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Abstract. This paper examines the axisymmetric elastostatic problem related to the loading of an annular crack
by a rigid disk-shaped inclusion subjected to a central force. The integral equations associated with the resulting
mixed-boundary-value problem are solved numerically to determine the load-displacement result for the rigid
inclusion and the Mode II stress-intensity factors at the boundaries of the annular crack. The results presented are
applicable to a wide range of Poisson’s ratios ranging from zero to one half.
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1. Introduction

The annular crack represents an idealized form of a flattened toroidal crack, which has been
investigated quite extensively in connection with problems in fracture mechanics. The annular
crack also represents a general case from which solutions to both penny-shaped cracks and
external circular cracks can be recovered as special cases (see e.g., Sneddon and Lowengrub
[1, Chapter 3]; Kassir and Sih [2, Chapter 1]; Cherepanov [3, Appendix A]). The axisymmetric
annular-crack problem examined by Grinchenko and Ulitko [4] is based on an approximate
solution of the governing equations. Smetanin [5] examined the problem of the axisymmetric
axial loading of a flat toroidal crack and used an asymptotic expansion method to obtain
estimates for the stress-intensity factors at the crack tip. Moss and Kobayashi [6] have utilized
the approach proposed by Mossakovski and Rybka [7] to develop iterative approximate stress-
intensity factors at the crack boundaries. The solution procedure for the axisymmetric problem
of an annular crack employed by Shibuya et al. [8] reduces the problem to the solution of an
infinite system of algebraic equations. Choi and Shield [9] have presented an elegant analysis
of the types of problems where the annular crack is subjected to axisymmetric deformations
induced by torsionless axisymmetric and torsional loads. These authors use Betti’s reciprocal
theorem to derive the integral equations governing the plane annular crack. This study also
provides an estimate of the accuracy of the solutions developed by Smetanin [5], and Moss
and Kobayashi [6]. An external crack problem for a cylinder was also investigated by Nied
and Erdogan [10] where numerical values for the stress intensity factor are given.

The analysis of the annular crack problem presented by Selvadurai and Singh [11] reduces
the three-part mixed-boundary-value problem to the solution of a pair of coupled integral
equations of the Fredholm type, which are solved using power-series representations of the
unknown functions in terms of a non-dimensional parameter corresponding to the radii ratio.
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Figure 1. Loading of annular crack by an embedded
rigid-disk inclusion.

Figure 2. Annular crack development during radial
loading of an embedded spheriodal rigid conclusion.

In the case where the loading of the crack is symmetric about the plane of the annular crack
the analysis of the problem is formally similar to that of the contact problem involving smooth
indentation of the halfspace by an annular rigid punch. The three-part boundary-value prob-
lems encountered in applied mathematics can be solved by appeal to a variety of approximate
and numerical techniques. The methods outlined in [12–16] [17, Chapter 6] and [18] essen-
tially reduce the three-part boundary-value problem to the solution of a Fredholm integral
equation. Clements and Ang [19] have examined the annular-crack problem by employing
the procedures proposed by Clements and Love [20] for the solution of the potential problem
referred to an annulus. The paper by Clements and Ang [19] also represents a comparison of
the estimates for the stress-intensity factors at the boundaries of the uniformly loaded annular
crack, which are available in the literature.

In this paper we examine the axisymmetric elastostatic problem dealing with an annular
crack where the intact central region contains a disk-shaped rigid inclusion (Figure 1). The
rigid-disk inclusion can be visualized as a flattened oblate spheroidal rigid inclusion which
is bonded to the surrounding elastic medium (Figure 2). In multi-phase components, where
the interface bonding is enhanced with a fortifier, the inclusion-matrix interface can possess
strength and fracture-toughness characteristics, which are greater than those of the matrix,
and any development of defects usually occurs in the matrix region. An annular crack at the
plane of symmetry can result from radially symmetric loadings applied in the plane of the disk
inclusion (Figure 2). The inclusion region contained within the annular crack is subjected to an
axial displacement, which induces a state of asymmetry in the deformation about the plane z =
0. This induces Mode II-type of stress-intensity factors at the boundaries of the annular crack.
The mode of deformation, although highly idealized in its representation, can be induced by
a force field associated with centrifugal effects. The problem of the axisymmetric interaction
between the annular crack and the central rigid-disk inclusion is reduced to a mixed-boundary-
value problem for a halfspace region. The problem is effectively reduced to the solution of a
system of coupled Fredholm integral equations of the second-kind. These equations are solved
via a numerical technique to determine the force-displacement relationship for the rigid disk
and the purely Mode II stress intensity factors at the extremities of the annular crack.
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2. Governing equations

