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SHORT COMMUNICATIONS 
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INTRODUCTION 

The elastic analysis of circular plates embedded in soil and rock media is of importance to the 
geotechnical study of circular structural foundations, disc shaped anchors and in the examina- 
tion of in-situ tests such as deep plate load tests and screw plate tests. 

This note is concerned with the analytical study of the axisymmetrical flexure of a circular 
foundation which is embedded in bonded contact with an isotropic elastic medium of infinite 
extent. The flexible circular foundation is subjected to a uniformly distributed axisymmetric 
external load of finite extent. A theoretical solution of the above problem in the context of the 
linear theory of elasticity can be attempted by employing a variety of analytical and numerical 
techniques. The rigorous analytical treatment of the problem, which involves the solution of the 
governing equations of three-dimensional elasticity, can be reduced to the solution of a set of 
complex integro-diff erential equations. For example, the analogous treatments of the rigid 
circular plate problem are outlined by Collins' and Hunter and Gamblen.* Here, we examine 
the application of an energy method to the solution of the stated problem. In this development it 
is assumed that the deflected shape of the plate can be represented in terms of elementary 
functions which satisfy the symmetry and kinematic requirements of the plate flexure. This 
deflected shape is defined to be within a set of arbitrary constants. The circular plate is assumed 
to be bonded to the elastic medium at the plane surfaces. Furthermore, when examining the 
state of stress induced in the infinite elastic medium by the deformed circular plate, it is assumed 
that the thickness of the plate is negligible in comparison to its radius. The energy method 
centres around the development of the total potential energy functional for the flexible 
plate-elastic medium system, consistent with the assumed deflected shape of the plate and the 
imposed external loads. The total potential energy functional is composed of (i) the strain energy 
of the infinite eiastic medium, (ii) the strain energy of the circular plate and (iii) the work 
component of the external loads applied to the circular plate. The strain energy of the infinite 
elastic medium can be developed by computing the work component of the surface tractions 
which comprise the bond stresses at the interface. The bond stresses associated with the imposed 
displacements, which are identical to the assumed plate deflections, can be determined by 
making use of the integral equation methods developed for mixed boundary value problems in 
the classical theory of elasticity. The strain energy of the plate region can be determined by 
considering the flexural and membrane energies of the plate region corresponding to the 
prescribed deflected shape. 

The arbitrary constants characterizing the deflected shape of the circular plate can be uniquely 
determined by making use of the set of linear algebraic equations generated from the 
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minimization of the total potential energy functional. The general procedure outlined above is 
used to analyse the flexural behaviour of the circular foundation, the deflected shape of which is 
represented by a second-order parabolic curve. This particular deflected shape is assumed to 
represent, approximately, the flexural behaviour of a moderately rigid foundation (Le., the 
relative rigidity of the soil-foundation system is different from an infinite value). Using the 
energy method, analytical expressions are derived for the deflection and the central flexural 
moment of the embedded circular foundation. Numerical results presented in this note illustrate 
the manner in which the central deflection, the differential deflection and the central flexural 
moment of the embedded foundation are influenced by the extent of the applied load and the 
relative flexibility of the plate-elastic medium system. 

ANALYSIS 

We consider the axisymmetric problem of an isotropic elastic medium of infinite extent which is 
internally loaded by a flexible circular elastic foundation. The thickness of the foundation (h)  is 
assumed to be small in comparison with the radius (a). The circular foundation, which is in 
bonded contact with the elastic medium, is subjected to an axisymmetric load of uniform 
intensity (Po) which acts over a finite region (Figure 1). Owing to the axisymmetric loading of the 

t 2  
Figure 1. The geometry of the embedded circular foundation 

circular foundation, displacements are induced at the bonded interface. In general, such 
displacements may occur in both the radial and axial directions, r and z respectively. In the 
ensuring development, however, it is explicitly assumed that the displacements at the interface 
occur only in the z-direction. The assumption of bonded contact between the foundation and 
the elastic medium ensures that the displacements at the interface also represent the deflected 
shape (w(r) )  of the foundation. An expression for the total potential energy functional 
appropriate to the elastic plate-infinite elastic medium system can be developed by making use 
of the function w(r) .  
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The elastic strain energy of the circular plate subjected to the axisymmetric deflection w(r) is 
composed of only the flexural energy of the plate UF, given by 

