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Abstract

This paper deals with the problem of the transverse deflection of a natural rubber membrane that is

fixed along a circular boundary. Uniaxial experiments were performed in order to characterize the

constitutive behaviour of the rubber material in terms of several constitutive models available in the

literature. These constitutive models were used to develop computational estimates for the quasi-

static load–displacement response of a rigid spherical indentor that deflects the rubber membrane in a

controlled fashion and to determine the deflected shape of the membrane at specified load levels.

Both axisymmetric and asymmetric deflections of the rubber membrane were investigated. The paper

provides a comparison of the experimental results for the membrane deflections with results derived

from computational simulations.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Modern developments in the mechanics of rubber-like materials commence with the
seminal works of R.S. Rivlin, which are presented in the collective works edited by
Barenblatt and Joseph (1997). The contributions to the theory of elastic materials
exhibiting large strain phenomena, subsequent to Rivlin’s work, are far too numerous to
see front matter r 2006 Elsevier Ltd. All rights reserved.
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be cited individually; complete accounts of these developments are given in the review and
survey articles by Doyle and Ericksen (1956), Rivlin (1960), Adkins (1961) and Spencer
(1970) and in the volumes by Green and Adkins (1970), Treloar (1975, 1976), Carlson and
Shield (1980), Ogden (1984), Lur’e (1990), Truesdell and Noll (1992) and Drozdov (1996).
Recent developments in the theory of non-linear elasticity are given in the noteworthy
survey volume by Fu and Ogden (2001) and in the lectures series organized by Hayes and
Saccomandi (2001) and Saccomandi and Ogden (2004). The mechanics of rubber-like
membranes is an area of application that has aided developments in the theory of finite
elasticity; problems related to the in-plane homogeneous straining of rubber membranes
are given in the classical studies by Rivlin and Saunders (1951), while the work of Gent and
Rivlin (1952) deals with the inflation, extension and torsion of a cylindrical rubber tube.
Plane deformations of neo-Hookean membranes were investigated by Wong and Shield
(1969) who showed that under large meridional strains the non-linear problem can be
reduced to a linear problem.
A further class of problems deals with edge-supported membranes that can experience

