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The numerical modelling of advective transport in
the presence of fluid pressure transients
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SUMMARY

Conventional modelling of transport problems for porous media usually assumes that the Darcy flow
velocities are steady. In certain practical situations, the flow velocity can exhibit time-dependency, either
due to the transient character of the flow process or time dependency in the boundary conditions associated
with potential flow. In this paper, we consider certain one- and three-dimensional problems of the
advective transport of a chemical species in a fluid-saturated porous region. In particular, the advective
flow velocity is governed by the piezo-conduction equation that takes into account the compressibilities of
the pore fluid and the porous skeleton. Time- and/or mesh-refining adaptive schemes used in the
computational modelling are developed on the basis of a Fourier analysis, which can lead to accurate and
optimal solutions for the advective transport problem with time- and space-dependent advective flow
velocity distributions. Copyright © 2006 John Wiley & Sons, Ltd.

KEY WORDS: advective transport; piezo-conduction equation; stabilized numerical methods; time- and
mesh-adaptive schemes; transport from cavities

1. INTRODUCTION

The problem that deals with the movement of hazardous chemicals and other contaminants
in fluid-saturated porous media is of considerable importance to geoenvironmental engineering
[1-6]. The assessment of the distribution of the concentration of a chemical or a contaminant
within the porous medium influences the environmental decision-making process. It is rarely
possible to conduct large-scale experiments to determine the location of contaminant plumes
within the geosphere. In the event of either an accidental chemical spill or a geological disposal
of the chemical, recourse must be made to a plausible model to establish the spatial and
temporal distribution of the chemical. Even such theoretical approaches are only approxima-
tions of very complex transport processes that are influenced by the chemical interaction

*Correspondence to: A. P. S. Selvadurai, Department of Civil Engineering and Applied Mechanics, McGill University,
817 Sherbrooke Street West, Montreal, Que., Canada H3A 2K6.

TE-mail: patrick.selvadurai@mcgill.ca

*William Scott Professor and James McGill Professor

Received 28 August 2005
Revised 4 October 2005
Copyright © 2006 John Wiley & Sons, Ltd. Accepted 4 October 2005



616 A. P. S. SELVADURAI AND W. DONG

between the porous medium and the chemical species that is being transported. Purely advective
transport is perhaps the simplest approach to the modelling of the movement of a contaminant
of a chemical species in the porous medium that can provide useful first approximations of
engineering value. The absence of both diffusion effects and natural attenuation can lead to the
estimation of the location of contaminant plumes with the strongest concentration, which can
then be used to assess the most adverse effects.

In the conventional modelling of the advective transport problem it is invariably assumed that
the migration of the contaminant or the chemical species within a fluid-saturated medium is as a
result of steady Darcy flow applicable to an incompressible fluid. With geological media such as
soils, this is a relevant approximation, particularly when considering the incompressible nature
of the pore fluid with respect to the compressibilities of most porous soil fabrics. Selvadurai
[7-9] developed analytical solutions to examine the problem of contaminant migration resulting
from steady Darcy flow in two- and three-dimensional porous fluid-saturated geological regions.
Time dependency in the Darcy flow velocity can exist purely as a result of the time-dependent
variation in the boundary potential initiating flow [10]. A further class of time-dependent
velocity fields can be introduced to the advective transport problem as a result of the
compressibilities of the pore fluid and/or the skeleton of the porous medium. Such
compressibility is particularly important when considering the process of advective transport
of chemicals through highly porous geological media where the compressibility of the porous
skeleton can be comparable to that of the pore fluid. In a complete treatment of the chemical
transport problem in such geologic media, the flow velocities will be determined by partial
differential equations (PDEs) governing coupled processes for the deformations of the porous
medium and pore fluid flow developed by Biot [11] (see also Reference [12]). This paper utilizes a
simplified treatment of the coupled behaviour between the deformations of the pore fluid and
the porous medium that is restricted to predominantly volumetric deformations of the materials.
In such cases, the fluid pressure initiating Darcy flow in the porous medium can be described by
the ‘Piezo-Conduction’ equation [13,14].

