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ABSTRACT

Hvordev's procedure for the estimation of the of the in-situ hydraulic
conductivity characteristics of an isotropic porous medium involves the
use of information concerning the rate of groundwater flow into either a
cavity formed at the base of a cased borehole or a cylindrical piezome-
ter tip. The objective of this article is to present a concise and complete
development of the intake shape factor for a cavity region with either a
prolate or an oblate form, located in a stratified porous medium, which
has transversely isotropic hydraulic conductivity characteristics. The ar-
ticle presents the relevant mathematical relationships and discusses some
aspects of the extension of the technique for the estimation of hydraulic
conductivity of stratified porous media that are hydraulically trans-
versely isotropic.
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1. INTRODUCTION

The hydraulic properties of sedimentary geologic materi-
as, including varved clays, interbedded sands, and siltsin
fluvial and lacustrine environments, tend to display a di-
rectional dependence. Although these materials may, in
general, display characteristics of hydraulic anisotropy, the
transversely isotropic assumption is both aconvenient and
redistic first approximation in view of the fact that both
hydraulic and mechanical properties of the stratified geo-
materials in the plane of deposition are usually isotropic.
Both microstratification due to particle shape and macros-
tratification dueto periodic deposition can contributeto the
development of adirectiona dependencein thefluidtrans-
port characteristics of the geomaterials (Vreedenburgh,
1938; Childs and Collis-George, 1950; Terzaghi, 1955;
Mitchell, 1956; Childs, 1957a,b; Maasland, 1957; Johnson
and Morris, 1962; Kenney, 1963; Davis, 1969; Bouwer,
1978). The presence of transverseisotropy in the hydraulic
conductivity characteristics of sedimentary geomaterials
can be more conveniently demonstrated by appeal to the
following simple example. With many geomaterials that
areformed as aresult of alayering process, the transverse
isotropy in the hydraulic conductivity properties can be
identified in terms of the hydraulic conductivities in the
horizontal (k) and vertical (k) directions. For example,
the elementary calculations for the equivalent vertical hy-
draulic conductivity k, of nlayersisgiven by theweighted
harmonic mean of the hydraulic conductivities of theindi-

viduallayersas
/[ n ti]
i=1 7
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i=1
wheret; and k; are the thickness and hydraulic conductivity
of the ith layer. The equivaent horizontal hydraulic con-
ductivity ky, issimilarly given by

Xorl/3

Consider a sedimentary sequence of interbedded silty
sand and unweathered marine clay of equal thickness and
with isotropic individual hydraulic conductivities of 10°°
m/s and 1072 m/s, respectively. The equivaent vertical
hydraulic conductivity of the entire sequence will be ap-
proximately 2 x 1072 m/s and the equivalent hydraulic
conductivity in the horizontal plane will be approximately

k, =
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0.5x 1070 mys. It iis evident that significant anisotropy in
the scale of arepresentative volume element, with dimen-
sions significantly larger than the layer thickness, can
readily materialize even with plausible choices of hydrau-
lic conductivities of the individual layers. A similar situ-
ation relates to rock masses that are heavily fractured due
to geologic stresses induced by tectonic action and stress
relief. Hydraulic conductivity of such fractured mediais
governed both by the matrix hydraulic conductivity of the
intact rock and by the hydraulic conductivity of the frac-
tures. In instances where the parent rock is relatively im-
pervious, the directional properties can differ by up to 10
orders of magnitude (de Marsily, 1985; Tsang, 1991; Bear
et al., 1993).

The determination of the in-situ hydraulic conductivity
characteristics of such transversely isotropic stratified ma-
terialsis of importance to many geotechnical, geoenviron-
mental, and water resources engineering applications (De
Marsily, 1986; Bear and Verruijt, 1987). The most com-
mon technique used for such purposesisthe cased borehole
test, in which either the transient water-level rise or water-
level fall during an extraction or recharge test is used to
interpret the hydraulic conductivity characteristics of the
geomaterials. Therate of water entry to the casing depends
on the geometric arrangement of the base of the borehole
casing, or the geometric characteristics of the entry point.
The most common of theseisaformed cylindrical region at
the base of the borehole, with a diameter roughly equa to
that of the casing and alength that can beavariablequantity.
Tofacilitate the rapid rise of the water level in the casing to
equalization with the groundwater level, a piezometric
standpipe of smaller diameter can be used with a bentonite
sealing of the base of the casing (Kirkham, 1945; Luthinand
Kirkham, 1949). The arrangement for atypical casing test
is shown in Fig. 1. Hvordev (1951) proposed that for
Situations where there is no consolidation of the cohesive
soil region around theintake and for stationary groundwater
conditions the flow rate to the entry region is given by

q = FkH 0

where H is the head inducing the flow, k is the effective
hydraulic conductivity in the vicinity of the intake, and F
is the intake shape factor, with dimensions of length, that
is, specific to the intake geometry. Based on a result by
Dachler (1936) for thepotential problemrelatedtoaprolate
spheroid, Hvorslev proposed a relationship for the cylin-
drical intake shape factor that was estimated by assuming
that the prolate spheroid isinscribed within the cylindrical
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Figure 1. Casing test configuration for the in situ determination of the hydraulic properties of geomaterials with low hydraulic

conductivity.

intake of diameter D and length L; the resulting expression
for the intake shape factor F is given in the form

Fo 2m )
In{L/D) +V1+(L/D)?] (i)