large deformations and large strains as a result of loads applied in a transverse direction.
This topic, of general interest to the study of the mechanics of membranes, plates and
shells, commenced with the works of Föppl, Hencky, Clebsch, Schwerin, Girkmann, von
Karman and others. Useful historical reviews are given by Timoshenko (1953),
Timoshenko and Woinowsky-Krieger (1959), Naghdi (1972), Libai and Simmonds
(1998) and Steigmann (2001). An early application of the theory of finite elasticity to
study the inflation of a membrane is given by Adkins and Rivlin (1952), who considered
the inflation of a plane sheet of rubber to a nearly spherical shape. In their study, the
experimental results of Treloar (1944) were complemented by a comprehensive finite
elasticity analysis of the problem for various rubber-like elastic materials, with different
forms of the strain energy functions. Klingbeil and Shield (1964) used a central difference
analysis of the pressurized flat circular rubber membrane problem to determine the
empirical forms of the relevant strain energy functions. Foster (1967) examined a similar
problem related to the inflation of a flat circular membrane to a nearly spherical shape, and
presented comparisons with analytical solutions developed for a neo-Hookean material.
The problem of the stress concentration due to stretching a rubber sheet containing either a
circular hole or a rigid circular inclusion was examined by Yang (1967); numerical results
were presented for a rubber-like elastic material with a strain energy function of the
Mooney–Rivlin type. Hart-Smith and Crisp (1967) presented a very comprehensive study
of the stretching of a rubber membrane and the theoretical developments were discussed in
relation to the experimental results obtained by Treloar (1944). These authors also
highlighted the advantage of using the membrane inflation problem as a technique for
determining the constitutive parameters of rubber-like materials. Wu (1970a) considered
the problem of the deformation of a tube of hyper-elastic material that transforms the tube
to an annulus and presented an exact solution to the problem, applicable to hyper-elastic
materials with strain energy functions of the Mooney–Rivlin and neo-Hookean types. Wu
(1971) also applied these methodologies to examine certain two-dimensional contact
problems associated with the indentation of a pressurized cylindrical membrane.
Kydoniefs and Spencer (1969) and Kydoniefs (1969) examined, respectively, hyper-elastic
problems related to the behaviour of an initially axisymmetric cylindrical membrane and
the interaction of an initially cylindrical membrane enclosing a rigid body. Of related
interest is the paper by Pipkin (1968) who considered solutions to hyper-elastic membrane
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problems where the undeformed surface corresponds to a cylindrical surface. In this case,
the equation of equilibrium for the direction tangent to the meridian curve can be
integrated exactly. Further integrable forms of the equations for a membrane are given by
Wu (1970b). Solutions to a class of deformations associated with non-planar rubber-like
membranes have also been presented by Wu (1972, 1974, 1979); references to further
studies in this area are given by Spencer (1970). Yang and Feng (1970) examined the
problem of the inflation of a flat circular membrane due to uniform pressure. The
numerical technique proposed in the paper was used to develop solutions for the inflation
of both a circular membrane and a sheet of rubber, the constitutive behaviour of which
was modelled by a Mooney–Rivlin material, with extensive numerical results provided for
the membrane profile at different stages of the inflation process. The problem of the
axisymmetric indentation of a circular membrane by a spherical indentor was examined by
Yang and Hsu (1971); again, the governing non-linear equations were solved for a
Mooney–Rivlin material. The membrane indentation problem discussed in the paper by
Yang and Hsu (1971) closely resembles the axisymmetric study discussed in the present
paper. Further results were obtained by Feng and Yang (1973), Yang and Lu (1973), Feng
et al. (1974), and Feng and Huang (1975) for inflation and inflation-induced contact
problems related to both circular and rectangular membranes. Problems related to the
axisymmetric inflation of a circular membrane containing a rigid disc inclusion and the
inflation of an ellipsoidal membrane were examined by Tielking and Feng (1974), using a
minimum potential energy approach. Feng et al. (1974) extended these studies to develop a
solution to the problem of an edge-constrained square membrane subjected to uniform
pressure and included a situation where a contact constraint is induced by a rigid
immovable smooth obstacle interacting with the deforming membrane. The problem of
radial deformation related to a plane-sheet containing either a circular hole or a rigid
circular inclusion was examined by Verma and Rana (1978). The measure of strain used in
their study is that of Seth (1964) and the solution differs from that given by Yang (1967).
Naghdi and Tang (1977) present a comprehensive study of the problem of controllable
deformations possible in elastic membranes and provide a wide range of general theorems
applicable to thin shells composed of both compressible and incompressible hyper-elastic
materials. Pujara and Lardner (1978) discuss the inflation problem for a flat circular
membrane and present results for two classes of rubber-like elastic materials, including the
Mooney–Rivlin material and one suitable for blood cell membranes proposed by Skalak
et al. (1973). Wu (1979) examined the finite strain elasticity problem related to a
membrane; the treatment in the paper was relatively general, although explicit results were
given for the problem of a plane circular membrane of a neo-Hookean material that
transformed into a near-spherical shape. Feng (1987) examined the problem of the
indentation of a membrane by an indentor in the form of a paraboloid of revolution,
giving numerical results for the case where a square membrane composed of a
Mooney–Rivlin material is subjected to indentation. The study by Fulton and Simmonds
(1986) considered the large deformations resulting from edge loading of annular
membranes. Results were presented for hyper-elastic materials with strain energy functions
of the neo-Hookean and Mooney–Rivlin forms and for the strain energy function
proposed by Rivlin and Saunders (1951). The problem of the finite deformation of a
circular elastic membrane containing an axially loaded concentric rigid inclusion was
considered by Tezduyar et al. (1987); a Newton–Raphson technique was used to solve the
resulting non-linear problem for the special case of a Mooney–Rivlin material. Pamplona
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and Bevilacqua (1992) considered a similar problem for both neo-Hookean and
Mooney–Rivlin materials, and the resulting non-linear problem was solved using a
numerical scheme based on the Picard-iteration technique. The problem of finite
deformation and stability of spherical membranes under axisymmetric concentrated loads
has been investigated, both experimentally and computationally, by Glockner and
Vishwanath (1972), Szyszkowski and Glockner (1987) and Dacko and Glockner (1988).
Non-linear problems arising as a result of ponding instabilities in membranes due to fluid
accumulation are discussed by Tuan (1998). The analysis presented by Li and Steigmann
(1995) considers the point loading of a spherical elastic membrane with a relaxed strain
energy function derived from the three-term strain energy function given by Ogden (1972).
Useful experimental results concerning nano-indentation of polymeric surfaces are given
by Poilane et al. (2000), although the results are largely related to the linear elastic analysis
of the indentation problem. The study by Begley and Mackin (2004) also considers the
indentation of a circular membrane in the context of a large deflection theory and provides
additional references to similar investigations. The inflation of a rubber-like elastic
material was examined by Rachik et al. (2001) giving a useful account of the use of the
experimental results for the purposes of material parameter identification, both directly
and indirectly, for strain energy functions of the following forms: the generalized
Mooney–Rivlin and the van der Waals models, and those proposed by Ogden (1972),
Yeoh (1993) and Arruda and Boyce (1993). A computational treatment of the pressurized
response of hyper-elastic membranes with general boundary configurations was given by
de Souza Neto et al. (1995). Arroyo and Belytschko (2002) examined the finite deformation
problem for a membrane in the context of the modelling of nano-tubes; in their study, a
continuum model was presented for a one-atom thick crystalline film. An inter-atomic
potential of the Born-type was used to construct the strain energy function applicable to
the equivalent continuum. These authors have implemented the constitutive model in an
advanced computational scheme that can accommodate large strain elasticity phenomena.
Computational results presented illustrate the development of global and local instabilities
in nano-tubes. Finally, Steigmann (2005) has investigated the problem of the puncturing of
a rubber membrane by a loaded blunt frictionless indentor, obtaining a solution for the
conditions under which a circular hole is formed at the centre of the contacting membrane.
This overview is not meant to be complete; the review article by Beatty (1987) and the

volumes by Green and Adkins (1970), Truesdell and Noll (1992) and Libai and Simmonds
(1998) contain further references to topics of interest to the membrane problems. Other
aspects of membrane behaviour include the development of instabilities in the form of
wrinkling and local buckling; the volume by Antman (1995) and the articles by Haughton
(2001) and Steigmann (2001) can be consulted for more complete discussions of these
topics.
This paper first presents an experimental study of the uniaxial response of a natural