where V2 is Laplace’s operator given by 

d‘ 1 d v==-+-- 
dr2 r dr  

D = Ebh3/12(l - v:) is the flexural rigidity of the circular foundation, E b  and l/b are the elastic 
modulus and Poisson’s ratio for the plate material and S corresponds to the plate region. The 
elastic energy of the infinite space region (UE) can be developed by computing the work 
component of the surface tractions which compose the interface stresses. Since displacements at 
the interfaces are prescribed only in the z-direction, it is necessary to examine the work 
component of tractions normal to the plane surfaces of the circular plate. These normal tractions 
can be uniquely determined by making use of integral equation methods developed for the 
analysis of mixed boundary value problems in classical elasticity. We consider the problem of an 
isotropic elastic medium of infinite extent, which is subjected to the axisymmetric displacement 
field 

ur=O,  u,=w(r) f o r z = O ( O s r d a )  (3 1 
where u, and u, are the components of the displacement vector in the r and z directions 
respectively and 0 S r d a corresponds to the foundation region. By employing the integral 
equation methods outlined by Collins’ it can be shown that the normal stress on the bonded 
foundation region is given by 

where 

for (0 sz f~ a )  (5 )  

and G, and v, are respectively the linear elastic shear modulus and Poisson’s ratio of the elastic 
medium. The upper and lower signs of (4) refer to the surfaces z = O+ and z = 0- of the fiexible 
foundation. Using the above results it can be shown that the strain energy of the infinite elastic 
medium due to the prescribed foundation displacement w(r) is given by 

The potential energy of the external loads applied to the circular foundation is given by 
c c  

Up= - J J p(r)w(r)r d r  d0  
So 

(7) 

where So is the extent of the applied loads. By combining (l), (6) and (7) we obtain the total 
potential energy functional for the circular foundation-elastic medium system as 

U =  uF+ UE+ u p  (8) 
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From the principle of stationary total potential energy we require 

where 6U is the variation of the total potential energy. Alternatively we may note that when a 
deflected shape w(r)  satisfies the condition 6U = 0, for all 6w(r), it can be shown that w(r)  is the 
solution of the elasticity problem. To apply the principle of total potential energy to the circular 
foundation problem we assume that the deflected shape w(r)  can be represented in the form 

where Ci are arbitrary constants and xi (r )  are arbitrary functions which render the displacement 
field kinematically admissible. The principle of total potential energy then requires that U be an 
extremum with respect to the kinematically admissible displacement field characterized by Ci 
(Sokolnikoff ,3 Washizu4). Hence 

This minimization 
coefficients Cb 

procedure yields n simultaneous equations for the undetermined 

EMBEDDED CIRCULAR FOUNDATION 

The formal procedure developed in the previous section is now applied to the analysis of the 
internally loaded circular foundation problem. It is assumed that the deflected shape of the 
circular foundation, which is subjected to a uniform axisymmetric load over a finite area, can be 
represented in the form 

n (;)*' 
w(r )=  a C CZi 

i = O  

where CZi are arbitrary constants. In (12), the particular choice of functions corresponding to xi 
gives a kinematically admissible plate deflection and finite flexural moments and shearing forces 
in the plate region 0 S r s a. As a first approximation of (12), we restrict our attention to a 
deflected shape represented by the second degree curve 

w(r)=  a[ c ~ + c ~ ( ; ) ~ ]  

The total potential energy functional U can be evaluated by making use of (8) and (13). 
Accordingly we obtain 

where 
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The constants Co and C2 can be determined from the equations which are obtained by the 
minimization conditions 

au a(/ 
aco ac2 

0, -- -0  -= 

Avoiding details of computation, it can be shown that the deflected shape of the circular 
foundation corresponding to (13) is given by 

(1 6) 
{pI - 2 h 2 +  3R) (4 -3A2) - 

w(r)= 3::(i’:,;a[ {pz+3R} {pZ+3R} 
where P (= 7rpoh2a2) is the total load applied to the circular foundation; 

64 144 
C l 1 = 3 0 ,  p2=30 

and R is a relative rigidity parameter of the circular foundation-elastic medium system defined 
by 

~ ( 3 - 4 ~ , ) ( 1  + vs) 
12(1- vb)(l- v,) 

R =  

The relative rigidity parameter R can therefore be used to examine the limits of applicability 
of the approximate solution (16), developed on the basis of the energy method. We note that as 
R + 00, the circular foundation becomes infinitely rigid; as such, the displacement ( wo) for a rigid 
circular plate embedded in complete bonded contact with an isotropic elastic infinite medium is 
given by 