The objective of this paper is to examine the advective transport of a chemical species in a
fluid-saturated porous medium where the flow velocities are derived from the solution of the
piezo-conduction equation. It is implicitly assumed that the chemical that is being transported
induces no changes to either the compressibility characteristics of the pore fluid or the hydraulic
characteristics of the porous medium. The paper presents a computational approach to the
solution of the weakly coupled system of PDEs and discusses a novel time- and/or mesh-refining
adaptive numerical scheme that can satisfactorily address advective transport problems where
the leading edge of the migration front has a sharp discontinuity. In particular, certain three-
dimensional problems involving migration from a pressurized crack are discussed.

2. GOVERNING EQUATIONS

The generalized problem of the advective transport of a chemical species in a fluid-saturated
porous medium is governed by the following PDE for the scalar concentration of the chemical
C(x, 1)

aa—f+vvc+cv-v=o (1)
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where x is a position vector, ¢ is time, v(X, ?) is the averaged advective flow velocity in the pore
space. The third term on the LHS of (1) is non-zero if the fluid is considered to be compressible.
The advective flow velocity in the porous medium is assumed to be governed by Darcy’s law,
which for an isotropic porous medium can be expressed by

v=—kV¢ ©)

In (2), k is the Dupuit-Forchheimer hydraulic conductivity which is related to the conventional
area averaged hydraulic conductivity & by the relation k = l%/ n* and n* is the porosity, ¢(x, ?) is
the flow potential inducing flow, which consists of the datum potential ¢, and the pressure
potential ¢,, i.e. ¢ = ¢p + ¢,. Considering the compressibilities of the pore fluid and the porous
skeleton as well as the mass conservation during the flow, the PDE governing the advective flow
potential can be reduced to the classical piezo-conduction equation

o
=L 3

This reduction assumes that the pressure potential is much higher than the datum potential. The
pressure diffusion coefficient D, in (3) is given by

k
Dy=—F——
Pwln*Cr + G4
where Crand C; are the compressibilities of the pore fluid and the porous skeleton, respectively,
and y,, is the unit weight of water. In the sense that the flow velocity field is uninfluenced by the

chemical transport process, the governing PDEs (1) and (3) can be regarded as being weakly
coupled.

D,V ¢, =

“4)

3. NUMERICAL SCHEMES

3.1. Stabilized semi-discrete Eulerian methods

Conventional computational schemes perform poorly in solving advection-dominated problems
that have a purely hyperbolic character. They introduce either oscillations or artificial diffusion
in the vicinity of discontinuous concentration profiles. To date, many stabilized finite element
methods have been developed for the accurate solution of the advection equation with the
solution containing a discontinuity (see e.g. References [15,16]). The basic concept underlying
these stabilized methods is to introduce, with the aid of asymmetric weighting functions,
artificial diffusion in the vicinity of a steep front of the solution. In this approach, a perturbation
is introduced into the conventional Galerkin weighting function, which should be added to
the ‘flow’ direction to avoid crosswind diffusion [17]. The general residual integral form of the
stabilized semi-discrete Eulerian method for the advection equation over domain ¥V has the
following form [18]:

/ {w+ o — T Vw}— dV + / {w + oy — T Vw} Vv dr =0 ®)
where w is the standard Galerkin weighting function. In (5), «; (i = 1,2) are perturbation
parameters referred to as the upwind functions or the intrinsic times of the stabilized methods

[19]. They can be determined using a least squares (LS) method [20], such that the artificial
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convection term has the adjoint form of the advection term in the equation, which gives rise to
computational schemes that are symmetric [21]. Alternatively, their choice can be based on a
Fourier analysis to ensure that numerical modelling gives rise to an ‘optimal’ solution of the
transient advection equation [22], such as the one in streamline upwind Petrov—Galerkin method
proposed by Hughes and Brooks [17]. The upwind function can also take different values to
generate different stabilized methods, such as the Taylor—Galerkin method [23].

3.2. The modified LS method

Since the LS method can generate a symmetric matrix form for the advection equation, the
method has significant potential for the examination of the non-linear problem. Wendland and
Schmid [21] proposed the 3S scheme (Symmetrical Streamline Stabilization) for the numerical
modelling of the advection-dominated transport problem, in which a parameter was introduced
into the upwind term of the LS scheme to obtain optimal computational performance. This
approach is equivalent to using different perturbation parameters in the weighting functions for
the temporal and spatial terms of the advection equation in the LS method: i.e.