rubber for the purposes of establishing the most appropriate form of the constitutive
relationship to describe its hyper-elastic behaviour. Correlations with uniaxial test data are
used to characterize the constitutive response of the rubber material in terms of the hyper-
elastic models described by the Mooney–Rivlin, neo-Hookean, Blatz–Ko, Yeoh and
Ogden forms. The experimental work is extended to determine both the axisymmetric and
asymmetric responses of a membrane that is fixed along a circular boundary and subjected
to transverse indentation by a rigid spherical indentor. The frictional characteristics of the
contact between the indentor and the rubber membrane are also evaluated experimentally.
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The constitutive models developed through uniaxial testing are implemented in a standard
computational code to predict the indentational response of a rubber membrane both in
terms of the load–displacement response of the rigid spherical indentor and the deflected
shape of the membrane. The computational modelling also takes into consideration the
influence of friction between the rigid indentor and the rubber membrane. The predictive
capabilities of the constitutive models are examined through a comparison of the
experimental results and computational predictions for both the load–displacement
response of the indentor and through an examination of the deflected shape of the
membrane.

2. Uniaxial testing of the rubber material

The uniaxial testing of the rubber material was carried out using an experimental device
that maintained the ends of the sample in a constrained fixed condition, preventing, lateral
contraction during extension. This is a particularly convenient testing arrangement
provided the constitutive parameter identification is restricted to the data taken from the
region of the sample that exhibits a near homogeneous strain. The nominal overall
dimensions of the sample used in the uniaxial testing were 70mm in length and 90mm in
width (Fig. 1). An added novel feature in the testing introduced cuts in the sample to create
three test specimens within the same test, with nominal cross-sectional dimensions of each
sample being 30:0mm� 2:0mm. The overall load–displacement response of the tested
specimen is thus a combination of the response from each ligament. To ensure minimal slip
or damage an additional piece of a hard rubber was glued to the grip regions of the test
specimen using a non-reactive instant adhesive. The specially fabricated steel grips enabled
the application of an aligned load without the development of either an eccentricity or a tilt
of the test specimen. The grips were mounted directly on the platforms of a servo-
controlled MTS machine (Fig. 1), where the upper set of grips could be operated in a
displacement control mode at a specified rate. Since the specimen was highly flexible in
comparison to the rigid steel grips and the test frame, the application of a machine stiffness
correction to the measured deformations was considered to be unnecessary. Calibration of
the relative displacement of the grips indicated that, for relative displacements smaller than
30mm relative movement of the grip heads agreed closely with the average reading of two
LVDTs located on either side of the test specimen. As the specimen was stretched, the
Fig. 1. Experimental setup.
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accuracy of the LVDTs diminished significantly, particularly at large displacements;
therefore for simplicity and accuracy, the movement of the grips was taken as the change in
the current gauge length l. Despite the constraining effects of the grips at very large axial
strains, a significant part of the sample was subjected to homogeneous straining (Fig. 2).
The initial length of the specimen l0 ¼ 70mm was taken as the initial gauge length. The
nominal stress s0 is defined as the value of total load, measured by the load cell, divided by
three initial areas of cross-section for each test element. The strain e0 is calculated as the
percentage change in the initial gauge length. All experiments were performed at a constant
uniaxial strain-rate _e0, defined by

_e0 ¼
d

dt

l � l0

l0

� �
. (2.1)

The experiments were performed in a Materials Testing Laboratory, where the room
temperature was approximately 22 1C. The results of the uniaxial tests conducted up to
failure of one or more ligaments are shown in Fig. 2. The experiments were performed at
two different strain-rates, 114 and 28.5%/min. The experimental results show reasonable
repeatability between sets of experiments, within the range of accuracy of the tests. These
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Fig. 2. Mechanical behaviour of a rubber during uniaxial stretching.
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tests also indicate that the variation of strain-rate has little or no influence on the measured
uniaxial responses. Test results indicate that the effects of the fixity constraints were
negligible, particularly when the strain was very large (e.g. e04150%). Further
experiments were conducted to observe the influence of the peak strain on any irreversible
deformations of the rubber. In these tests, the same specimen was subjected to three cycles
of loading–unloading stress histories. The peak strain at each loading–unloading cycle,
however, varied from 100% to 200% to 300%. The results are presented in Fig. 3. It was
observed that hysteretic or Mullins-type effects (i.e. the loading path differs from an
unloading path; see e.g. Mullins, 1947, 1969; Johnson and Beatty, 1993, 1995; Beatty,
2001a; Ogden, 2004; Dorfmann and Ogden, 2004) were almost negligible at peak strains up
to both 100% and 200%. Evidence of hysteresis in the stress–strain paths materialized only
at peak strains of 300% and even in this case virtually no permanent strains were observed
during complete unloading of the test specimens.