P(3 - 4v,) 
wo = 

32 G,( 1 - v,)a 

The above expression is in agreement with equivalent results derived by Collins,’ Kanwal and 
Sharma’ and Selvadura? for the rigid disc inclusion obtained by considering respectively 
integral equation methods, singularity methods and direct spheriodal harmonic function 
methods for the solution of the associated elastic problem. In the particular case when h + 1, and 
R + O  the interaction problem is reduced to that of the internal loading of an infinite elastic 
medium by a uniform circular area of radius a and stress intensity po. For this case, the central 
deflection w(0) as determined from the energy solution (16) can be compared with the 
equivalent exact result obtained by an integration of the result for a Kelvin force (see e.g., 
Reference 3) over a circular area. We have 

Similarly, the expressions for the deflection at the boundary of the uniformly loaded circular 
area vield 

The flexural moments induced in the embedded foundation can, in principle, be calculated by 
making use of the expression for the foundation deflection given by (16) and the relationships 
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It may be noted that while the energy method provides an accurate estimate of the deflections 
of the foundation w(r) ,  the accuracy with which w(r )  is able to predict the flexural moments in 
the foundation is, in general, considerably less (see e.g., Dym and Shames7). Any inaccuracies 
that may be present in the energy expression for w(r),  as defined by (16), are greatly magnified in 
the computation of M, and Ma owing to the presence of derivatives of w ( r )  up to the second 
order. A more accurate estimate of the flexural moments in the foundation can be determined by 
considering the flexural response of the foundation under the combined action of the applied 
stress po and the contact stresses The maximum flexural moment at the centre of the 
circular foundation can be computed by using the solutions developed for the flexure of a 
circular plate simply supported along its boundary. It can be shown that the flexural moment at 
the centre of the plate (Mo) is given by 

MO - 4 - ( 1 - V b ) A 2  ( l + % ) l n h  (l-vt,) Sp3-32- 16A2+ 15R ____ -- 
poa2A2 16 4 120 { p2+3R 

(1+ Yb) (9p3-96+27R)ln2 (1+t+,) 9/..i.3-80-12A2+27R +-{ 36 p2+3R /-_36(. p2+3R 

where p3 = 64/S. In the particular case when A -+ 1 and R -+ 00, (23) yields the following 
expression for the central flexural moment in an embedded ‘rigid’ foundation which is in bonded 
contact with an infinite elastic medium; i.e., 

The variation of the central deflection of the embedded flexible plate { w(0)) with the relative 
rigidity of the plate-elastic medium system and the extent of the applied load is illustrated in 
Figure 2. Similar results developed for the differential deflection ( w ( 0 ) -  w ( a ) }  and the maxi- 
mum flexural moment are shown in Figures 3 and 4. 

0.8 I,,,,, 
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3 

Figure 2. The variation of the central deflection of the embedded circular foundation [w(O) = 
(EoP(3  -4vs)/32G,(1 - u,)cz}] 
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Figure 3 .  The variation of the differential deflection of the embedded circular foundation [w(O) - w ( a )  = 
{GdP(3 -4us) /32G,(1 - v,)a}] 
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Figure 4. The variation of central flexural moment in the embedded circular foundation [M(O) = ~ o p o a z h 2 ]  
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CONCLUSIONS 

The energy method of analysis outlined in this note provides an approximate solution to the 
axisymmetric flexure of a circular plate embedded in an infinite elastic solid. A second degree 
curve is used to represent the flexural deflection of the plate. In the limiting case of infinite 
relative rigidity this deflected shape yields the exact solution to the response of an infinitely rigid 
plate embedded in an isotropic elastic infinite space. Similarly, for a uniformly loaded plate with 
zero relative rigidity, the energy approximation for the deflected shape correlates well with the 
exact solution for the internal loading of the infinite medium with a uniform circular load. The 
numerical results presented in Figures 2-4 indicate that the relative rigidity (in the range 0 + 00) 

and the extent of the external load together have a significant influence on the deflections and 
flexural moments developed in the embedded plate. The assumed form of the deflected shape is 
clearly inappropriate for situations involving localized loading (A + 0) of highly flexible (R + 0) 
embedded plates. In this case, higher-order and logarithmic terms in r have to be incorporated in 
the assumed deflected shape to accurately predict the deflections and flexural moments in the 
circular plate. Alternatively, the solution of the highly flexible locally loaded plate can be 
investigated by analysing the appropriate infinite plate problem. 
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