The solution of the mixed-boundary-value problem associated with the axisymmetric load-
ing of the annular crack can be approached via several formulations in terms of special
stress and displacement functions applicable to the classical theory of elasticity, including the
Boussinesq-Neuber-Papkovich functions ([21, Chapter 5], [22], [23, Chapter 1]). We consider
here the method proposed by Love [24, Chapter 8] that is particularly suited for the class of
axisymmetric deformations associated with an isotropic elastic medium. In Love’s approach,
the solution to the axisymmetric problem in classical elasticity can be represented in terms of
a single strain function that satisfies the biharmonic equation. The relevant expressions for the
displacement and stress components in terms of Love’s strain function ϕ(r, z) referred to the
cylindrical polar coordinate system (r, θ, z). In the absence of body forces ϕ(r, z) satisfies

∇2∇2ϕ(r, z) = 0 , (1)

where

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2
(2)

is the axisymmetric form of Laplace’s operator referred to the cylindrical polar coordinate
system. The relevant expressions for the displacement and stress components take the forms

2µur(r, z) = − ∂2ϕ

∂r∂z
, 2µuz(r, z) = 2(1 − ν)∇2ϕ − ∂2ϕ

∂z2
(3)

and

σzz(r, z) = ∂

∂z

[
(2 − ν)∇2ϕ − ∂2ϕ

∂z2

]
, σrz(r, z) = ∂

∂r

[
(1 − ν)∇2ϕ − ∂2ϕ

∂z2

]
(4)

respectively, where ν is Poisson’s ratio and µ is the linear elastic shear modulus.
In view of the asymmetry of the deformation induced during movement of the in-plane

rigid-disk inclusion contained within the intact region r ∈ (0, b), the inclusion-annular-crack
problem related to an elastic infinite space can be formulated as a mixed-boundary-value
problem referred to a halfspace region, z ≥ 0. We therefore seek solutions of (1) which also
satisfy the regularity conditions, which require the displacement and stress fields to reduce
to zero as r, z −→ ∞. Employing a Hankel-transform development of the governing partial
differential equation (1) ([25, Chapter 10], [26, Chapter 8]) we obtain the following solution

ϕ(r, z) =
∫ ∞

0

[
A(ξ)

ξ 2
+ z

ξ
B(ξ)

]
e−ξzJ0 (ξr) dξ (5)

where A(ξ) and B(ξ) are arbitrary functions. The expressions for the relevant displacement
and stress components obtained from (5) and evaluated at z = 0 take the forms

2µur(r, 0) =
∫ ∞

0
[−A(ξ) + B(ξ)] J1 (ξr) dξ

2µuz(r, 0) = −
∫ ∞

0
[A(ξ) + 2 (1 − 2ν) B(ξ)] J0 (ξr) dξ

(6)

and
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σzz(r, 0) =
∫ ∞

0
ξ [A(ξ) + (1 − 2ν) B(ξ)] J0 (ξr) dξ

σrz(r, 0) =
∫ ∞

0
ξ [A(ξ) − 2νB(ξ)] J1 (ξr) dξ

(7)