3. Development of constitutive models

The modelling of the constitutive behaviour of hyper-elastic rubber-like materials that
are characterized by large strain responses and by the absence of irreversible strains during
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loading–unloading cycles has been extensively researched since the seminal works of
Treloar, Rivlin, Saunders and others. There are a number of constitutive models of hyper-
elastic behaviour available in the literature and no attempt will be made here to provide a
complete review. In addition to the classical literature in finite elasticity (Green and Adkins,
1970; Treloar, 1975, 1976; Truesdell and Noll, 1992) the reader is referred to Deam and
Edwards (1976), Ogden (1984), Lur’e (1990), Drozdov (1996), Dorfmann and Muhr (1999),
Boyce and Arruda (2000), Fu and Ogden (2001), Besdo et al. (2001), Busfield and Muhr
(2003) and Saccomandi and Ogden (2004) for in-depth reviews of the extensive range of
constitutive models proposed to describe hyper-elastic responses of rubber-like materials.
The objective here is to use the uniaxial test data to establish parameters for a set of
constitutive models that are used quite extensively to model the hyper-elastic behaviour of
rubber-like materials. The choice of the models, including Mooney–Rivlin, neo-Hookean,
Blatz–Ko, Yeoh and Ogden type, is also dictated by their availability in a documented and
validated computational code; this will ultimately be used to examine the mechanics of the
transverse indentation of a membrane characterized by the same constitutive responses. All
the constitutive models employed in the calibration exercise were applicable to
incompressible elastic materials. The parameter evaluations were performed using the
results of the strains applicable to the region of the test specimens that underwent near
homogeneous straining. The validity of the incompressibility assumption was assessed by
examining the lateral contraction of the membrane specimen during monotonic uniform
stretching. It was observed that the strain ratios corresponded to a near incompressibility
condition characterized by a third invariant, which had a value of approximately 0.97–0.99.
(It is explicitly assumed that, during stretching, the lateral contractive strain in the thickness
direction of the specimen was identical to the lateral contractive strain over the width of the
specimen.) The parameters thus determined were also assessed in terms of their ability to
accurately match the stress–strain responses over a large range of strains.

3.1. Mooney– Rivlin model

This is the classical form of the strain energy function (Mooney, 1940; Rivlin, 1948;
Spencer, 2004) applicable to incompressible elastic materials ðI3 ¼ 1Þ and assumes a linear
dependency in the first and second strain invariants (I1 and I2) associated with the
deformed state, i.e.,

W ¼ C1ðI1 � 3Þ þ C2ðI2 � 3Þ, (3.1)

where C1 and C2 are constants. They are also related to the linear elastic shear modulus
ðGÞ through the relationship G ¼ 2ðC1 þ C2Þ. Within the stretch range
lð¼ 1þ e0Þ 2 ½1:2; 2:3�, the relation between s0=½2ðl� 1=l2Þ� (where s0 is the nominal
stress) and 1=l is linear; the slope of the line gives the value of C2 and the intercept (as
l�1! 0) gives the value ofC1. Using the experimental data for the axial stretch and the
nominal stress and using a least-squares technique for obtaining a line of best fit, we obtain
the following values for the parameters governing the Mooney–Rivlin form of the
constitutive model: C1 ¼ 0:1361MPa and C2 ¼ 0:0806MPa. Using these values a good
theoretical representation is achieved (see Fig. 4) for strains up to e0 ¼ 150%. It can also be
shown that the Mooney–Rivlin form of the strain energy function is adequate for
describing the mechanical behaviour of rubber-like elastic materials that undergo
moderately large deformations that can be described by a second-order theory of elasticity
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(Rivlin, 1953; Green and Spratt, 1954; Green and Adkins, 1970; Selvadurai and Spencer,
1972; Selvadurai, 2002).

3.2. Neo-Hookean model

The neo-Hookean form of strain energy function is a special case of the Mooney–Rivlin
form of strain energy function when C2 ¼ 0, i.e.,

W ¼ C1ðI1 � 3Þ. (3.2)

The single parameter can be determined using a procedure similar to that described above,
except that the intercept is determined, so that there is a good match between the nominal
stress–stretch plot for a wider range of values of the stretch. It is found that the best fit for the
nominal stress vs. strain does not result in the best fit for the plot of s0=½2ðl� 1=l2Þ� vs. 1=l.
The best match (see Fig. 4) between the nominal stress vs. strain data over the strain range
e0o150% is obtained when C1 � 0:17MPa. A further observation is that, whereas the
Mooney–Rivlin form of strain energy function gives a good match with the experimental
results at strains e0o150%, the neo-Hookean model gives a better correlation at larger strains.

3.3. Blatz– Ko model

Using results of experimental investigations on compressible rubber-like materials, Blatz
and Ko (1962) proposed a strain energy function that has a dependency on the second and
third strain invariants (I2 and I3), i.e.,

W ¼
G

2

I2

I3
þ 2

ffiffiffiffiffi
I3

p
� 5

� �
, (3.3)

where G is the linear elastic shear modulus. For an incompressible elastic material, I3 ¼ 3,
and the Blatz–Ko form of the strain energy function reduces to

W ¼
G

2
ðI2 � 3Þ. (3.4)
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Considering the experimental data presented earlier, the shear modulus of the rubber-
like material used in the experimental investigation is Gð¼ 2fC1 þ C2gÞ ¼ 0:4334MPa,
with C1 ¼ 0:1361MPa and C2 ¼ 0:0806MPa. We note the fact that the Blatz–Ko
model was developed with applications to compressible materials in mind; with
incompressible elastic materials, the dependence of the constitutive response on the
single parameter G effectively constrains the Blatz–Ko model, in the sense that there
is little flexibility in the form of the constitutive relationship to match the experimental
data for the nominal stress vs. strain over a wide range of strains. The results for the
nominal stress vs. stretch data are shown in Fig. 4; it is evident that the Blatz–Ko model
can only accurately capture the mechanical response up to strains within the range,
e0 ¼ 40%.