The limits of applicability of the above result will be
discussed briefly in this introduction. The study by
Hvordev (1951) also gives details of the procedures for
casing tests and the geometric relationships which govern
intake regions with cylindrical, spherical, and disc shapes,
which are fully embedded in porous media of infinite
extent. The conventional assumption of an entry point
located in a porous medium of infinite extent is not alto-
gether unrealistic, since the intake shape factor is largely
governed by fluid flow behavior in the immediate vicinity
of the intake. For the assumption of a porous medium of
infinite extent to be valid, the largest dimension (L) of the
intake should be substantially smaller than the depth (HEj
at which the test is being conducted (HD/L >>10). In
instances where the intake is located in a nondeformable
porous medium with isotropic hydraulic conductivity, the
intake shape factor is purely geometric in nature, dueto the
fact that the flow in the vicinity of the intake is governed
by Laplace s equation for the hydraulic potential, which is

void of any hydraulic conductivity properties of the me-
dium. Before proceeding to discuss the literature in this
areain detail, it isimportant make thefollowing point. The
casingtestisatransient test by virtue of thetime-dependent
differential head inducing flow. This time dependency is
quite different from that which can occur as a result of
either the deformability of the porous medium, the com-
pressibility of the pore fluid, or the flexibility that can be
present in any device that is used to measure the time-de-
pendent fluid pressure in a closed system. Such processes
result in diffusive-type fluid pressure transients (see, eg.,
de Jossdlin de Jong, 1953; Gibson, 1963, 1967, 1970;
Wilkinson, 1968; Selvadurai, 2000a).

Aspects related to shape factors for intake regions lo-
cated in isotropic porous media have been discussed and
examined quite extensively in past and recent literaturein
geotechnical engineering and soil science. For example,
the studies by Schneebli (1956) and Kallstenius and Wall-
gren (1956) deal with approximate representations of the
intaketo aid the devel opment of the intake shape factor for
cylindrical regions. Along these lines, Wilkinson (1968)
suggests the modification of Hvorslev’s result for the in-
take shapefactor by considering the equivalence of volume
between the actua cylindrica shape and an €lipsoidal
(spheroidal) region. As will be shown in a subsequent



section, this procedure unfortunately has no physical basis,
since the flow to the intake region takes place through the
surface of the intake rather than over the volume (Kall-
stenius and Wallgren, 1956). Lowther (1978) and others
(see, e.g., Y oungs, 1980) comment on the apparent discrep-
ancy between the limiting case of the above intake shape
factor as L — 0, and the exact result applicable to the
disc-shaped entry points. InthelimitwhenL - 0, thecited
result by Hvordev gives the intake shape factor as 2mD,
which is the intake shape factor for the spherical intake of
diameter D. (Thereisnoknownanalytical solution, inexact
closed form or otherwise, for the problem of acylindrical
intake that extends beyond the base of a casing. Further-
more, it should be remarked that the mathematica treat-
ment of the resulting potential problem with the exact
geometry of acylindrical intakeof finitelength terminating
a the base of aboreholeisarather complex mixed bound-
ary-value problem in potentia theory, which cannot be
solved without great recourse to dua integral and dual
series equations.) What is important to note is that, a-
though not specifically stated, Dachler’ sresult is applica-
ble only to the case of a prolate spheroidal form, thereby
restricting the applicability of the result by Hvorslev only
to situations where (L/D) > 1. The theoretical results pre-
sented in thisarticle will identify the limits of applicability
of solutions derived from spheroidal cavity intakes, which
for the case of aprolate cavity is1 < (L/D) < co and for an
oblate form corresponds to 0 < (L/D) < 1. The reduction
tolimiting cases shoul d therefore be approached with some
caution, provided basic mathematical solutions accommo-
date such limits.

Returning to the discussion of intake shape factor for
thecasewherel =0, theintake shapefactor for adiscintake
situated in aporous medium of infinite extent, i.e., F = 4D,
provides the upper limit. Similarly, the intake shape factor
for adisc-shaped entry region located at a porous medium-
impervious boundary interface, i.e., F = 2D, (by virtue of
symmetry), providesthelower limit. Hvorslev (1951) cites
an intake shape factor of F = 2.75D, which is based on
results of electrica analog studies conducted by Harza
(1935) and through approximate graphical procedures
given by Taylor (1948). Brand and Premchitt (1980a)
suggest a value of F = 2.63D, which is based on both
experimental and numerical procedures. The intake shape
factor for the spherical intake region of 2mD is clearly
outside the permissible bounds. Investigators such as
Smilesand Y oungs (1965), Y oungs (1968), and Brand and
Premchitt (1980b) have used electrica analog techniques
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to estimate the intake shape factors for cylindrical intakes.
The latter authors also suggest the use of 1.2L as opposed
toL intheoriginal Hvorslev expression for the cylindrical
intake problem.

The use of computational techniquesand other approxi-
mate procedures for the solution of Laplace's equation in
relation to the assessment of the flow pattern around the
intake region also feature prominently in the estimation of
the intake shape factors. The earliest use of finite-differ-
encetechniquesfor theeval uation of theintake shapefactor
for a cylindrical intake appears to be due to Wilkinson
(1968). Other investigators, including Al-Dhahir and Mor-
genstern (1969), Raymond and Azzouz (1969), and Brand
and Premchitt (1980a,b), have al so conducted similar stud-
ies, and thelatter authors provide quite useful comparisons
between the various estimates for the intake shape factors
as determined through experimental and computational
considerations. The problem of determining shape factors
for cylindrical piezometer tips has also been discussed by
Chapuis (1989), who provides an important account of the
errors associated with the various computational methods.
The study by Randolph and Booker (1982) develops an
approximate solution for the potential problem arising
from the situation where an opening of finite length exists
in an otherwise impermeable casing of infinite length lo-
cated in a porous medium. Their solution is an important
contribution in the sense that they appreciate the existence
of asingular velocity field at the locations where, mathe-
matically, the boundary conditions for the potentia prob-
lem changes from one where the potentia is prescribed
(Dirichlet-type) to one where the gradient of the potential is
prescribed (Neumann-type), aong the same cylindrical
boundary (see, e.g., Selvadurai, 2000a,b). Similar effects
will aso occur, for example, in the case of the disc-shaped
intake | ocated within aporous medium or at the interface of
animperviousboundary (Selvadurai, 2003). Itisarelatively
easy matter to show that singular el gen-sol utionsare present
in these circumstances. Consider, for example, ahaf-plane
planeregion occupyingr € (0, ) and 6 € (0, 11)in which
the potentia ¢(r, 0) is to be found such that