/ [w+ 0Atv - Vw] 66_(; dv + / W+ afAtv - Vwl(v - VC" ) dV =0 (6)
% v

and therefore this scheme can be referred to as the modified LS (MLS) method. The parameter
o in (6) accounts for the upwind effect, which can be determined from a Fourier analysis
to achieve a better numerical performance of the MLS scheme for the advection equation.

4. TIME- AND SPACE-ADAPTIVE PROCEDURES

4.1. Fourier analysis

The mathematical performance of stabilized semi-discrete Eulerian methods for the advection
equation can be demonstrated via a Fourier analysis in the frequency domain by means of the
algorithmic amplitude and the phase velocity of the numerical scheme [24, 25]. Selvadurai and
Dong [26] performed a Fourier analysis of the MLS scheme for the advection equation and
obtained the following analytical expressions for the algorithmic amplitude (" and the relative
phase velocity u*/u of the MLS method applicable for the one-dimensional advection equation
with the application of the trapezoidal rule

\/[2 + cos(wh) — 6aCr20(1 — 0)(1 — cos(wh))]> + 9Cr2 sin®(wh)

oh _

¢ =)= 2 + cos(wh) + 6aCr20°(1 — cos(wh)) (72)
wt Q" arg(z(w) 3Cr sin(wh)

U o wht Cropren <2 ¥ cos(wh) — 62Cr20(1 — O)(1 — cos(wh))) (75)

where z(w) is the spectral function of the MLS numerical operator for the advection equation
with the application of the trapezoidal rule, Cr (= uAt/h) is the Courant number, u is the one-
dimensional flow velocity, / is the length of the piecewise element, w/ is dimensionless wave
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number and 0 is time weighting. From the analytical expression (7), the following results can be
obtained for the optimal values of the algorithmic amplitude and the relative phase velocity of
the MLS scheme for the advection equation

h
¢ |a:3/2,9=1 Scre1= 1 (8a)

sk
v -1 (8b)
U y=3/2,0=1/3,Cr=1
Figure 1 shows the variation of the algorithmic amplitude and the phase velocity given by (7)
with the definition of « = 3/2 and 0 = 1/3 with the Courant number Cr and the dimensionless
wave number wh.

4.2. Courant number criterion

The results (8) imply that with o« =3/2, 6 =1/3 and Cr =1, there are no errors in the
algorithmic amplitude and the phase velocity of the MLS scheme for the advection equation for
all values of the dimensionless wave number w#, and therefore all wave components included in
the solution will travel at the same speed without shape distortion. This indicates that the MLS
method with o = 3/2 and 6 = 1/3 can generate an accurate solution for the advection equation
under the condition of Cr = 1. Such optimal conditions for the MLS scheme can be used in
conjunction with the time- and/or mesh-adaptive procedures to obtain an accurate solution for
the advective transport problem characterized particularly by a discontinuous leading edge and
initiated by a time- and space-dependent flow field. In such time- and/or mesh-adaptive schemes,
the time step At, or elemental length /;, of the elements in regions where a steep front of the
solution is plausibly located, should be determined on the basis of the Courant number criterion

MlAr
hie

where ie refers to the elements where the steep front is located, /;, and ||v||,, are, respectively, the

characteristic length and magnitude of the flow velocity within the element ie. The steep front of

(Cr)e = 1 )

(b)

Figure 1. The variation of: (a) the algorithmic amplitude; and (b) the relative phase velocity of the MLS
scheme with « = 3/2 and 6 = 1/3 for the advection equation with Cr and wh.
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the solution is located through an error indicator E(e), based on the first derivative of the
solution for each element [27]

2
E(e) = G LR vcf) (10)

jeoe

where n; is the unit normal to the edge j of the element with the length /; and Oe is the boundary
of the element. The term in square brackets in (10) represents the jump in the flux across the
element edge. The locations (or elements) of the steep front are determined by satisfying
E(e)> p and f is a parameter, which can be defined by the half of the maximum of E(e),
ie. f=0.5 max(E(e)).

In the ensuing sections, the time- and mesh-adaptive procedures will be used in conjunction
with the MLS scheme to examine the advective transport problems associated with one- and
three-dimensional axisymmetric configurations where the advective flow velocities are both
time- and space-dependent and derived from the transient pressure potential governed by the
piezo-conduction equation (3).