3. The annular crack-disk inclusion interaction problem

We consider the axisymmetric problem of an open annular crack of external radius c and
internal radius b where the region r ∈ (0, b) is reinforced by a rigid-disk inclusion of radius
a (Figure 2) in complete bonded contact with the surrounding elastic medium of infinite
extent. The rigid-disk inclusion is subjected to an axial displacement �0 in the z-direction.
The annular crack is assumed to remain in an open position during the movement of the
disk. The axial displacement of the rigid-disk inclusion induces a state of asymmetry in the
displacement and stress fields about the plane z = 0. Hence we can formulate the annular
crack-inclusion interaction problem as a multi-part mixed-boundary-value problem referred to
a halfspace region (z ≥ 0), where the plane z = 0 is subjected to the following displacement
and stress boundary conditions:

uz (r, 0) = �0 ; 0 ≤ r ≤ a, (8)

ur (r, 0) = 0 ; 0 ≤ r ≤ b, (9)

ur (r, 0) = 0 ; c ≤ r ≤ ∞, (10)

σzz (r, 0) = 0 ; a < r < ∞, (11)

σrz (r, 0) = 0 ; b < r < c. (12)

Using the results given by (6) and (7), we can reduce the multi-part boundary-value problem
defined by (8) to (12) to the following system of integral equations in terms of two auxiliary
functions M(ξ) and N(ξ) as follows:∫ ∞

0
M(ξ)J0 (ξr) dξ = −2µ�0 ; 0 ≤ r ≤ a, (13)

∫ ∞

0
N(ξ)J1 (ξr) dξ = (1 − 2ν)

(3 − 4ν)

∫ ∞

0
M(ξ)J1 (ξr) dξ ; 0 ≤ r ≤ b,

; c ≤ r ≤ ∞,

(14)

∫ ∞

0
ξM(ξ)J0 (ξr) dξ = − (1 − 2ν)

∫ ∞

0
ξN(ξ)J0 (ξr) dξ ; a < r < ∞, (15)

∫ ∞

0
ξN(ξ)J1 (ξr) dξ = 0 ; b < r < c, (16)

where

A(ξ) = 1

(1 − ν)
[νM(ξ) + (1 − 2ν) N(ξ)] , B(ξ) = 1

2 (1 − ν)
[M(ξ) − N(ξ)] (17)
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When the integral representations

d

dt

∫ t

0

rJ0(ξr)[
t2 − r2

]1/2 dr = cos (ξ t) (18)

and∫ ∞

t

rJ0(ξr)[
r2 − t2

]1/2 dr = cos (ξ t)

ξ
(19)

are used, the Equations (13) and (15) yield the following:

M (ξ) = 2

π

[
− 2µ�0 sin (ξa)

ξ
+

∫ ∞

a

F (u) cos (ξu) du

]
, (20)

where

F (t) = − (1 − 2ν)

∫ ∞

0
N (ξ) cos (ξ t) dξ ; a < t < ∞. (21)

Considering the Equations (14) and (16), we assume that N (ξ) admits a representation∫ ∞

0
ξN (ξ) J1 (ξr) dξ =

{
f1 (r) ; o < r < b,

f2 (r) ; c < r < ∞.
(22)

Making use of Hankel transforms, we obtain from (17)

N (ξ) =
∫ b

0
uf1 (u) J1 (ξu) du +

∫ ∞

c

uf2 (u) J1 (ξu) du (23)

Substituting (23) in (14), we obtain∫ b

0
uf1 (u)L (u, r) du +

∫ ∞

c

uf2 (u) L (u, r) du = g(r) ; 0 < r < b,

; c < r < ∞,

(24)

where

g (r) = (1 − 2ν)

(3 − 4ν)

∫ ∞

0
M (ξ) J1 (ξr) dξ (25a)

L (u, r) =
∫ ∞

0
J1 (ξu) J1 (ξr) dξ (25b)

Using the results given by Cooke [14], we can write (26) in the form

L (u, r) = 2

πur

∫ min(u,r)

0

s2ds[(
u2 − s2

) (
r2 − s2

)]1/2 (26)

= 2ur

π

∫ ∞

max(u,r)

ds

s2
[(

s2 − r2
) (

s2 − u2
)]1/2 , (27)

where
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a1

du

∫ min(u,r)

0
ds =

∫ r

a1

ds

∫ b1

s

du +
∫ a1

0
ds

∫ b1

a1

du,

∫ b1

a1

du

∫ ∞

max(u,r)

ds =
∫ b1

r

ds

∫ s

a1

du +
∫ ∞

b1

ds

∫ b1

a1

du.