3.4. Yeoh model

The constitutive model for incompressible hyper-elastic rubber-like materials pro-
posed by Yeoh (1993) assumes that the strain energy function is independent of the
second strain invariant and can be represented as a power series in terms of the variable
ðI1 � 3Þ, i.e.,

W ¼
XN

i¼1

~CiðI1 � 3Þi, (3.5)

where N is the number of terms in the series, ~Ci are constants and, for a single term in the
series, the Yeoh model reduces to the neo-Hookean form. As observed previously, the neo-
Hookean model slightly underestimates the uniaxial stress–stretch response for the rubber,
particularly for strains e04150%. The higher-order terms in the series (3.5) offer a
possibility of obtaining a better match with the experimental data over a wider range of
strains. For example, considering only powers of ðI1 � 3Þ up to the second order, the value
of ~C1 ¼ 0:15MPa is chosen such that it is slightly smaller than the elastic parameter of C1

applicable to the neo-Hookean model and the value of ~C2 is then chosen such that the
model gives an acceptable match with the experimental results for strains in the range
e04150%; this yields ~C2 ¼ 0:003MPa. Fig. 4 shows the model duplication of the
experimental results. The constitutive relationship proposed by Yeoh (1993) therefore
gives a better match than the models discussed previously.

3.5. Ogden model

The strain energy function proposed by Ogden (1972) is based on the experimental
results for rubber-like materials obtained by Treloar (1944). The versatility of the model in
matching experimental data over a wide range of strains is well-established. The model has
a sufficient number of parameters that can be experimentally determined to achieve
impressive correlations with experimental data. Ogden’s (1972) model assumes that the
strain energy function can be represented in terms of three principal stretches
li ði ¼ 1; 2; 3Þ, in the form

W ¼
XN

i¼1

2 ~mi

a2i
lai

1 þ lai

2 þ lai

3 � 3
� �

, (3.6)
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where N, ~mi and ai are material parameters. The values of ~mi are related to the linear elastic
shear modulus G through the consistency condition

XN

i¼1

~mi ¼ G. (3.7)

For purposes of comparison, we choose N ¼ 1, such that, when a1 ¼ 2, the strain energy
function (3.6) reduces to that for the neo-Hookean model (3.2), which slightly
underestimates the stress–strain response in the strain range e04150%. We therefore
need to choose a slightly larger value of a1 ¼ 2:1 for the Ogden model in order to obtain a
better match at higher strains. Using a least-squares approach, the best fit with the
experimental data is obtained when the value of the shear modulus G � 0:29MPa. The
matching of the experimental data with the model proposed by Ogden (1972) is shown in
Fig. 4. As is evident, the Ogden model provides a better representation with the
experimental data over a wide range of strains. In summary, a comparison of the
experimental results and model duplications by various models is presented in Fig. 4; the
experimental data for the uniaxial response of the rubber material can be accurately
represented by the constitutive models proposed by Yeoh (1993) and Ogden (1972).
Although the Mooney–Rivlin and neo-Hookean forms of the strain energy functions tend
to slightly underestimate the stress–strain response, particularly at strains e04150%, they
are able to duplicate reasonably well the overall uniaxial stress–strain response of the
rubber. The strain energy function proposed by Blatz and Ko (1962) has limited capability
in accurately modelling the uniaxial stress–strain response for a wide range of strains;
satisfactory correlation with this model is obtained only up to a maximum strain of
approximately e0 ¼ 40%. All five strain energy functions will, however, be retained in the
computational evaluations of the axisymmetric membrane indentation problem. Also it is
noted that the extraction of the parameters governing these strain energy functions is done
in a direct way involving a least-squares approach and no other constraints are invoked.
Numerous other constitutive models for hyper-elastic rubber-like materials are available in
the literature. For example, Beatty (2001b) and Hill (2001) have presented, respectively,
authoritative studies of Bell- and Varga-type hyper-elastic materials. The computational
implementations of these constitutive models are, however, lacking.