5. A ONE-DIMENSIONAL ADVECTIVE TRANSPORT PROBLEM

5.1. The transport equation with the analytical transient flow velocity

In this section, a one-dimensional problem of the advective transport of a chemical species in a
fluid-saturated porous medium is examined. The advective flow velocity is determined by the
flow potential, which is governed by the following initial boundary value problem (IBVP)
applicable to a one-dimensional semi-infinite region: the governing PDE is

& h, 0,
i (112)
and the boundary and regularity conditions and initial conditions are, respectively,
$,(x,00=0, xe[0,00) (11c)

where H(¢) is the Heaviside step function. An analytical solution for the IBVP (11) has the
following form (see e.g. References [6, 28]:

X
¢I7(X, t) = ¢() erfc <2—\/m> (12)
where erfc(x) is the complimentary error function defined by
P
erfc(x)zl——/ e ¢ d¢ (13)
Vo
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From (12), the flow velocity in the semi-infinite porous region is given by

o 1 X2
v(x, 1) = — a—; = k¢, (71% exp (‘@)) (14)

Therefore, the one-dimensional problem of advective transport in the semi-infinite porous
region is governed by the following PDE:

—x%/4D, —x2/4D,
§+k¢0 exp(—x~/4Dyt) Eik% x exp(—x*/ 2pt) C—0 (15)
ot Dyt ox 2ﬁ(Dpz)3/
The solution of (15) is subject, respectively, to the following initial and boundary conditions:
C(x,00=0, xe€][0,00) (16a)
C(0,7) = CoH (1) (16b)

The IBVP defined by (15) and (16) is well-posed. In the computational modelling of the
problem, however, we assume that the concentration profile will satisfy a physically consistent

regularity condition
C(x,t) >0 as x » 00 (17)

5.2. Computational modelling

For the purpose of the computational modelling, we restrict attention to the following specific
problem where a constant flow potential ¢, = 100 m is applied at the upstream boundary. The
Dupuit-Forchheimer hydraulic conductivity and the porosity of the porous medium are chosen
as k=0.03 m/day and »n* = 0.3, respectively, the compressibilities of the porous aquifer
material and the pore fluid are taken as Cy = 1.0 x 107 m?/N and C; = 4.4 x 1071 m?/N,
respectively. For the fluid-porous medium combination, the specific storage is approximately
equal to Sy = 1.0 x 10® m?/N. The transport process is simulated by a finite element model
applicable to a domain of finite extent, V' = [0, /] with / = 30 m. In view of the truncation of the
infinite domain and in the absence of the use of appropriate infinite elements, the regularity
condition in (11b) is replaced by the Neumann boundary condition applicable at the
downstream boundary, i.e. [0C /8x]‘X:Z: 0. The computational domain ¥ is discretized into
300 piecewise linear elements with identical length 7z = 0.1 m. The distribution of the flow
potential and the flow velocity over the finite domain, obtained from analytical solutions (12)
and (14), respectively, during a period of 10 days are shown in Figure 2. It is evident that the
flow velocity has a strong time- and space-dependency due to the presence of pressure transients.

In order to validate the necessity and the efficiency of the computational scheme involving the
time-adaptive procedure, we shall first examine the numerical results for the advective transport
problem derived from the MLS scheme both with and without the time-adaptive procedures. In
the time-adaptive procedure, the time step during the computation is determined by the Courant
number criterion (9) and by the magnitude of the flow velocity in the element where the steep
front of the solution is located. Figure 3 illustrates the corresponding numerical results
determined from the two approaches for the advective transport process governed by (15).
These results clearly indicate that in the absence of a time-adaptive procedure, the MLS method
generates oscillations in the solution, due to the spatial and temporal variations in the flow
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Figure 2. The distribution of: (a) the flow potential; and (b) the flow velocity in the time—space region.
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Figure 3. Computational results corresponding to ¢ = 400 days for the advective transport with a transient
advective flow velocity in a porous region obtained from the MLS method: (a) without time-adaptive
procedure; and (b) with time-adaptive procedure.

velocity; the time-adaptive MLS scheme, on the other hand, gives oscillation-free and
non-diffusive computational results for the concentration profile resulting from one-dimensional
advective transport with transient flow velocities. In the computational scheme associated with
the time-adaptive technique, the initial time step of Ar = 0.2 days finally increases to Az = 33
days to satisfy constraint (9) imposed by the Courant number criterion.