(28)

Using (27) and (28), we can write the Equation (24), applicable to 0 < r < b, in the form∫ r

0

s2ds(
r2 − s2

)1/2

∫ b

s

f1 (u) du(
u2 − s2

)1/2 +r2
∫ ∞

c

ds

s2
(
s2 − r2

)1/2

∫ s

c

u2f2 (u) du(
s2 − u2

)1/2

= πr

2
g (r) ; 0 < r < b.

(29)

We now introduce functions F1 (s) and F2 (s) such that

F1 (s) = s2
∫ b

s

f1 (u) du(
u2 − s2

)1/2 , (30)

F2 (s) =
∫ s

c

u2f2 (u) du(
s2 − u2

)1/2 (31)

and rewrite (29) as∫ r

0

F1 (s) ds(
r2 − s2

)1/2 = −r2
∫ ∞

c

F2 (s) ds

s2
(
s2 − r2

)1/2 + πr

2
g (r) ; 0 < r < b. (32)

Since the integral Equation (32) is of the Abel-type, its solution can be written as

F1 (s) = − 2

π

∫ ∞

c

[
−s2

u
(
s2 − u2

) + s

2u2
log

∣∣∣∣s + u

s − u

∣∣∣∣
]

F2 (u) du

+ d

ds

∫ s

0

r2g (r) dr(
s2 − r2

)1/2 ; 0 < s < b.

(33)

Similarly, the Equation (24), applicable to c < r < ∞, gives an Abel integral equation of the
form∫ ∞

r

F2 (s) ds

s2
(
s2 − r2

)1/2 = − 1

r2

∫ b

0

F1 (s) ds(
r2 − s2

)1/2 + π

2r
g (r) ; c < r < ∞ (34)

which has the solution

F2 (s) = 1

s2

d

ds

∫ ∞

s

g (r) dr(
r2 − s2

)1/2

− 2

π

∫ b

0

[
s(

s2 − u2
) + 1

2u
log

∣∣∣∣s + u

s − u

∣∣∣∣
]

F1 (u) du ; c < s < ∞.

(35)

Using integral representations similar to (18) and (19), (25), we have

d

ds

∫ s

0

r2g (r) dr(
s2 − r2

)1/2 = (1 − 2ν)

(3 − 4ν)
s

∫ ∞

0
M (ξ) sin (ξs) dξ ; 0 < s < b, (36)
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s2 d

ds

∫ ∞

s

g (r) dr(
r2 − s2

)1/2 = (1 − 2ν)

(3 − 4ν)

∫ ∞

0

1

ξ
[ξs cos (ξs)−sin (ξs)] M (ξ) dξ ; c < s < ∞. (37)

Substituting the value of M (ξ) from (20) in (36) and (37), using a repeated application
of the solution to integral equations of the Abel type and performing some lengthy algebraic
manipulations, we obtain the following system of coupled Fredholm-type integral equations
for the unknown functions A1 (s) and A2 (s)

A1 (s) + 2 (1 − 2ν)2

π2 (3 − 4ν)

∫ b

0

sA1 (u)

u
(
u2 − s2

) {
u log

∣∣∣∣a − s

a + s

∣∣∣∣ − s log

∣∣∣∣a − u

a + u

∣∣∣∣
}

du

+ 2

π

∫ ∞

c

{
− s2

u
(
s2 − u2

) + s

2u2
log

∣∣∣∣s + u

s − u

∣∣∣∣
}

A2 (u) du

− 2 (1 − 2ν)2

π (3 − 4ν)

∫ ∞

c

{
s

2u2
log

∣∣∣∣(u − s) (a + s)

(u + s) (a − s)

∣∣∣∣ − s2

u
(
u2 − s2

)
}

A2 (u) du

= − 2s

π

(1 − 2ν)

(3 − 4ν)
log

∣∣∣∣s + a

s − a

∣∣∣∣ ; 0 < s < b,

(38)

A2 (s)

[
1 + (1 − 2ν)2

(3 − 4ν)

