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SUMMARY 

The conventional use of the shear vane test is primarily restricted to the in-situ measurement of the 
undrained shear strength characteristics of saturated cohesive soils. Scant attention has been devoted to the 
use of this test as a means of measuring further properties of geotechnical interest. This paper presents an 
analytical study which illustrates the possible use of a shear vane test as a technique for the measurement of 
in -situ deformability characteristics of a soil medium. Certain plausible assumptions have been invoked for 
the analytical treatment of the shear vane problem. The vane blades are represented as elliptical shapes, 
the soil disturbance associated with the vane penetration is neglected and the soil mass enclosed within the 
swept boundary of the vane is represented as a rigid region. These, together with assumptions of classical 
isotropic elastic soil behaviour, enable the development of certain exact solutions for the torque-twist 
relationships of vanes fully or partially embedded in the soil. The results indicate that the elastic 
deformability characteristics of a soil medium can be directly recovered from an examination of the initial 
stages of an experimental torque-twist curve. In particular, the measured parameter would correspond to 
the linear elastic shear modulus of the soil medium. 

INTRODUCTION 

The vane shear test is widely used for the determination of undrained shear strength charac- 
teristics of undisturbed and remoulded saturated cohesive soils tested under laboratory and field 
conditions (Skempton,' Gray,2 Eden and H a m i l t ~ n , ~  Andresen and B j e r r ~ m , ~  Cadling and 
Odenstad,' Helenelund,8 Richardson el u L , ~  Schmertmann," Menzies and Mailey"). 
Shear vanes with rectangular, triangular, circular and polygonal blade shapes have been 
successfully used to study the sensitivity and anisotropy of the strength characteristics of soft 
cohesive soils in which the strength parameters can be significantly altered by sampling 
disturbance (Flaate," Arman et ~ 2 1 . ' ~ ) .  Briefly, the shear vane device consists of stainless steel 
vanes composed of rectangular, triangular, circular or  polygonal blades rigidly connected to a 
steel rod. A torque is gradually applied to the upper end of the rod until the soil yields along the 
surface swept by the boundary of the vanes. An expression for the undrained shear strength, 
which is assumed to be mobilized at this boundary, is computed in terms of the external torque 
and the vane dimensions by purely statical equilibrium considerations. The vane shear tests are 
usually performed at locations near the surface or  at some depth below the bottom of a borehole 
in the soil medium (Figure 1). 

A majority of the investigations to date relating to the use of the shear vane have concentrated 
upon its primary function as a test for the determination of the strength characteristics of the soil. 
The accurately measured parameters are usually the maximum applied torque and the minimum 
torque resulting from the loss of strength due to remoulding of soil along the failure zone. If, on 
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Figure 1. Installation procedures. (a) Shear vane located near the ground surface, (b) Shear van located at a large depth 

the other hand, the torque-twist relationship is accurately recorded throughout the test then it 
seems reasonable to enquire whether the initial portion of such a torque-twist curve is in any 
way representative of the deformability characteristics of the soil medium in its elastic range. 
The possibility of such an extension of the shear vane test was first suggested by Cadling and 
Odenstad5 and more recently by Madhav and Kr i~hna . '~  The main purpose of this paper is to 
develop, within the framework of the classical theory of elasticity, certain theoretical results for 
the torque-twist relationship of a shear vane of prescribed shape embedded in a cohesive soil 
medium. Such a theoretical result would then provide a means of estimating the deformability 
characteristics of a soil medium by using the results derived from a shear vane test. 

To enable the derivation of the theoretical results it becomes necessary to introduce further 
plausible assumptions, in addition to the representation of the cohesive soil as a linearly 
deformable isotropic homogeneous medium. 

(i) Firstly, it is assumed that the shear vane can be introduced into the soil medium of soil 
disturbance; i.e., the torque-twist response of a vane located in the soil is not significantly 
altered by the soil disturbance associated with the vane penetration. In any event, this 
assumption has to be effectively realized in practice if reliable results for strength and 
deformability characteristics are to be determined from in-situ tests. At the same time it would 
be impractical to totally eliminate the soil disturbance associated with the vane penetration. The 
soil disturbance associated with near-surface vane tests is generally much less than that 
associated with deep vane tests. For the purpose of the theoretical derivations, we shall neglect 
the effects of the soil disturbance and represent the soil medium in the vicinity of the vane as a 
homogeneous continuum. 