4. Frictional contact between brass and rubber

The basic problem examined in this paper relates to the transverse indentation of an
edge-supported rubber membrane by a rigid spherical indentor (Fig. 5). The load–displa-
cement response of the indentor is influenced not only by the constitutive characteristics of
Fig. 5. Indentation of the rubber membrane: (a) axisymmetric indentation, and (b) asymmetric indentation.
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the membrane material but also the nature of the contact between the metallic indentor
and the rubber. The frictional contact between rubber-like materials and solid surfaces is
influenced by a number of factors including the constitutive behaviour of the rubber
material itself, the surface roughness characteristics of both the rubber and the solid
surface, molecular attraction and interfacial adhesion between the surfaces, the rate of
relative movement between the surfaces and the influence of chemicals and impurities at
the contacting zones (Singer and Pollack, 1992; Pooley and Tabor, 1972; Persson,
1998a, b). The topic of frictional behaviour of rubber-like materials in contact with solid
surfaces has been the subject of extensive research, commencing with the seminal works of
Schallamach (1952, 1953, 1963) and Grosch (1963) who investigated the influence of many
of the above factors both experimentally and through the development of plausible models
to explain the composition of the frictional response. The fundamental studies by Johnson
et al. (1971), Schallamach (1975) and the review articles by Roberts and Thomas (1975),
Barquins (1985, 1992, 1993), Roberts (1989) and Persson (1998a, b) contain extensive
discussions and further references to the topic of friction development between rubber-like
materials and solid surfaces. Much of the literature in this area also focuses on rubber-like
materials that contain additives necessary to satisfy functional requirements of the rubber.
The presence of additives alters the hyper-elastic behaviour, giving rise to dominant rate-
dependency effects that are not present in most pure rubber-like materials. The rubber
used in the current experimental investigations shows almost negligible rate-dependent
effects and hysterisis in the stress–strain behaviour at moderate to large strains. The
objective of this phase of the study was to take into account, in a phenomenological
manner, the nature of frictional contact between the metallic material used for the indentor
and the rubber material. The models available for the description of frictional phenomena
between materials are many and varied and attention was restricted to identifying the
material parameters that would allow the modelling of frictional contact by appeal to the
classical Coulomb friction model. Even in this case, determination of the frictional
characteristics is non-routine and has to consider the surface roughness characteristics of
the indentor, the rate-sensitivity of the frictional contact and the magnitude of the normal
stress in relation to the stresses required to induce large strains or even failure in the rubber
material. The friction experiments discussed in the ensuing were conducted to obtain a
global value for the Coulomb friction characteristics of contact between the metallic
material and the rubber. The experimental investigations commenced with the initiation of
contact between a brass plate of prescribed roughness and the membrane material that is
bonded to a rigid surface. The thickness of the contacting brass plate was kept to a
minimum (9.5mm) in order to reduce the influence of overturning moments that can
materialize during shear movement of the plate. The plan dimensions of the brass plate
were 127mm� 127mm and the contact between the plate and the bonded rubber
membrane material was established by applying a static weight of 100N. Calculations
indicated that the plate was able to initiate contact with virtually no flexural deformations
of the plate. The surface texture of the brass plate was highly polished with a maximum
asperity difference of 0.75 mm between any two locations within the contact region. This
degree of roughness corresponded to the roughness characteristics of the highly polished
brass sphere that was used in the membrane indentation tests. The metallic plate was
attached with an inextensible cable (length 254mm) to a computer controlled electro-
mechanical actuator that could be pre-programmed to apply a constant rate of relative
displacement. The general layout of the experimental configuration is illustrated in Fig. 6.



ARTICLE IN PRESS

Fig. 6. Experimental configuration used for measurement of friction properties between rubber and a polished

brass plate.
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Fig. 7. Schematic view of the experimental arrangement for friction measurement.
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The frictional load was measured with a load cell and the relative movement between the
plate and the rubber was measured using two displacement transducers (LVDTs) located
at the ends of the plate, enabling the assessment of possible rotations of the plate during
the application of the shear displacement. Since the contact area remained stationary
during the application of the relative shear displacement j, the coefficient of Coulomb
friction at any level of relative shear can be evaluated by considering the ratio between the
static normal load ðFnÞ and the applied shear force ðF sÞ (Fig. 7). The relative movement of
the rigid plate j, was measured to within an accuracy of 0:025mm. During the test, the
sliding speed _j was maintained constant. Observations reported in the literature indicate
that the friction properties between metal surfaces and rubber-like materials can be
influenced by the speed of the relative movement (Schallamach, 1953; Grosch, 1963;
Persson, 1998a). For this reason, the friction characteristics were examined at three rates of
relative movement, i.e., _j ¼ 0:0254; 0:254 and 12:7mm=s. The results obtained from the
friction experiments are shown in Fig. 8. The friction loads are mobilized as the shear
displacement increases and maintain almost constant values at large relative displace-
ments. The classic ‘‘slip-stick’’ phenomena could be observed at the high rates of relative
movement, which lead to a significant reduction in the mobilized shear forces. These results
also indicate that the average friction coefficient between the brass surface and the rubber
membrane was almost independent of the rate of relative movement _j between the brass
plate and the rubber material. To further verify this observation, additional friction
experiments covering a wider range of rates of relative movement were conducted; the
results of these investigations are shown in Fig. 9. It can be observed that the measured
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coefficient of Coulomb friction is approximately, m ¼ 1:0, which is applicable to the range
_j 2 ½0:0254; 25:4mm=s�. This coefficient was used in the computational modelling.