6. THREE-DIMENSIONAL AXISYMMETRIC ADVECTIVE
TRANSPORT PROBLEMS

Next, we focus attention on a problem involving advective transport of a chemical from a
flattened cavity in a porous medium (Figure 4). This problem is of practical importance in
connection with the deep geological disposal of hazardous chemicals in a hydraulically fractured
cavity at the base of a borehole. Since the problem is axisymmetric and the geometry of the
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Figure 4. A concept for deep geological disposal of hazardous chemicals.
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Figure 5. The finite element discretization of the computational domain and the associated boundary
conditions for the flow and the advective transport from an oblate spheroidal cavity.

cavity also exhibits symmetry about the plane z =0, attention can be restricted to the
consideration of a quarter-domain where suitable Neumann boundary conditions are imposed
to satisfy requirements of symmetry. The boundary conditions corresponding to a cavity region
with ¢ =8 m and » = 1 m are shown in Figure 5. The outer boundary is fixed at a radius
R(= v/r* + z2) = 30 m where a Neumann boundary condition is applied to C(x, ) in order to
achieve the required regularity condition at infinity. The Dupuit—Forchheimer measure of
hydraulic conductivity of the porous medium is taken as k£ = 0.03 m/day. The boundary of the
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cavity is subject to a potential ¢, H(z) and the far field potential is maintained at a zero value as
shown in Figure 5.

6.1. Mesh-refining adaptive scheme

The computations presented in Section 5 indicate that the MLS scheme with the chosen values
of « =3/2 and 0 = 1/3 can generate an accurate solution for the advection equation when the
elemental Courant number is kept at unity in regions where the steep front of the solution is
located. From the basis for the observation presented in Section 4, it is noted that the accuracy
of the solution obtained from the MLS scheme for the advection equation is sensitive to the
Courant number criterion (9). For one-dimensional problem, it is relatively easy to satisfy the
Courant number criterion by selecting the time step based on the time-adaptive procedure.
When dealing with spatially multi-dimensional transport problems, especially with finite
element discretizations that use elements of arbitrary shape and size, it is difficult to choose a
single time step for which the Courant number criterion (9) is satisfied by all elements with
different magnitudes of flow velocities and characteristic lengths, particularly at the leading edge
of a discontinuous concentration front. Once the Courant number exceeds unity, the MLS
scheme with o« = 3/2 and 6 = 1/3 will become unstable since {" > 1. Therefore conservative
values of «, 8 and Cr should be used to ensure that the scheme is always stable, i.e. ¢"<1. This
implies that the requirement (" = 1 imposed by the Courant number criterion may not be
exactly satisfied. The conservative choices of o and 6 should be determined from the
consideration of the following aspects: (i) since (" = 1 may not be satisfied, the condition
u* /u = 1 must be satisfied; (ii) since there is only one remaining equation, one of two parameters
o and 0 can be determined beforehand, and usually the time weighting 6 is chosen as 0 = 1/2
such that the scheme has a greater accuracy in the time-integration scheme (i.e. the Crank—
Nicholson (CN) time integration scheme). Substituting 6 = 1/2 into (7b) leads to the following
results for the phase velocity of the MLS scheme for the advection equation:

sk

l =1 (18a)
U |y=4/3,0=1/2,Cr=1
%k
“ =1 (18b)
U \y=4/30=1/2,Cr=1/2

From (18), we observe that by specifying « = 4/3 and 8 = 1/2, no error will occur in the phase
velocity of the CN-MLS scheme (CN-MLS) when Cr = 1/2 and Cr = 1. Figure 6 illustrates the
variation in the algorithmic amplitude (" and relative phase velocity u*/u of the CN-MLS
scheme with the Courant number Cr € [0, 3] and the dimensionless wave number wh € [0, x].
From the variations shown in Figure 6 it is evident that although (18a) and (18b) are satisfied,
¢" will decay much faster when Cr = 1/2 than when Cr = 1. This observation indicates that the
CN-MLS scheme is more diffusive for Cr = 1/2 than for Cr = 1, and an adaptive procedure
that is based on Courant number criterion (9) should also be combined with the CN-MLS
scheme to obtain better numerical performance in the case of multi-dimensional advective
transport problems.