(ii) The second assumption pertains to the modification of the shape of the shear vane blades. 
Since the deformability characteristics of the soil medium are being investigated it is advan- 
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tageous to induce a state of deformation, or stress, in the soil medium which will minimize the 
zones of premature failure associated with highly stressed locations. This could be achieved to 
some degreee by representing the vane blades by a regular geometric shape free of sharp edges; 
a vane with a circular blade shape achieves this to a large extent. However, in order to 
approximately represent some shear vanes that are currently used in engineering practice, the 
analytical treatment of a shear vane with blades corresponding to an elliptical shape will be 
considered. It should, however, be noted that the use of shear vanes with rectilinear shapes 
(similar to those shown in Figure 1) results in rather simple expressions relating the undrained 
shear strength and the applied torque. 

(iii) Thirdly, it is assumed that the soil contained within the volume swept by the cross-section 
of the shear vane remains undeformed throughout the initial range of the torque-twist curve. 
According to this assumption, the entire swept volume can be approximately represented by a 
rigid inclusion. In the particular case of a vane blade shape in the form of an ellipse, this swept 
volume will correspond either to a prolate spheroidal or oblate spheroidal rigid region. This 
particular assumption is central to the development of relatively straightforward analytical 
solutions to the torque-twist relationship for the posed shear vane problem. The influence of the 
deformability of the soil region contained within the swept boundary on the accuracy of this 
solution will be further examined in a subsequent section (see also Selvadurai and Osler”). For 
purposes of reference throughout the paper we shall adopt the followirzg nomenclature: (1) a 
‘prolate vane’ is a shear vane with an elliptical blade shape in which the length of the semi-major 
axis (a,) is greater than the equatorial radius (b,); (2) an ‘oblate vane’ is a shear vane with an 
elliptical blade shape in which the length of the semi-minor axis (ao) is less than the equatorial 
radius (bo). Prior to the initiation of yield in the soil medium there exists complete continuity of 
displacements at the interface of this inclusion and the surrounding soil medium; i.e., the 
inclusion is in bonded contact with the rest of the soil medium. 

(iv) Lastly, the dimensions of the vane are assumed to be small in comparison to the 
dimensions of the soil stratum in which the tests are carried out. It should be appreciated that the 
majority of the assumptions invoked above aid the development of fairly straightforward 
solutions for the torque-twist relationships for the shear vane, from which the deformability 
characteristics can be readily estimated. The general approach propounded in this paper can be 
further extended to minimize these simplifying assumptions. 

The elastic analysis of the shear vane problem is thus reduced to the determination of the 
torque-twist relationship for (i) a rigid prolate spheroidal inclusion embedded in bonded 
contract with an infinite isotropic elastic medium or (ii) a rigid prolate spheroidal inclusion which 
is partially embedded in bonded contact with a semi-infinite isotropic elastic medium. These two 
categories are assumed to represent shear vane tests which may be conducted at the surface, or 
at a large depth within the soil respectively. The mathematical formulation of the problem is 
referred to a system of prolate spheroidal coordinates (a, p, 7 ) .  It is found that the shear vane 
problem as formulated above falls into the general category of rotationally symmetric torsion 
problems in which the stress and deformation fields are independent of the longitude ( y ) .  The 
analysis is carried out by making use of the displacement function technique similar to that 
proposed by Selvadurai and Spencer16 and Se1~adurai.l~ The formal similarity between the 
displacement function and the associated Stokes’ stream function used in the analysis of purely 
rotary flow in Newtonian viscous fluids (Jeffery,” Lamb,” Langlois,” Happel and Brenner*l) is 
fully recognized. The restriction of incompressibility, implicit in the treatment of the viscous 
flow problem, is, however, not extended to the analysis of the elasticity problem. Using the 
displacement function technique, an exact closedform solution is developed for the torque-twist 
relationship for a deep shear vane with an elliptical blade shape. Also, the torque-twist 
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relationship for a shallow shear vane can be directly recovered from the above result. The 
corresponding solutions to the circular shear vane problem occur as limiting cases of these 
results. Owing to the symmetry of these torsion problems, the torque-twist relationships thus 
developed are valid for moderately large deformations of the surrounding soil medium. The 
stress analysis of elastic media subjected to moderately large deformations is carried out by 
taking into consideration effects of both linear and quadratic terms in the displacement gradients 
(Rivlin,” Spencer,23 Selvadurai and Spencerl6). Alternatively, it is clear that in the context of 
the shear vane test, the torque-twist relationship generated will exhibit a linear relationship 
significantly beyond the range of applicability of the linear theory of elasticity. 