A’p=0 re(0x) 6¢e(0m) (iii)

and boundary conditions

B¢

¢(r,0=0 %% =0 (iv)
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In addition, ¢(r, 8) should decay to zero in the entire
region asr — co. The boundary 6 = 0 corresponds to the
entry-point region and the boundary © = 1t corresponds to
theimpermeable casing. Of course, therewill beaseparate
solution that will satisfy the potential prescribed on
0 =0, consistent with the potential prescribed to initiate
the flow. Considering the general solution of (iii) in plane
polar coordinates (Selvadurai, 2000a), the relevant solu-
tion takes the form

B, sinnf

(P(l", 9): Z T (V)

n=1,2,...

where B, are arbitrary constants. To satisfy the boundary
conditions so that the solution (v) is nontrivial, we require

13 ;

n—z, Z, (VI)
Therefore, the lowest eigenvalue contributes to singular
behavior of the potential ¢(r, 8). Since the flow potential
is singular, the flow velocities are also singular at the
boundary point corresponding to the demarcation between
Dirichlet (potentia prescribed) and Neumann (impervi-
ous) boundary conditions. This singular behavior will in-
fluence the estimation of the flow rate into the cavity
through computational means, especialy if, unwittingly,
the boundary vel ocities are used to compute the flow rate.
Mathematically, the singularity is integrable, in the sense
that the flux, or thetotal flow rate, evaluated at the intake
region, isfinite. Finite-element techniques have also been
appliedto determinetheintake shapefactorsfor cylindrical
and other regions. The studies by Tavenas et a. (1986a,b)
deal with theapplication of finite-element techniquesto the
estimation of intake shape factorsfor theisotropic case. In
work that followed, Tavenas et a. (1990) also provide a
useful and informative commentary on the procedures that
have been devel oped for the estimation of shapefactorsfor
cylindrical intakes, and they use the results of finite-ele-
ment evaluations of the intake shape factors to evaluate
resultsof in-situ permeability tests conducted onthe Cham-
plain clay. Although these authors have commented on the
topic of hydraulic transverse isotropy, there was no exten-
sive study of this aspect of the problem because of the
near-hydraulic isotropy of the tested clay. Hayashi et al.
(1997) and Warrick and Rojano (1999) have provided
correlations between intakes with spherical, spheroidd,
line source, and an open interval in animpervious cylindri-
cal casing. Inarecent study, Ratham et al. (2001) also used

the finite-element technique to reexamine the estimatesfor
Hvordlev’ s intake shape factors. These authors also inves-
tigated theinfluence of hydraulictransverseisotropy onthe
intake shape factor, athough no results of any generality
are provided. A further recent investigation by Selvadurai
and Brunelle (2001) investigated the behavior of cylindri-
cal intake regionsthat straddle hydraulically inhomogene-
ous media. An important aspect of the application of
computational methodologies, especialy as they relate to
the evaluation of intake shape factors for cylindrical re-
gions incorporating the casing, is that mentioned pre-
viously concerning the change in the type of boundary
condition from pervioustoimperviousconditionsaong the
same surface. The flow velocities at these boundaries are
singular, and any computational scheme that is used to
solve the steady-state flow problem should be capable of
accommodating this singular behavior in the solution
scheme. Special computational schemes (Aalto, 1985) can
be developed to accommodate this limitation. Such
schemes, however, are not routinely available in many
existing general-purpose computational codes. Mesh re-
finement can be used to improve the estimates, but contin-
ued mesh refinement will result in an ill-posed problem.
This is not, however, an obstacle to the use of computa
tional schemes, provided the locations where the flow
velocity issingular are excluded from the cal cul ation of the
flow rates (Selvadurai and Brunelle, 2001). Since the po-
rousmedium isnondeformableand thefluidisincompress-
ible, the flow rate to the entry point can be calculated by
selecting any closed surface that encompasses the intake
region. This procedure, along with suitable mesh refine-
ments, can be used to generate computational estimatesfor
intake shape factors for which analytical solutions are
unavailable. Computational methodologies can aso be
used to develop solutions to a wider class of problems
associated with intakes, the mathematical analysis is of
which can be quite complicated. Such an example is that
of a cylindrical intake located in a transversely isotropic
porous medium in the genera case where the planes of
isotropy areinclined to the axis of theintake. Thisproblem
will be presented in aforthcoming article by Selvadurai et
a. (2003). The above commentary on aspects of the shape
factor for a cylindrical intake region located in a porous
medium iscertainly not meant to be complete, but provides
arecord of the approaches that have been proposed in the
literature for investigating intake regions|ocated in nonde-
formable porous media with predominantly isotropic hy-
draulic conductivity.