5. Indentation of the rubber membrane

The membrane testing facility (Fig. 10) was designed to apply a transverse indentational
displacement to a membrane of arbitrary shape that is maintained in a fixed condition
along a circular boundary. The brass indentor had a spherical shape with a polished
surface and was attached to an electro-mechanical actuator that could be pre-programmed
to induce a prescribed quasi-static displacement at a given rate. The rubber membrane
used in the investigation had a diameter of 250mm and a thickness of 0:5mm. The fixity at
the boundary was achieved by clamping the membrane between two aluminium plates. To
minimize stress concentration effects at the clamped boundary, the aluminium plates used
for clamping were provided with a rounded cross-section. To further enhance the fixity
condition at the clamped boundary, an additional layer of a PVC material was attached to
the rubber membrane using a non-reactive adhesive. This additional layer was provided at
the boundary of the clamped edge (Fig. 10b). Experience with testing other polymeric
materials indicated that the incorporation of the additional layer eliminates slippage
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between the membrane and the aluminium plate and acts to reduce possible stress
concentrations near the clamping edge, which could lead to localized failure or tearing of
the rubber membrane, particularly at large strains. The feeder unit containing the rubber
specimen (Fig. 10c) was placed within a guiding track that enabled the positioning of the
indentor contact at any location within the membrane region. During indentation the
contact between the rubber membrane and the polished brass sphere was initiated either at
the centre of the membrane (Fig. 5a) or at an off-axis location (Fig. 5b). Since the
indentational loads were relatively small, the flexibility of the testing system was neglected
and the indentational displacement was measured to within �0:025mm. An important
aspect of the experimentation involved the determination of the deflected profile of the
membrane during different stages of the indentation process. The deflected shape of the
membrane was recorded photographically and image analysis of the photographic record
was performed to determine quantitative estimates for the deflected shape. The digital
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camera was rigidly mounted on the test frame and located 1500mm from the central plane
of the test specimen. The deflected shapes of the membrane applicable either to the ðr; zÞ
plane or the ðx; zÞ plane were determined using an image analysis technique as described by
Klette et al. (1998). Briefly, the images were first measured in units of image pixels and
these were calibrated against two scales that were aligned on a line passing through the
image plane and normal to the axis of the digital camera. The scales were located on either
side of membrane and situated equidistant from the centre of the membrane. The force
induced during displacement of the membrane was monitored using a load cell with
capacity of 4000N (1000 lbs). The indentation behaviour was examined by applying the
displacements in an incremental manner up to a maximum indentor displacement of
Dmax ¼ 127mm (5 in.), followed by unloading at the same displacement rate. The
displacements were applied in a quasi-static fashion to eliminate any dynamic effects
associated with the experimentation. During the axisymmetric indentation experiment, the
ratio of the indentor displacement ðDÞ to the diameter ðdÞ of the membrane ðD=dÞ reached a
maximum value of 0.61, which corresponds to a maximum strain of approximately 40% in
the r-direction, with assumptions of zero slip at the boundary of the membrane. Typical
deflection patterns observed during axisymmetric indentation of the rubber membrane are
shown in Fig. 11. The experimental results for the load–displacement behaviour showed
excellent repeatability and absence of any noticeable irreversibility due to frictional effects
at the membrane–indentor interface. The inset plates in Fig. 11 illustrate the recovery
configuration of the membrane upon release of the applied load and there appears to be no
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appreciable irreversible deformation after completion of seven cycles of loading and
unloading. During asymmetric indentation, the contact between the spherical rigid
indentor and the rubber membrane was initiated at a distance of O ¼ 35mm from the axis
of symmetry (Fig. 5b). In this test, at a maximum indentor displacement of Dmax ¼ 127mm
(5 in.), the maximum strain reached was approximately 70% in the x-direction. Typical
deflection patterns at various stages of the indentation process are shown in inset
photographs of Fig. 12. Again, the experimental results show excellent repeatability and
absence of any hysterisis in the load–displacement responses.

6. Computational implementation and comparisons

One of the earliest applications of the finite-element technique to the modelling of
rubber-like materials is that of Oden and Sato (1967) who examined the problems related
to both in-plane loading of a rectangular membrane fixed along two opposite edges and the
transverse loading of a circular membrane fixed at the boundary. The constitutive
equations used in their analysis were the Mooney–Rivlin and neo-Hookean types, and the
computational results compare quite accurately with results for membrane problems given
by Green and Adkins (1970). Applications of the computational approach to the solution
of problems in hyper-elasticity are many and varied; recent examples are those by de Souza
Neto et al. (1995), Jiang and Haddow (1995) and Verron and Marckmann (2001, 2003),
with references to further studies given in the volumes by Zienkiewicz and Taylor (2000)
and Belytschko et al. (2000). In the present study, the computational modelling of
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axisymmetric and asymmetric indentation of the circular rubber membrane with a fixed
edge was conducted using the general-purpose finite-element code ABAQUS/Standard
(2004). This code is very versatile and has the following features: firstly, all the hyper-
elastic constitutive equations characterized by the strain energy function of interest to the
material modelling are standard features in the computational approach. Secondly, the
code provides a contact algorithm that allows the incorporation of Coulomb friction
effects at the advancing contact between the hyper-elastic membrane and the indenting
rigid sphere; in the specific case of hyper-elastic materials, the accuracy of the
computational code has been adequately verified through comparisons with both exact
and approximate results applicable to membrane problems. Finally, the iterative
computational algorithms applicable to non-linear problems associated with hyper-elastic
materials, frictional phenomena at interfaces and non-stationary (advancing) contact
problems are well-documented in terms of both exposition fundamental equations, the
associated variational principles as well as the numerical implementation. To the author’s
knowledge, there are no known analytical solutions, exact or otherwise, that examine
simultaneously the non-linear processes associated with hyper-elasticity, Coulomb friction
and non-stationary contact. Furthermore, unlike problems related to pressurization of
membranes, the presence of frictional contact with an advancing contact region makes the
analytical solution of even the axisymmetric membrane indentation problem a non-trivial
exercise in the theory of non-linear ordinary differential equations and moving boundary
problems. For this reason, recourse can only be made to a computational approach to
study the membrane indentation problem. The ABAQUS/Standard code has provisions
for the incorporation of a variety of element types for modelling the membrane region. The
membrane indentation problem was subjected to preliminary analysis using both a
quadratic triangular membrane element (element type-3M6) and a linear solid triangular
prism element (element-type C3D6). There were no noticeable differences between the two
types of elements. In view of the simultaneous application of the frictional contact
algorithm and the advancing contact at a membrane surface, the use of a solid triangular
membrane element is expected to lead to better overall accuracy, particularly in identifying
the location of slip, contact and separation zones. The contact conditions between the
indentor and the membrane were chosen as standard hard contact in the ABAQUS/
Standard code. The boundary conditions and mesh discretization applicable to the
computational models are shown in Figs. 13a and 14a. Typical deflected configurations of
the membrane during indentation by the rigid sphere are shown in Figs. 13b and 14b. The
load–displacement relationships obtained via computational modelling of the axisym-
metric indentation of the membrane that incorporate the strain energy functions given in
Section 3 are shown in Figs. 15a and b for contact Coulomb friction values of 0 and 1,
respectively. The analogous results obtained from the experiments involving asymmetric
indentation of the membrane are shown in Figs. 16a and b. The general trends in the
computational estimates are similar to those observed in the experiments. There are,
however, appreciable differences in the magnitudes associated with the load–displacement
responses: the closest correlation is achieved with results derived from a strain energy
function of the Mooney–Rivlin type. For further evaluation of the accuracy of the
predictions from the various constitutive models, we consider the profile of the deflected
shapes of the membrane derived at certain load levels. These predictions are obtained by
setting the coefficient of friction m ¼ 1 in the computations. Fig. 17 illustrates comparisons
between the computational and the experimental results for the axisymmetric deflected
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Fig. 13. Axisymmetric indentation of a rubber membrane: (a) mesh configuration and boundary conditions (total