An expression for the limiting torque mobilized due to shear failure along the swept boundary 
(a = ao) is evaluated for the special case where the undrained shear strength is fully mobilized 
along that boundary. Finally, equivalent results for the shear vane with a swept volume in the 
shape of an oblate spheroid are presented for completeness. 

GOVERNING EQUATIONS 

The analysis of the shear vane problem posed here is referred to a system of prolate spheroidal 
coordinates (a, p, y )  defined by the transformation 

[ x ;  y ; 21 = c,[sinh (a sin /3 cos y ;  sinh a sin p sin y ;  cosh a cos p ]  (1) 

where cp is a positive constant. The parametric surfaces a = constant, say ao, = Po, y = yo form 
a triple orthogonal confocal family of prolate spheroids, hyperboloids of two sheets and 
meridional half planes respectively. The metric or local scale coefficients are given by 

hl = h2 = [ci(sinh2 a +sin2 p)]-”* = h 

h3 = [c, sinh a sin PI-’ (2) 

The curvilinear components of the displacement vector are denoted by (urn, up, u,) and attention 
is restricted to the particular class of rotationally symmetric torsion problems characterized by 
the displacement field 

u, = 0; u p  = 0; u, = u,(a, p )  (3) 
For this deformation, the none-zero curvilinear components of the Cauchy stress tensor u are 
given by 

u =  a,, 0 u p ,  (4) [: I 11 
The corresponding linear elastic constitutive relations are given by 

where G is the linear elastic shear modulus. A displacement function n(a, @) is now introduced 
such that 

Using the above representation and the constitutive relations (6),  the non-trivial equation of 
equilibrium is reduced to the form 

U, = h3fl (6) 

D2n(a, p )  = 0 (7) 
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where D2 is Stokes’ differential operator, which has the form 

The analysis of the elasticity problem in rotational symmetry is thus reduced to the deter- 
mination of the function n(a, p )  which satisfies the appropriate boundary conditions. The 
uniqueness of the assumed displacement field (3) is established by virtue of Kirchhoff’s 
uniqueness theorem (Green and ZernaZ4) in classical elasticity provided G > 0 (and - 1 < v < i). 
For this particular class of deformations, the elastic medium is subjected to isochoric (volume 
preserving) deformations. Thus, the only material property that can be determined from the 
shear vane problem is the linear elastic shear modulus G. It should, however, be appreciated that 
although the elastic medium experiences isochoric motion, it does not necessarily imply that the 
medium itself is incompressible. 

ELASTIC ANALYSIS OF THE PROLATE SHEAR VANE 

Deep vane problem 

Firstly, the problem of a homogeneous isotropic linear elastic medium which is bounded 
internally by a prolate spheroidal rigid inclusion is considered. The inclusion is assumed to be in 
bonded contact with the elastic infinite space at the boundary a = ao. To reproduce the action of 
the shear vane problem, the inclusion is subjected to a torque T which causes a rigid body 
rotation o about the axis of symmetry p = 0 (Figure 2(a)). The displacement boundary condition 
at the interface is 

u,(ao, p )  = wcp sinh a. sin p (9) 
Furthermore, since the elastic medium is of infinite extent the displacement and stress 
components should (i) tend to zero as a + 00 and (ii) be single valued in the domain a. < a < co 
and 0 < p < 7r. It can be shown that the boundary and regularity conditions are satisfied by the 
displacement function 

where 

cosh a + 1 
cash a - 1 

@(a) = (f In 5-coth a csch a}; c=  
and 

The displacement and stress components derived from (10) are 

@ o  = @(ao) 