With the Courant number criterion (9), the A-refinement of a mesh-adaptive algorithm [29, 30]
can be developed with the CN-MLS scheme to obtain an optimal numerical solution for the
advective transport problem governed by a time- and space-dependent flow velocity field. In
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(b)

Figure 6. The variation of: (a) the algorithmic amplitude; and (b) the relative phase velocity of the MLS
scheme with « = 4/3 and 6 = 1/2 for the advection equation with Cr and wh.

such a mesh-adaptive scheme, the mesh at the locations of the steep front of the solution can be
refined quantitatively with the Courant number criterion (9) based on the magnitude of the flow
velocity. Since the size of the element will be decreased during the mesh refinement, the
elemental Courant number will be increased. Therefore, in order to avoid high elemental
Courant numbers, the criterion (Cr),, <0.5 should be used in the mesh-adaptive algorithm, such
that the Courant numbers in the refined elements do not exceed unity. In such a mesh-refining
approach, only the elements where the high gradient of the solution is encountered need be
refined by reducing the dimensions of all the edges or the longest edge of the selected triangles
into half their original length. This mesh-refining adaptive scheme will be used in the ensuing
section to develop computational results for the advective transport of a contaminant from the
boundary of an oblate spheroidal cavity, induced by both steady flow and unsteady flow.

6.2. The advective transport with a steady fluid flow

First, the steady-state problem of the advective transport from the oblate spheroidal cavity in a
non-deformable porous medium is considered (i.e. the pore fluid is considered to be
incompressible and the porous skeleton is assumed to be non-deformable). In this case, the
piezo-conduction equation reduces to Laplace’s equation, and the corresponding steady flow
velocity field resulting from the flow potential boundary conditions indicated in Figure 5 is
shown in Figure 7. The results indicate that the flow velocity field has a strong spatial
dependency and decays rapidly for points located remote from the pressurized cavity.
Selvadurai [10] gave an exact closed-form analytical solution for the advective transport from
the oblate spheroidal cavity when a steady flow is induced in the porous domain of infinite
extent through the application of a constant potential at the cavity boundary. Figure 8 shows
the analytical solution at time ¢ = 30 days, applicable to a quarter of the domain shown in the
Figure 4. The corresponding computational results shown in Figure 9 were obtained from the
CN-MLS scheme without the application of the adaptive procedure. In the numerical
computations, the time step is chosen as A7 = 1.0 day such that the elemental Courant number
near the cavity boundary is approximately equal to the optimum value of unity. It can be noted
that numerical oscillations are introduced into the solution in the vicinity of the steep edge

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2006; 30:615-634



626 A. P. S. SELVADURAI AND W. DONG

0 5 10 15 20 25 30
0 T " el T T T

FT ULy AN .

FEd G g S

I S T T T W T, R

(I R T .
‘5'h]-\\'\.'\.\| --------------------

[ T TS S T A TR T S T e I A R

[ TR T S N TR Y YR T T T T T SRR T T B N B
AOFa sen Bis win mes se® gl B A i
I 13 S e T S 4
_20h I T T e S T T T T u
Y 4
z L
_30 — 1 1 1 1

Cilr,z,t ) Cy

:-r//_iﬁ r
30 0
Figure 8. The analytical solution of the advective transport from an oblate spheroidal
cavity (a/b = 0.125) [10].

located remote from the cavity, due to the small magnitude of the flow velocity, which induces
the low Courant number and the large discrepancy between the phase velocity and the flow
velocity. If the time step is increased, the numerical oscillations will be introduced into the
solution at the early stages of the transport process (i.e. the steep front is located in the vicinity
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Figure 9. Numerical results at # = 30 days for the advective transport from the oblate cavity obtained from
the CN-MLS scheme with Az = 1.0 days.

of the cavity) due to the high Courant number resulting from the large magnitude of the flow
velocity. In the transport processes where the flow field exhibits spatial variations of the type
indicated in Figure 7, it is difficult to choose a constant time step with an almost uniform mesh
(similar to that shown in Figure 5) to ensure that the elemental Courant number is unity over
the entire computational domain. For this reason, adaptive procedures should be used during
the computations to satisfy the Courant number criterion (9) at all times. This conclusion can be
verified through a numerical computation obtained from a time-adaptive scheme.

