a leaky
interface that would account for both continuity of the pore fluid pressures and the
mass flow rate between the poroelastic medium and the porous boundary. This study
complements the findings of Gurevich and Schoenberg (1999), in the sense that in
order to account for the extreme limits of the interface porosity, it is necessary to
introduce an interface layer where there is a gradual transition in the permeabil-
ity from that of the poroelastic medium to the porous region in contact with the
poroelastic medium in a rational way. The approach suggested above is certainly a
fruitful way of accommodating the extreme limits. In terms of computational mod-
elling, it is also possible to use a non-deforming interface layer in which the per-
meability is adjusted to account for the reduced area available for fluid transfer by
virtue of the impervious grains of the contacting non-deformable porous medium.
This condition becomes relevant when the assessment of the rate of consolidation
is of interest. It should also be noted that for quasi-static problems, the role of this
interface porosity is to alter the rate of consolidation of the poroelastic medium
and that the final consolidation settlement is, however, uninfluenced by the interface
permeability.
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