WCP 

@Po 
u, = - sinh a sin p@(a) 

and 
2Go sin p 

sinh’ a@o[cosh2 a - cos2 p]”2 am, = 
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Figure 2. The prolate shear vane problem. (a) The spheroidal coordinate system, (b) Shear vane located at a large depth, 
(c) Shear vane located at the ground surface 

respectively. The torque-twist relationship for the prolate spheroidal inclusion can be obtained 
by considering the resultant of moments induced about the axis p = 0 by the shear traction acting 
on the boundary a = ao, i.e., 

With the understanding that the rotation of the inclusion occurs in the direction of the applied 
torque, (14) yields 

3 2 TC; Go 
3{2 coth a. csch ao-ln to} T =  

where to = [(ao). From the geometry of the prolate spheroidal inclusion, the dimensions of the 
semi-major axis (a,) and the equatorial radius (6,) are given by 

(16) a, = c, cosh ao; 6, = c, sinh a. 
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Using the above equations, the torque-twist relationship (15) can be reduced to the form 

where 
b 
UP 

A=-!  and A S l .  

The result (17) is applicable to an elliptical shear vane or a prolate vane located at a large depth 
(Figure 2(6)). 

Circular vane problem 

circular blade shape can be obtained from (17). Taking the appropriate limit, (17) gives 
In the particular case when A + 1, the elastic torque-twist relationship for a shear vane with a 

where up is the radius of the vane. 

Surface vane problem 

Consideration is now given to the problem where the prolate spheroidal inclusion is partially 
embedded in bonded contact with a semi-infinite homogeneous isotropic elastic medium (Figure 
2(c)). In this particular case the boundary conditions of the problem relate to the continuity of 
displacements at the interface a = a. and the traction-free conditions on the plane p = m/2. The 
displacement boundary conditions are 

u,(ao, p )  = wcp sinh a0 sin /3 (194 

and the traction boundary conditions reduce to 

An inspection of the solution developed for the fully embedded inclusion indicates that the 
displacement component (12) and the non-zero component of a (13) identically satisfy the 
boundary conditions (19). The torque-twist relationship for the partially embedded inclusion is, 
however, modified owing to the change in the limits of integration in (14) (m/2</?<7r). 
Therefore the torque-twist relationship for the partially embedded prolate spheroidal inclusion, 
which is assumed to represent the near surface shear vane problem, is given by 

2 312 2 16n-a;Gw[l-A ] A 

1 -d(l- A2) 

ULTIMATE TORQUE MOBILIZED BY A PROLATE VANE 

Deep vane problem 

An expression for the ultimate torque (T,) mobilized by a deep shear vane with an elliptical 
blade shape, located in a saturated cohesive soil medium can be obtained by assuming that the 



238 A. P. S. SELVADURAI 

undrained shear strength (c,) is fully mobilized along the entire boundary cy = cyo, i.e., 

Ty = lo* lo2= [ cucpsinh sin ’1 dy  d o  hh3 a = a g  

An evaluation of the above integral leads to 

where E(7r/2,5) and F(7r/2,5)  are complete elliptic integrals of the first and second kind 
respectively, defined by 

Tabulated numerical values for these functions are given by Byrd and Friedman.25 

Circular vane problem 

The ultimate torque for the deep circular vane occurs as a limiting case of (22) as A + 1. By 
expanding E and F as power series in l( = d ( l  - A  ’)) and taking the limit as [ -* 0, the ultimate 
torque for the spherical vane is obtained as 

T y =  7r apeu (24) 2 3  

The above result is in agreement with the expression for a circular vane which can be easily 
derived from first principles. 

Surface vane problems 

From symmetry considerations, the ultimate torque for a partially embedded elliptical shear 
vane (Figure 2(b)) is identically equal to one half of the expression given by the right-hand side of 
(22). Similar considerations apply for the partially embedded circular vane. 