number of elements: 816); and (b) deformed shape during maximum indentation.

Fig. 14. Asymmetric indentation of a rubber membrane: (a) mesh configuration and boundary conditions (total

number of elements: 818); and (b) deformed shape during maximum indentation.
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shapes derived from the Mooney–Rivlin, neo-Hookean, Blatz–Ko, Yeoh and Ogden forms
for the strain energy function; where applicable, the indentation load levels are chosen as
20, 130 and 280N. The results derived from the Mooney–Rivlin and Blatz–Ko strain
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energy functions show the most favourable correlations between the computational and
experimental results even though the latter model fared poorly in matching the uniaxial
stress–strain response in the large strain range (i.e. e0450%). In the case of results derived
from the remaining constitutive models, there is considerable divergence between the



ARTICLE IN PRESS

0

20

40

60

80

100

120

-150 -100 -50 50 100 150

P = 20N

P = 130N

Computational
results
Experimental
resultsr (mm)

w
(r

) 
(m

m
)

0

(v)

0

20

40

60

80

100

120

-150 -100 -50 50 100 150

P = 20N

P = 130N

Computational results

Experimental results

0
10
20
30
40
50
60
70
80
90

100

-150 -100 -50 50 100 150

P = 20N

P = 130N

Computational results

Experimental results

0

20

40

60

80

100

120

140

-150 -100 -50 500 100 150

r (mm) r (mm)

r (mm)r (mm)

P = 20N

P = 280N

P = 130N

Computational
results
Experimental
results

w
(r

) 
(m

m
)

w
(r

) 
(m

m
)

w
(r

) 
(m

m
)

w
(r

) 
(m

m
)

0

20

40

60

80

100

120

140

-150 -100 -50 50 100 150

P = 20N

P = 28N0

P = 130N

Computational results

Experimental results

0

0

0

(i)

(iii) (iv)

(ii)

Fig. 17. Comparison of computational predictions and experimental results for the axisymmetric deflection of the

rubber membrane: (i) the Mooney–Rivlin model; (ii) the neo-Hookean model; (iii) the Blatz–Ko model; (iv) the

Yeoh model; and (v) the Ogden model.

A.P.S. Selvadurai / J. Mech. Phys. Solids 54 (2006) 1093–1119 1113
computational predictions and the experimental results at the load level of 280N. Similar
comparisons obtained for the asymmetric indentation of the rubber membrane are shown
in Fig. 18, except that in view of the higher loads that are applied, the load levels at which
correlations are established are specified at 25, 142 and 305N. Also, the computational
modelling is carried out by setting the coefficient of friction m ¼ 1. These results indicate
the deflection profile along the plane of symmetry of the indentation. The correlations
observed are remarkably similar to those associated with the axisymmetric indentation
problem, and that the predictions made by the Mooney–Rivlin and Blatz–Ko models offer
the closest match.
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7. Conclusions

The modelling of the constitutive behaviour of rubber-like materials continues to be of
interest and importance to both materials engineering and continuum solid mechanics. The
technological applications of hyper-elastic materials has prompted the development of a
wide variety of constitutive models that can be used to describe the mechanical behaviour
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of rubber-like materials that are void of inelasticity and strain-rate effects. Much of the
constitutive characterizations are based on experiments that induce homogeneous states of
strain in the test specimens. The correlations established through such exercises suggest
that many of the existing models can adequately describe the observed experimental results
at both moderate and large strain levels. The current study approaches the validation of
the constitutive models developed through uniaxial testing by appeal to an experimenta-
tion involving a specific boundary value problem dealing with both axisymmetric and
asymmetric transverse indentation of an edge-supported circular membrane. A compar-
ison of the results of experiments and computational predictions indicate that the degree of
correlation is not consistent with what is observed in the testing of uniaxial specimens. The
results of this research suggest that, even though the indentor induces large deflections of
the membrane, the strains encountered in the membrane are still within the moderate range
(i.e. e0o70%). In these situations the computational estimates that use simpler constitutive
models, such as the Mooney–Rivlin and Blatz–Ko types of strain energy functions, provide
the best correlations with experimental data. In this sense the selection of a particular form
of a strain energy function for either computational or analytical treatment of a problem in
rubber elasticity should also give attention to the range of strains that can be experienced
in the boundary value problem that is being investigated. Also the model development can
be enhanced by consideration of more than one category of experiments.
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