The situation is different in the case where the porous
medium istransversaly isotropic; here, both the geometric
features of the intake and the hydraulic conductivity char-
acteristics of the porous medium will influence the intake
shape factor. This conclusion is self-evident, since the
operator equation governing flow in a transversely iso-
tropic porous medium is pseudo-Laplacian. The restric-
tions of transverse isotropy in the hydraulic conductivity
characteristics of the medium are dictated not only by
potential application of theresultsto stratified geomaterials
but also by the restrictions placed by the use of a simple
in-situ test, such asthe cased borehol etest. Thistest cannot
be used to determine hydraulic conductivity properties
associated with general anisotropy of the porous medium.
In these circumstances, a single in-situ test cannot, under
any circumstances, be configured to determineall sixinde-
pendent constants of the hydraulic conductivity tensor
characterizing general anisotropy. In such cases recourse
must also be made to complement in-situ tests with labo-
ratory testing of geomaterial samples recovered with the
minimum of sample disturbance. Even in circumstances
wherethe axis of the cylindrical intakeis madeto coincide
with the principal axes of hydraulic conductivity, the
method of determining al three principal valuesof hydrau-
lic conductivity is not straightforward. Such determina
tionsinvariably involve not only thea priori identification
of the directions of principal hydraulic conductivity, but
also the use of multiple boreholes with segmented water
recharge/extraction locations of finitelength (Louis, 1974;
Hsieh and Neuman, 1985). Since the 1950s, severd inves
tigations have been made, notably in the soil science area,
with the intention of developing theoretical estimates for
flow ratesinto three-dimensional cavity regionslocated in
soils that display transverse isotropy in their hydraulic
conductivity characteristics. The assumption of transverse
isotropy effectively reduces the number of hydraulic con-
ductivity values to two, thereby offering possibilities for
determining them independently by suitably adjusting the
dimensions of the cylindrical intake region. For example,
an early study in this areawas done by Childs (1952), who
examined the problem specificaly in relation to the flow
situation where the in-plane hydraulic characteristics are
anisotropic. The experimental investigations arising from
these studies are also described by Childs et al. (1953,
1957). Maadand and Kirkham (1955) have aso reex-
amined a similar problem with specific reference to the
study of air permeability in soil. Maasland (1957) and
Maasand and Kirkham (1959) examined the problem re-
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lated to a cavity located in a porous medium with orthot-
ropic hydraulic conductivity and arrived at the rather unre-
liable conclusion that thein-plane hydraulic anisotropy has
no significant influence on the flow into the porous cavity,
which represents the piezometer cavity. Notable related
studiesinthisarea, by Philip (1985, 1986, 1987), examined
the problems related to steady-state absorption from both
homogeneous isotropic and transversely isotropic soils
from spheroidal cavities. Again the terminology anisot-
ropic soils, as used in connection with the latter investiga-
tion, isincorrect,t especialy in view of therestricted form
of Darcy’s law used to derive the governing equations. In
the casewhere gravity effectsare neglected, thematric flux
potential satisfies Laplace' s equation. The general presen-
tation adopted in this article is somewhat more detailed
than the material presented by Philip (1985, 1986, 1987).
One could aso argue that almost any attempt along these
lines, either past or present, could very well be gleaned
from the classical studies in potentia theory for the
Dirichlet problem given, on occasions more than two cen-
turies ago, by Legendre, Laplace, Green, Lamé, Gauss,
Boussinesg, Dirichlet, and others and summarized in the
literature on mathematical physics by, among others, Kel-
logg (1929), MacMillan (1930), Hobson (1931), and
Morse and Feshbach (1953). The methodology and ap-
proach adopted here, however, is quite straightforward in
scope and proceeds to develop results for the intake char-
acteristics, with straightforward mathematical expositions,
for the complete range of mismatch in the principal values
of hydraulic conductivities and geometric aspect ratios
which are relevant to the correct formulation of the prob-
lems. Also, the correlation between the dimensions of the
cylindrical intake and the spheroidal intake is established
by considering the more realistic equivalence of fluid flux
between the two entry-point shapes.

2. GOVERNING EQUATIONS

The theory of steadystate groundwater flow in a porous
medium, which leads to the relevant potential equation, is
classicd and can be found in the treatises by Muskat
(1937), Polubarinova-K ochina (1962), Harr (1962), Bear
(1972), Scheidegger (1974), Verruijt (1982), and Philips
(1991). Herewe consider the problem of groundwater flow
in a hydraulically transversely isotropic porous medium
which is saturated with an incompressible pore fluid. Al-
though it is possible to develop a generalized formulation
of the problem, in view of the axia symmetry associated
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with the problems being examined, it is convenient to
develop the governing equations in relation to a system of
cylindrical polar coordinates (r, 8, 2). The spatially aver-
aged fluid velocity components in the porous medium
referred to these coordinates are denoted by (vy, vg, V2). The
potential causing fluid flow in the hydraulically trans-
versely isotropic porous medium is taken as the Bernoulli
potential consisting only of the datum head and pressure
head components. Since the studies relate to considera-
tions of fluid flow in the neighborhood of the entry point,
we can, without loss of generality, assume that the pres-
sure head ¢(r, 6, 2) is much greater than both the datum
potential and the dimensions of the entry point. Also, since
the problems examined will be such that the axis of sym-
metry will be normal to the plane of transverse isotropy,
we can also assume that the pressure head is ¢(r, 2). Atten-
tion is restricted to the flow of an incompressible fluid
through the porous medium, which requires the velocity
field to satisfy the divergence freerequirement for thefluid
velocities, i.e.,

ov, Vv OV
il U B -

Ov= =
v oo r 0z

0 (€
Considering Darcy’s law for fluid flow through the
porous medium, we have

v=-Ki$ @)

whereK isthe hydraulic conductivity matrix and O¢ isthe
gradient operator applied to the pressure potential. For a
porous medium which is hydraulically transversely iso-
tropic, where the principa axes of hydraulic conductivity
are aligned with the coordinate axes r and z, the axisym-
metric form of Darcy’slaw is

Vi=—kr—- V=0 V;=—kz— 3

If we identify the z axis as the vertical direction, then the
hydraulic conductivity in the z direction corresponds to
the conventiona hydraulic conductivity ky in the vertical
direction, and the hydraulic conductivity inther direction
corresponds to the conventional hydraulic conductivity k.
Combining the expressions (3) with the fluid incom-
pressibility condition (1), we obtain the partial differen-
tial equation for theflow of anideal incompressiblefluid
in ahydraulically transversely isotropic porous medium
asfollows:

k. —=0 4

We now assume that k; # 0, and introduce the usual
coordinate transformations

k
— zZ= |1 ©)
R=r % z

such that the governing pseudo-Laplacian partial differen-
tial equation (4) can now be rewritten as

9%
o RoR o072 " ©
We shall develop solutions of (6) subject to the bound-
ary conditions that will represent the local flow patterns
associated with the prolate and oblate spheroidal cavities
located in hydraulically transversely isotropic porous
media of infinite extent and subjected to a constant poten-
tial at the internal boundary.