ELASTIC ANALYSIS OF THE OBLATE SHEAR VANE 

The analysis presented in the preceding sections can also be extended to the case of an oblate 
shear vane in which the equatorial radius (bo) is greater than the semi-minor axis (ao). Final 
results for the various cases shall be presented here without a detailed account of the analysis or 
calculations. 

Deep vane problem 

contact with an isotropic elastic infinite medium (Figure 3(a)) is given by 
The torque-twist relationship for an oblate spheroidal inclusion full embedded in bonded 

167rb&41- K ~ ) ~ ’ ~  
T =  
A 3 [ C O t - ’ ( ~ ) - K K J ( l - K ’ ) ]  K 

where K = ao/bo and K S 1. 
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surface 

< ) T  

Figure 3. The oblate shear vane problem. (a) Shear vane located at a large depth, (b) Shear vane located at the ground 
surface 

Disc vane problem 

In the particular case when K + O(i.e., ao+ 0), the oblate spheroid degenerates to a flat disc 
vane of infinitesimal thickness. This particular category of vane has, admittedly, limited 
application in geotechnical engineering. The torque-twist relationship is given by 

(26) T=” 3 
3 boGw 

where bo is the radius of the circular flat disc. It may be easily verified that in the limit K + 1, (25 )  
yields the result derived earlier (see equation (18)) for the fully embedded spherical vane. 

Surface vane problem 

The torque-twist relationship for an oblate spheroidal inclusion partially embedded in 
bonded contact with an isotropic elastic halfspace (Figure 3(b)) can be directly recovered from 
(25) by invoking additional boundary conditions similar to those outlined earlier for the prolate 
vane problem. Therefore, for the partially embedded oblate vane we have 

8.?rb%Go(l - K ’ ) ~ ’ *  
T =  

K 

Similarly the torque-twist relationship for a circular disc bonded to the surface of a halfspace is 
given by 

(28) 

The result (28) is identical to that obtained by Reissner and SagociZ6 for exactly the same torsion 
problem. 

T=’6 3 
3 boG@ 
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ULTIMATE TORQUE MOBILIZED BY THE OBLATE VANE 

Again, expressions for the ultimate torque mobilized by an oblate vane can be developed using 
the techniques outlined earlier. It is assumed that the undrained shear strength of the saturated 
cohesive soil is fully mobilized along the failure plane, which is assumed to be the boundary 
a = ao. 

Deep vane problem 

given by 
The ultimate torque mobilized by an oblate vane fully embedded in a cohesive soil medium is 

Disc vane problem 

As K 3 0 (i.e., uo+ 0) so F(7r /2,1)  + 00; E ( m / 2 , 1 )  + 1. Using these limits in (29) the ultimate 
torque mobilized by a disc of radius bo embedded in a saturated cohesive soil is obtained; i.e., 

47rb: 
3 T y = -  cu 

Similarly, as K + 1, (29) gives the equivalent result for the deep circular vane. 

Surface vane problems 

Appropriate results for the ultimate torque mobilized by an oblate vane partially embedded in 
a halfspace or a disc bonded at the surface can be recovered from (29) and (30) by applying the 
requisite symmetry arguments. 

A detailed numerical evaluation of the expressions presented for the various cases is not 
warranted. Once the aspect ratio (u,/b, or bolao) for a particular elliptical vane is assigned, 
explicit numerical results can be easily obtained for the elastic torque-twist relationships, for 
both full embedded and partially embedded shear vanes. 

NUMERICAL RESULTS 

The assumption of undeformability of the soil region contained within the swept boundary of the 
vane is an assumption which is vital to the development of the preceding analytical results. It is 
therefore of interest to further examine the accuracy of this particular assumption. Madhav and 
Krishna14 have recently examined the problem relating to the torsional response of a rectan- 
gular vane embedded in an isotropic elastic halfspace and an infinite space. Their treatment 
takes into account the deformability of the cylindrical material region contained within the 
intersecting blades and the swept boundary. A discretized solution is developed by making use 
of Mindlin's 27 fundamental results for the internal loading of an isotropic elastic halfspace. The 
torque-twist relationship for a rectangular vane (diameter D and height H )  developed in 
Reference 14 for the deeply embedded vane takes the form 