The application of the time-adaptive procedure is based on the consideration that the
advective flow field along the steep front of the solution is almost uniformly distributed (see
Figure 7) and that the element sizes are approximately the same (see Figure 5). In such a time-
adaptive procedure, the time step is determined by satisfying the criterion (9), which takes
the form

Ar = min ( i ) (19)
e \I[¥llz

The minimum value of (19) ensures that the time step selected maintains the elemental Courant
number along the steep front to a value less than unity. Figure 10 illustrates the numerical
results obtained from such a time-adaptive CN-MLS scheme, from which it is noted that serious
oscillations introduced by the CN-MLS scheme (without the time-adaptive procedure) are
eliminated due to the appropriate choice of the time step. Since the magnitude of the flow
velocity is relatively large in regions where the transport process commences, the time step
should be kept small to satisfy (19), and should subsequently be increased due to the reduction
in the magnitude of the flow velocity when the steep front migrates to a remote region where the
flow velocities are comparatively smaller. Using this procedure, the initial time step of Az = 1
day increases to At = 7.6 days at the termination of the computation process.

Since arbitrary triangular elements are used in the computational modelling and the time step
determined by (19) is a minimum, the Courant number in certain elements where the steep front
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Figure 10. Numerical results at 1 = 30 days for the advective transport from the oblate cavity obtained
from the time-adaptive CN-MLS scheme (the initial time step Az = 1.0 days is increased to A7 = 7.6 days).

is located may not be close to the optimum value of unity. This discrepancy will lead to small
oscillations in the concentration profile, which are illustrated in Figure 10. Furthermore, the
numerical scheme also has an over-diffusive character due to the decay of the algorithmic
amplitude for high wave numbers corresponding to Cr = 1.0 (see Figure 6(a)). A way of
avoiding this over-diffusive feature in the solution is through a reduction of the element size,
rather than through an increase of the time step based on Courant number criterion (9).
Reducing the element size is equivalent to lowering the dimensionless wave number w/, thereby
compensating for the decay in the algorithmic amplitude of the scheme for high wh.

Figure 11 shows the numerical solutions obtained from the CN-MLS scheme combined with
the mesh-refining adaptive procedure just described. These computational results indicate that
the mesh-refining adaptive CN-MLS scheme can generate satisfactory numerical estimates for
the linear advective transport in multi-dimensional domains. The effect of the numerical
diffusion embedded in the CN-MLS scheme (see discussion in the previous section) is also
presented in these numerical results, but it is much smaller than that introduced by the time-
adaptive scheme. Judging from the flow pattern shown in Figure 7 and the Courant number
criterion (9), it should be noted that the elements located remote from the cavity should be
subjected to greater refinement than those located in the vicinity of the cavity. The mesh-refining
attributes of the computational scheme are shown in Figure 11. With the mesh-refining adaptive
procedure, the MLS scheme with « =3/2 and 0 = 1/3 is also considered in modelling the
advective transport problem from the oblate spheroidal cavity and the corresponding numerical
results are shown in Figure 12. The results in Figure 12 also indicate that serious oscillations are
introduced into the solution by the numerical scheme even with the use of the mesh-adaptive
procedure, due to the instability of the scheme caused by the inappropriate choice of the
Courant number.

The time-adaptive procedure can be combined with the mesh-refining adaptive scheme to
improve the efficiency of the computational approach. Figure 13 illustrates the corresponding
numerical solution obtained using both the time- and mesh-adaptive schemes. The initial time
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30 0

Figure 11. Numerical results at z = 30 days for the advective transport from the oblate cavity obtained
from the mesh-adaptive CN-MLS scheme with Ar = 1.0 days.
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Figure 12. Numerical results at # = 30 days for the advective transport from the oblate cavity obtained
from the mesh-adaptive MLS scheme with o« = 3/2 and 6 = 1/3.

step of At = 1.0 day adaptively increases to Az = 5.5 days at the end of the computation. With
the increase in the time step, the mesh refinement is performed on a coarser level than that used
in the mesh-adaptive scheme. From this point of view, the combined time- and mesh-adaptive
scheme is computationally more efficient than the purely mesh-adaptive scheme. However,
because of the use of the coarser refined mesh, the numerical solution obtained from the
combined time- and mesh-adaptive scheme is more diffusive than that obtained from the mesh-
adaptive scheme.
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Figure 13. Numerical results at t = 30 days for the advective transport from the oblate cavity
obtained from the time- and mesh-adaptive CN-MLS scheme (the initial time step Az = 1.0
days is increased to Az = 5.5 days).