0% , 1 0¢

3. SPHEROIDAL INTAKES

We first consider the problem of a fluid-saturated porous
medium with a nondeforming porous fabric, which is of
infiniteextent and hydraulically transversely isotropic. The
infinitemedium isbounded internally by aprolate spheroi-
dal cavity with semimagjor axis a”'and semiminor axis b"
The boundary of the spheroidal cavity is maintained at a
constant potential ¢g. From a redistic point of view, if
steady flow is to be maintained, fluid must be supplied to
the boundary of the cavity, which represents a recharging
of the porous medium. We shall assume that this can be
doneusing apiezometrictubewith across-sectiona diame-
ter significantly smaller than either the diameter or the
height of the spheroidal entry point. Also, at the outset it
should be remarked that the spheroidal intakesareintended
to provide only an approximation to intakes such as the
cylindrical piezometer tip shown in Fig. 1. The boundary-
value problem requires the solution of (4) subject to the
boundary condition

2 2
oro, oz
= =-=1
00 * I
%3 O 0
Also, since the porous medium is of infinite extent and
the boundary value problem is three-dimensional, the po-

0.9 =do @)



tential should decay to zero asVrZ+7Z - o. If the prob-
lem is two-dimensional, such regularity conditions cannot
be applied. For the solution of the boundary-value problem
we consider the transformed version of the partial differen-
tial equation which is harmonic in the region R € (bD, 00)
andZ e %BVI@_r/kzz, oo% We note that by introducing the
gpatial transformations given by (5), we have aso trans-
formed the boundary to a spheroid with adifferent dimen-
sion in the zdirection. In view of the spheroidal geometry
of the cavity boundary, it is convenient to introduce a
system of prolate spheroidal curvilinear coordinates (a, v,
B) to examine the flow problem. We first consider the
system of prolate spheroidal coordinates defined by

R=cysinhasinf Z=cycosha cosfP (8

such that the parametric surfaces a = const., say ag, B = Bo,
and y =Yy, form a triple orthogonal confocal family of
prolate spheroids, hyperboloids of two sheets, and
ag) (d
Bl |4y

2 |da ’
(dS) :[h—lp] + th hf

meridional half-planes respectively. By considering the
expression for adifferential arc length (ds) given by

)

—1/2
W= =|@(sinh> a+sin’B)  =h, (10
where the metric or local scale coefficients are given by
(Selvadurai, 20004)

h3=(cpsinha sinp)™ (11)

the foca distance ¢, can be expressed in terms of the
dimensions of the semimajor axis and the equatoria radius
of the prolate spheroid conforming to the transformed
internal boundary of the porous medium, whichisassumed
to be defined by a = a, such that

(bp)? = (b5% = c5 sinh? g

(ap) = E(a%2 =Cp 2 cosh? ag (12

and

fro1 n=e1 a9

p=a’VA-n? -A= ”
z Dﬁl]
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Since the flow problems examined exhibit a state of
symmetry about the z axis of hydraulic symmetry of the
porous medium, the hydraulic potential is independent of
the azimuthal coordinate y and is dependent only on the
curvilinear coordinates (a, B): Laplace’ sequation (6) takes
the form

?0(c,B) (14)
d? d? 0 0
= +—=+cotha—+cot— B)=0
| 90 op? Cou P g |olB)
subject to the boundary conditions
¢, B)=¢p on a=ap (15)

where a = ag corresponds to the boundary of the prolate
spheroidal cavity with semimgjor axis ap and semiminor
axis bp, and

¢(@,B) -0 a a - (16)

For the solution of the boundary-value problem referred
to the system of spheroidal coordinates, we seek Lameé
products associated with spheroidal coordinate system
(Hobson, 1931; Morse and Feshbach, 1953; Selvadurai,
1976; Moon and Spencer, 1988), thegeneral expression for
which can be obtained in the form

() = | P" (cos) or Q" (cosp)

(17)

P (coshar) or Q™ cosh(a)}
withm, n=0, 1, 2, 3 ..., and where P{™ and Q™ are
associated L egendre functions of the first and second kind,
respectively. Considering the boundary conditions and the
regularity conditions (15) and (16) applicableto the poten-
tial in the transformed domain, we need to select solutions
of (14) for which ¢(a, B) = ¢(a). The relevant solution,
which aso satisfies the regularity condition (16), can be
obtained by selecting m=n = 0 and neglecting the remain-
ing terms of the sequence (17); thus,

d()=5In® (19
where C isan arbitrary constant and
+
[cosha + 10 (19)

Ezgoshu—lg
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Thearbitrary constant C can be obtained by considering
the boundary condition (15); this gives

__%
0(@) =1 g Ing (20
where
&o=¢&(ap) (21)

Thisformally completes the solution to the problem, in
the sense that the coordinates R and Z can be expressed in
terms of the spheroidal coordinate a in the forms

_(Ri+Ry

cosh a 20p

(22)

R, = (Z +cp)2 +R? R, = (z—cp)z+R2 (23)
and the original coordinates r and z can be expressed
through the transformation (5). The resulting expressions
can be utilized to obtain the velocity componentsv, and v,
which in turn can be used to compute the flow from the
pheroidal cavity duetotheconstant potential ¢ at itssurface.
This procedure, however, entails an inordinate amount of
andytica calculations. As an dternative, it is worth noting
that since the fluid is incompressible, the flow rate through
any closed surfacein the porous medium encompassing the
spheroidal cavity will also represent the flow rate from the
boundary of the spheroidal cavity. We can use this mass
consarvation principle to first calculate the flow at a large
distance from the prolate spheroid. Therefore, at large dis-
tances from the prolate spheroid o = o, the coordinate a
becomesequal to R/ 2cp, whereR = VR +Z7 isthedistance
from the center of the spheroid. Therefore the hydraulic
potentia from the prolate spheroid at large distances from it
istheinversefirst power potential, which takes the form

P
In|(coshat, +1)/(cosha, — 1)

o(RZ)=

2cp
x m (24)

The velocity components v(r, 2) and v4r, 2) can be
obtained by using (24) along with the transformations (5)
in Darcy’s expressions (3) for the velocity components;
we obtain

204CoK,

[t [ =]

r
[err(k”/kZZ)er/Z (25)