T = EmD3[L1~ect (30) 

where E is the modulus of elasticity of the soil material and the values for [loIRect are shown in 
Figure 4. 
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We now consider the analytical solution (17) developed for the deeply embedded prolate 
spheroidal vane. Although the geometrical shapes of the elliptical vane and the rectangular vane 
cannot be compared, it is of interest to examine the correlation between the results given by 
Madhav and KrishnaI4 with equivalent results derived for the elliptical vane possessing the same 
aspect ratio as the rectangular vane. The result (17) can be rewritten in the form 

T = E m D 3 [ L I ~ ~ ~ i p  (3 1) 

where 

(32) 
(1 -A’)~’ ’  

2J(1 - A  2, - A  ’ In { +’(’ - 
1 -J(l- A’) 

For similar aspect ratios (i-e., 2ap = H; 2b, = 0) the numerical results derived from (32) for 
[IatIE11ip are shown in Figure 4. 
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Figure 4. A comparison of solutions developed for the rectangular vane14 and the elliptical vane: 2a,= H ;  2b,= D ;  
HID = 1/A 

We note that for undrained behaviour of the soil (i.e., Y = $) the results given in Reference 14 
for the rectangular vane compare very favourably with those developed for the elliptical vane. 
The two sets of results appear to be at variance when v = 0. It thus appears that when considering 
the undrained torque-twist curve for a rectangular vane, the region corresponding to the 
inscribed spheroid remains practically rigid and the deformation of the remainder of the elastic 
medium (contained within the swept boundary) contributes little to the deformational response 
of a measured torque-twist curve. The assumption pertaining to the ‘rigid behaviour’ of the soil 
region contained within the swept boundary is appropriate in instances where the vane is 
employed in the determination of mechanical properties of saturated cohesive soils. 
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CONCLUSIONS 

The shear vane tests are extensively used in the determination of the undrained shear strength 
characteristics of cohesive soils tested under both laboratory and field conditions. This paper 
examines the possible further use of a shear vane test as a technique for the determination of 
in -situ deformability characteristics of a soil medium. A generalized theoretical basis is 
provided whereby the linear elastic shear modulus of a cohesive soil medium can be estimated 
from an examination of the initial stages of a torque-twist relationship. The development of 
these analytical estimates assumes that the shear vane is composed of blades with an elliptical 
shape and that the material region enclosed within the swept boundary of the vane remains 
undeformed throughout the application of the torque. It has been shown that this latter 
assumption appears to be satisfactory for shear vane tests carried out on soil media which exhibit 
incompressible elastic characteristics. The soil disturbance associated wihth the vane penetra- 
tion is assumed to be small and thus neglected in the analytical treatment. Using these 
assumptions, exact closed form solutions are developed for the torque-twist relationships for 
elliptical shear vanes either fully embedded in an isotropic infinite elastic medium or partially 
embedded in an isotropic elastic halfspace. These analyses correspond respectively, to vane tests 
that are carried out at a large depth from a boundary or at the boundary itself. The torque-twist 
relationships thus developed can be directly employed to estimate the linear elastic shear 
modulus of the cohesive soil medium. Expressions have also been derived for the ultimate 
torque mobilized by these elliptical vanes; these in turn could be used in the estimation of the 
undrained shear strength of the cohesive soil medium. The basic ideas outlined by this paper can 
be further extended to provide theoretical estimates for other classes of material behaviour (e.g., 
a transversely isotropic elastic medium). 

This paper, admittedly, examines only the theoretical aspects of the title problem; nonethe- 
less, it provides a basis for future detailed experimental investigations. With regard to in -situ 
shear vane testing, the soil disturbance associated with the vane penetration is a factor which 
defies quantitative treatment. The manner in which such soil disturbance may influence the 
measured deformability properties of the soil can only be resolved by comparison of vane test 
data with results derived from both in-sifu tests, such a pressuremeter, screw-plate and plate 
load tests, and triaxial tests carried out on relatively ‘undisturbed’ soil samples. Such investiga- 
tions are necessary to examine the extent of validity of the theoretical modelling and to establish 
clearly the use of the shear vane as a further device for the assessment of the in-sifu 
deformability characteristics of cohesive soil media. 
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