6.3. Advective transport from an oblate spheroidal cavity induced by pressure transients

In this section, we consider the advective transport problem where the flow velocities are
governed by the piezo-conduction equation, which takes into consideration the compressibilities
of the pore fluid and the soil skeleton. Attention is focused on the advective transport of a
chemical from an oblate spheroidal cavity located in an extended porous medium where the
boundary of the cavity is simultaneously subjected to pressure and chemical pulses in the form
of Heaviside step function. The material and physical parameters governing hydraulic
conductivity, compressibilities and porosity are kept the same as those used in Section 5.
The mesh-refining adaptive as well as the combined time- and mesh-refining adaptive
CN-MLS schemes are used to solve the pressure transient-induced advective transport problem.
Figure 14 illustrates the numerical results obtained from the two adaptive schemes. In the
combined time- and mesh-refining adaptive scheme, the initial time step commences with Az =
1.0 day and increases to Az = 5.5 days at the end of the computation corresponding to ¢ = 30
days. Again, the mesh-adaptive scheme generates a more accurate solution, but the combined
time- and mesh-adaptive scheme is considered to be more efficient.

6.4. Advective transport from a cylindrical cavity

As a final example, we consider the problem of advective transport from a cylindrical cavity
located in an extended porous medium. The chemical is introduced at the boundary of the
borehole and its migration through the porous medium is as a result of a time- and space-
dependent velocity field. Figure 15(a) illustrates the axisymmetric computational domain and its
discretization as well as the boundary conditions applicable to the piezo-conduction equation
and the advection equation. Figure 15(b) illustrates the flow field over the computational
domain corresponding to r = 30 days, which is determined from the piezo-conduction equation
and the potential boundary conditions. The computational results and the refined mesh for the
advective transport from the borehole corresponding to 7= 30 days, obtained from the
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Figure 14. Numerical results at t = 30 days for the advective transport from the oblate cavity with pore
pressure transient obtained from: (a) the mesh-adaptive CN-MLS scheme; and (b) the combined time- and
mesh-refining adaptive CN-MLS scheme (the initial time step Ar = 1.0 days is increased to Az = 5.5 days).
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Figure 15. The finite element discretization of the computational domain containing a borehole and the
associated boundary conditions: (a) mesh discretization; and (b) flow field at z = 30 days.

combined time- and mesh-refining CN-MLS scheme, are shown in Figure 16. In this
computation, the initial time step is chosen as Af = 0.2 days and it increases to At = 7.9 days
as the time-adaptive feature comes into effect.

Finally, we consider the advective transport problem where a time-dependent potential is

applied at the boundary of the borehole. This time-dependency in the boundary potential has
the form

100, <20 days
0= (20)

200, ¢>20 days
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Figure 16. Numerical results for # = 30 days for the advective transport from a borehole with pressure
transient obtained using a mesh-adaptive CN-MLS scheme: (a) 3D concentration profile; and (b) the
corresponding refined mesh.
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Figure 17. Computational results for z = 30 days of the advective transport from a borehole with pulsed
potential boundary, obtained using the mesh-adaptive CN-MLS scheme: (a) 3D concentration profile; and
(b) the corresponding refined mesh.

The computational results and the refined mesh corresponding to # = 30 days, obtained from
the mesh-refining CN-MLS scheme with Az = 1.0 day, are shown in Figure 17. A mesh gap can
be clearly seen in the refined mesh, which corresponds to an increase of the flow velocity caused
by a rise in the potential pulse applied at the boundary of the borehole. This increase of the flow
velocity has the effect of accelerating the transport process (see e.g. the results shown in Figures
16(a) and 17(a)).
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7. CONCLUSIONS

In this paper, certain advective transport problems for fluid-saturated porous media are
examined using a computational approach, where, due to the presence of fluid pressure
transients, the flow velocity field is both time- and space-dependent. The piezo-conduction
equation is used in the study to determine the pore fluid pressure transients in a fluid-saturated
porous medium. The time- and mesh-adaptive numerical schemes are proposed, respectively, for
the modelling of one- and multi-dimensional advective transport problems with time- and space-
dependent flow velocity to achieve an optimum computational performance. The computational
results for one-dimensional semi-infinite domains as well as three-dimensional axisymmetric
domains are presented to illustrate the need for adaptive procedures, for handling a non-
classical hyperbolic conservation equation with time- and position-dependent advective flow
velocities and with steep advective transport fronts.
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