2(I)Ocpkrr

Ry

z
X
{rz k) erlz (26)
Thefluid flow rate Q through any spherical surface R =
congt., or the flux through the surface, located a a large
distance from the prolate spheroidal cavity located in the
transversely isotropic porous medium, can be evauated in
terms of velocity components (25) and (26). We have

=
In

Q:Zq-rf (v, Sin® + v, cos® R?sin® dO (27)
0

The factor 21t in (27) accounts for the integration with
respect to the azimuthal directiony. Also, using therelations

R=Rsn® Z=Rcos® (28)

we can write (27) in the form

o 4mba\ n7k
b -]

N f" sin®de
o [k, +(k, —k,)cos®] (29)
Evaluating (29) we obtain

Bme,d” Mm
(\/Ym/m)/(\/f—\/?ﬂ (30)

Sincethissolution will beadopted to consider situations
involving cylindrical intakes of diameter D and length L,
with L > D, wewill select the basic length parameter of the
problem as b”=D/2 and the intake shape factor will also
be expressed in terms of the hydraulic conductivity in the
redial direction; the expression (30) can now bewritten in
the form

Q

In

Q= Fppkrrq)o (31)
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where
Fo— 4D\ N —n*
! nx/fhl[(x/ﬂm/)\—nz)/(\/)\_—\ﬁﬂlzﬂ
A21, n<1 (32)

and D = 2b") Asisevident, thisresultis devel oped withthe
specific constraint that (bD/ aEﬁ < 1. The subscript pp de-
notes an initial geometric configuration, corresponding to
a prolate form and a hydraulic transverse isotropy that
resultsin atransformation that maintains the prolate form.
This definition of D will be maintained throughout, for
consistency and to account for the fact that in the applica-
tion of the results to the borehole casing entry point, the
diameter D of the casing is usually constant and the length
L isvariedto suit the conditionsof thetest. Theintake shape
factor Fpp now characterizesthefluid flow rate either from
or to the prolate spheroidal cavity located in the hydrauli-
cally transversely isotropic porous medium. The case of
n =1 corresponds to the problem of a spherical cavity
which is located in a hydraulically transversely isotropic
porous medium, i.e.,

[F ]spherical cavity —

4nD\ -1
ﬂln[(ﬂ+ﬂ)/(&—«/ﬁ)]

where D isthe diameter of the spherical cavity. AsA - 1,
the aboveresult reducesto the solution for the intake shape
factor for the spherical cavity which is located in an iso-
tropic porous medium, i.e.,

(33)

Pl = 2mD (34

In developing the preceding analysis we have explicitly
assumed that the hydraulic conductivity ratio (K.r/kz) = 1.
There can be situations where (k;;/kz) < 1. Examples of
such materials could include a soil containing a dense
arrangement of wick drains, which are usually installed to
accelerate consolidation of clays and silts of low hydraulic
conductivity and in instances where an otherwise hydrauli-
caly isotropic geomateria is atered by the creation of
dissolution channels due to the vertical migration (z direc-
tion) of a reactive chemica (Philips, 1991). In such in-
stances, we need to formulate the problem in relation to a
system of oblate spheroidal coordinates defined by

Selvadurai

R=cpcosha snB Z=cysinha cosp (35)

The procedures associated with theanaysis of the cavity
with an oblate shape follow the same basic approach dis-
cussed previoudy, and we shall present here only the final
result for the fluid transport rate from the obl ate spheroidal
cavity which is subjected to a constant potentia ¢, i.e.,

o— 2uDg 0’ N [k, k.,
ncot”' (\/x/\/ﬂz —A )

ke b (36)

Alternatively, for consistency and comparison, the flow
rate can be defined as previously by taking into considera-
tion the hydraulic conductivity k.. This gives rise to the
definition of the intake shape factor Fo, for an oblate
spheroidal cavity, i.e.,

Q =Fookir b0 (37)

where

P 2mDAIm* =\
v 'r]\/XCO'f1 (\/f/«mz —A )

ke
)\:k—;sl n=--=21 (38)

where a”is the half-length of the minor axis (i.e., in the z
direction) and b is the equatoria radius of the oblate
spheroidal cavity.

Inthe casewhenn = 1, the solution (38) correspondsto
that of the intake shape factor for a spherical cavity which
is located in a hydraulically transversely isotropic porous
medium of infinite extent, i.e.,

2D 1\

I\ cot™! (ﬁ/ﬂ)

[ F}spherica] cavity —
trans. isotropic

A= Kor <1 (39
kzz
Similarly,asA - 1,theresult(39)correspondstotheresult
fortheintakeshapefactor for thespherical cavitylocatedin
ahydraulicallyisotr opicporousmedium,givenby (34).
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In the particular case when | — o, the oblate spheroidal
cavity degenerates to a flat disc-shaped cavity which is
located in a hydraulically transversely isotropic porous
medium. Taking the limit of (38) asn — o, we obtain

, k
[F}disc-shaped cavity =4D k (40)
trans. isotropic T

The result confirms the observation that in the case of
the disc-shaped cavity which is located in hydraulically
transversely isotropic porous medium, for flow to take
placekz > 0and k;, > 0inview of the assumption invoked
priorto(5). AsA - 1,theresult (40) givestheintake shape
factor for adisc-shaped cavity located in a porous medium
of infinite extent, i.e.,

[F]disc-shgped cavity =4D (41)
1sotropic

We note that in this instance, flow into the cavity region

takes place from both faces of the disc-shaped entry region.

4. SUMMARY OF SOLUTIONS

In Section 3 we examined the devel opment of intake shape
factors for situations where the measure of hydraulic an-
isotropy was such that the cavity with a prolate spheroidal
shape transformed into a prolate spheroidal shape, albeit
with different dimensions, and the cavity with an oblate
spheroidal shape similarly transformed to an oblate shape.
There can, however, be situations where a cavity with an
initially prolate spheroidal shape can transform to an
oblate form because of the nature of the anisotropy, and
vice versa. The solution for these situations can be ap-
proached aong the lines outlined in Section 3 and the
details will not be repeated here. It is sufficient to record
here the relevant final results.

Consider the problem of a prolate spheroidal cavity
withn(= b/ a% < 1, situatedinahydraulically transversely
isotropic elastic porous medium where A(= ki /kz) < 1.
The appropriate form of the intake shape factor Fq, can be
evaluated in theform

b 2D =\
r wr]\/Xcot’1 (\/X/«/nz —)\)

r]:—DS]. (42)
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We now consider the problem of an oblate spheroidal
cavity with (= b7a) = 1, which is situated in a hydrau-
lically transversely isotropic porous medium where
A= ki /Kz) = 1. The appropriate form of the intake shape
factor Foq can be evaluated in the form

N —
(b =) (& =k )

A21 n=1 (43)

Fq} =
n\/x In

In summary, the complete range of the solutionsfor the
intake shape factors, applicable to both prolate and oblate
spheroidal cavities in hydraulicaly transversely isotropic
porous mediawith either kyy = kz or ki < kz, can be stated
in the forms

F
w

4D\ -7

F, :nﬂm{(ﬂ+ﬂ)/(&7m)]

k m=—2>1
A=l > ¢ (44)
kZZ
n:b—xsl
p
Similarly,

Fo _ 2w\’ =\
ro] e AR

A=< (45)

Asremarked in the introduction, the condition A > 1 or
kn >k, can be realized even with relatively plausible
choices of porous materials with low hydraulic conductiv-
ity conforming to a sequence of sedimentary layers. Fi-
nally, since the results for the intake shape factors Fjj, (i, j
=p, 0) arein exact closed form, the presentation of detailed
numerical results is perhaps unnecessary. It is also impor-
tant to note that the expressions developed for the prolate
spheroidal intake are strictly applicableto situationswhere
0<n <1 This diminates the possibility of the intake
region degenerating to acylindrical cavity of radius bD, for
which the solution can be determined only by specifying
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Figure 2. Variation of Fpp/4mD and Fop/4TD with A € (1, 10) and n € (0.1, 1).

Figure 3. Variation of Foo/2MD and Fpo/2mD with A € (0, 1) and n € (1, 10).

an external boundary at a finite location. Similar con-
straints apply to situations where there is a sharp contrast
in the hydraulic conductivity characteristics that would
permit flow either only in the radial direction or in the
axial direction [i.e., (k/kn) — 0 or (ky/k,) — O, respec-
tively]. In these circumstances the form of the partial
differential equation governing flow in the transversely
isotropic domain will permit solutions only if the porous
domain isfinite.

Theresults (44) and (45) are applicable to the complete
range of entry-point geometries associated with the

spheroidal cavity and the complete range of hydraulic
transver se isotropy associated with the porous medium. It
isnoted that the result which ismost likely to be applicable
to awiderange of stratified sedimentary soilsisthat given
by (44), where A(= ky/ kz) = 1. For purposes of complete-
ness, however, Figs. 2 and 3 present the variation of F;;
applicabletothevariousrangesof theindependent parame-
ters A =ky/k, and n = b/a"” Numerica vaues for the
intake shape factors can be easily obtained by using sym-
bolic mathematical manipulation routines such as
MATHEMATICA™ and MAPLE™.
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5. APPLICATIONS
TO THE CYLINDRICAL INTAKE

In examining the problem related to flow from both prolate
and oblate spheroidal cavities that are located in a porous
medium with transversely isotropic hydraulic conductiv-
ity, we are primarily interested in applying the results to
develop an intake shape factor for acylindrical entry point
with diameter D and length L, also located in a porous
medium with transversely isotropic hydraulic conductiv-
ity. (Also, it is assumed that flow into such a cylindrical
intake occurs over its entire surface, whereas in actual
practice the upper plane surface of the cylindrical entry
point does not contribute to the incoming flow. The exact
formulation of the cylindricd intake region shownin Fig.
lisanontrivial problemin potentia theory that invariably
resultsin dual seriesformulations of acomplicated mixed-
boundary-value problem.) In order to obtain such a corre-
lation we need to establish a relationship between the
dimensions of the spheroid and that of the cylindrical
shape. One obvious choice is to assume (Kirkham, 1945;
Hvordlev, 1951; Maasland, 1957; Maasland and Kirkham,
1955, 1959) that (L/D) = (a/bD). This, however, is a
convenient but poor correlation, which does not reflect any
attributes of the physical process of fluid flow into the
porous region. A similar choice relates to comparison of
the volume of the cylindrical region with the volume of the
spheroid (Wilkinson, 1968). In order to obtain this com-
parison we assume that the diameter of the cylindrical
shapeisthe sameastheequatoria diameter of the spheroid.
(i.e, D =2b9. Thisgives

= Hlo
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0.6

0.4
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While the comparison of volumes gives a direct relation-
ship between D/L and b7a" it should be noted that the
comparison of volumes does not incorporate any attributes
of the fluid flow process.

A more plausible correlation that would account for the
flow process can be established by considering the equiva-
lence of surface area between the cylindrical entry point
and the prolate spheroidal entry region through which the
flow takesplace. Again, weassumethat D = 2b~and obtain
a relationship between the aspect ratio of the cylindrical
cavity, D/L, and the aspect ratio of the spheroida cavity,
b7a"~ We have

D 2 (b*/a*) —(b*/a*)2
T —~ — (47)
(b‘/a") lf(b"/a*) +sin”" lf(b"/a*)

Although thisrepresentation of therel ationship between
the two aspect ratios is perhaps the most readlistic, it is not
possible to invert the relationship to express b/a” explic-
itly in terms of D/L. From a practica point of view,
however, it is possible to find such a relationship through
an explicit plot of the relationship. In this sense, once the
ratio D/L is specified, the value of b a” required for the
evaluation of (44) and (45) is known explicitly and
uniquely. The variation of D/L with n(= b/ atj is shown
in Fig. 4. It is aso useful to establish the correlation

02 04

06 08 1

Figure 4. Variation of D/L with n as computed on the basis of equa surface areas between the spheroidal cavity and the

cylindrical cavity.
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Figure 5. Comparisons between Hvorslev's result for the intake shape factor and that derived from the prolate spheroid analy-
sis, where the dimensions are assigned through equivalence of surface areas

between Hvorslev’ sresult givenintheintroduction and the
result for the prolate spheroid located inanisotropic porous
medium, where the result (47) is used to establish the
equivaent dimension ratio in Hvordev’s expression. The
relevant results are given in Fig. 5. It is evident that there
isreasonabl e correl ation between the two approaches, par-
ticularly if equivalent surface areas are used. Other com-
parisons with Hvorslev's result can be found in the
literature (Brand and Premchitt, 1980b; Chapuis, 1989;
Ratham et d., 2001).

6. CONCLUDING REMARKS

The simplest of the in-situ tests used for the measure-
ment of hydraulic conductivity is the cased borehole test,
inwhich either water recharging or water extractionisused
to create the potential difference required for the transient
flow. With geomaterials that are hydraulically isotropic,
the rate at which the water enters the cased borehole is
governed primarily by the geometric characteristics of the
intake region. One of the key results applicableto acylin-
drical intake region located at the base of an impervious
casing installed in an isotropic porous medium was pro-
posed by Hvordev (1951). It is shown that this result is
applicable only to situations where the length of the cylin-
drical intake must be greater than the diameter of the
region. lts application to the limiting case of a disc-shaped
entry region at the base of a casing is therefore unwar-
ranted. Also, when considering intake regions located at
thebaseof cylindrical casings, itisshownthat for situations
where the boundary conditions at the entry point changes

from apotentia prescribed to animpervious condition, the
flow velocities in particular can exhibit singular behavior
at the demarcation point. Unless such singular behavior is
either accounted for in the computational formulation or
the influences of the singular behavior are circumvented,
the flow rates calculated from computational methods can
be open to error. Procedures for avoiding the influences of
the singularitiesin the computation of the flow ratesto the
intake cavity are also suggested. When the intakeregionis
located in a porous medium with directional hydraulic
properties, the flow rate will be influenced both by the
geometric shape of the intake region and the directional
hydraulic conductivity properties of the porous medium.
This article discusses the problem of the characterization
of the intake shape factor for a cavity region located in a
porous medium with transversely isotropic hydraulic con-
ductivity. A transversely isotropic medium could be re-
garded as either alayered or astratified geomateria where
the thickness of the stratifications are small enough, in
comparison with the dimensions of the entry point, to
warrant the application of the continuum theory for flow
through a porous medium by appeal to a transversely
isotropic equivalent of Darcy’'s law. When the intake re-
gionismodeled asaspheroidal cavity with either aprolate
or an oblate form, this enables the devel opment of arange
of exact closed-form solutions to model the intake behav-
ior. Some of these solutions can be deduced from results
available in historical literature. The presentation here,
however, is geared specifically to the discussion of fluid
intakes in porous media, and the derivations use a system-
atic exposition. The results for a prolate spheroidal intake
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region, which usually representsthe conventional cylindri-
cal intake, are then used to obtain to the dimensions of the
representative cylindrical intakeregion, by establishing the
equivalence of the surface areas between the two geomet-
ric shapes. The development of exact closed-form results
for the spheroidal intakes makes the procedure quite
straightforward. The direct analysis of the flow into an
extended entry point located at the base of a casing, how-
ever, entails the solution of amixed-boundary-value prob-
lem which resultsin aset of dual seriesintegral equations,
where the solution must aso account for the singular
behavior of the gradient of the potential at the edges of the
entry point where the boundary conditions change from a
Dirichlet to a Neumann type. An elaborate mathematical
procedure of this nature is perhaps not justified in view of
the other complexitiesand uncertainties associated with the
in-situ determination of a parameter such as hydraulic
conductivity. Asnoted in the literature, the hydraulic con-
ductivity isthe single geotechnical parameter that exhibits
the greatest degree of variability (Harr, 1987).

The general solutions presented in the article prompts
the following observations. When the intake region corre-
sponds to a flattened oblate spheroid in the form of a
disc-shaped entry point, the flow rate depends on the
"effective hydraulic conductivity," Vkpk, , and theflow rate
is given by Q=4Ddg Vknk,, Where k, and k, are the
hydraulic conductivities in the horizonta (radial) and ver-
tical (axial) directions, respectively. Thereforethearrange-
ment of an entry pointintheform of adisc, with admittedly
a diameter considerably greater than that of the casing,
would alow the direct determination of the effective hy-
draulic conductivity Vknk, . The solution to the analogous
problem for the case where the elongated entry point is of
infinite length isatwo-dimensional problem, which hasno
solution for amedium of infinite extent. Thisisin view of
the fact that the flow potential for the two-dimensional
problemvariesasIn(r), wherer istheradial coordinate for
the two-dimensional problem, as opposed to the variation
proportional to (1/R), applicable to the three-dimensional
problem, where R is the spherical radius. Any finite value
of the aspect ratio D/L [which isrelated to b/ a']through
(47)] can be used in conjunction with (44) and (45) to
determine the intake shape factor applicabl e to the particu-
lar aspect ratio. Theflow rateis now determined by expres-
sions of the type (30) and (36), where the geometry of the
entry point is specified. Alternatively, from a practica
perspective, the geometric aspect ratio of the intake can be
altered to determine the different flow rates that are asso-
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ciated with the different intakes. These expressionsfor the
flow rate, which incorporate the hydraulic transverse i sot-
ropy measure, can then be inverted to determine the hy-
draulic transverseisotropy ratio ky/ky in aunique manner.
Admittedly, this requires some knowledge of whether
ki/k, <1 or whether ky/k, > 1. Site investigations that in-
volve core recovery from the stratified geologic medium
will naturally indicate the plausible choice. Also, for most
sedimentary geologic media, the sequential deposition of
relatively impervious layers will result in the condition
where, invariably, kn/k, > 1.
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