]
+ 2

π

∫ b

0

{
s(

s2 − u2
) + 1

2u
log

∣∣∣∣s + u

s − u

∣∣∣∣
}

A1 (u) du

+ 2

π

(1 − 2ν)2

(3 − 4ν)

∫ b

0

sA1 (u)(
s2 − u2

)du − (1 − 2ν)2

(3 − 4ν)
a

∫ ∞

c

A2 (u)

u2
du

− 1

π

(1 − 2ν)2

(3 − 4ν)

∫ b

0

A1 (u)

u
log

∣∣∣∣ (s − u) (a + u)

(s + u) (a − u)

∣∣∣∣ du

= −2a
(1 − 2ν)

(3 − 4ν)
; c < s < ∞,

(39)

where A1 (s) and A2 (s) are normalized expressions for F1 (s) and F2 (s), respectively, given
by

A1 (s) = F1 (s)

�0µ
; A2 (s) = F2 (s)

�0µ
. (40)

The annular crack-disk inclusion interaction problem is thus reduced to the solution of the
pair of coupled Fredholm integral equations of the second kind for the functions A1 (s) and
A2 (s) and defined through the intervals 0 < s < b and c < s < ∞.

Results of some importance to engineering applications concerns the evaluation of the
load-displacement relationship for the disk inclusion and the shearing-mode stress-intensity
factors at the boundaries of the annular crack.

The axial stress in the inclusion region is given by

σzz (r, 0) = 1

2 (1 − ν) r

∂

∂r

{
r

[∫ ∞

0
M (ξ) J1 (ξr) dξ + (1 − 2ν)

∫ ∞

0
N (ξ) J1 (ξr) dξ

]}
;

0 < r < a. (41)
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The equilibrium equation for the disk inclusion gives

P = −2
∫ 2π

0

∫ a

0
rσzz (r, 0) drdθ. (42)

Using the results for M (ξ) and N (ξ) in terms of A1 (s) and A2 (s), we can simplify the result
(42) to the form

P

µ�a
= 8

(1 − ν)
− 4

a (1 − ν)

∫ ∞

a

F (u)

{
1 − u(

u2 − a2
)1/2

}
du− 4 (1 − 2ν)

a (1−ν)

[∫ b

0

A1 (s)(
a2 − s2

)1/2 ds

+
∫ ∞

c

1

s2

{
s − (

s2 − a2
)1/2

}
A2 (s) ds −

∫ ∞

c

{
1 − s(

s2 − a2
)1/2

}
A2 (s)

s
ds

]
,

(43)

where

F (u) = − 2 (1 − 2ν)

π

∫ ∞

c

A2 (ζ )

ζ
dζ

∫ ∞

0
cos (uξ)

{
sin (ξζ )

ξζ
− cos (ξζ )

}
dξ

+2 (1 − 2ν)

π

∫ b

0

A1 (η)(
u2 − η2

)dη ; a < u < ∞.

(44)

Since the deformation is asymmetric about z = 0, the only non-zero stress component at the
tips of the annular crack is due to σrz, such that

σrz (r, 0) = 2rF1 (b)

πb2
(
b2 − r2

)1/2 − 2r

π

∫ b

r

1(
s2 − r2

)1/2

d

ds

(
F1 (s)

s2

)
ds; 0 < r < b (45)

and

σrz (r, 0) = 2F2 (c)

πr
(
r2 − c2

)1/2 + 2

πr

∫ r

c

1(
r2 − s2

)1/2

d

ds
(F2 (s)) ds; c < r < ∞. (46)

The crack-shearing mode-stress intensity factors at the boundaries of the annular crack are
defined by

Kb
II = lim

r→b−[2(b − r)]1/2[σrz(r, 0) ; 0 < r < b], (47)

Kc
II = lim

r→c+[2(r − c)]1/2[σrz(r, 0) ; c < r < ∞]. (48)

Using the expressions for σrz(r, 0) given by (45) and (46) in (47) and (48), respectively, we
obtain

Kb
II = 2

π

F1(b)

b3/2
= �0EA1(b)

πb3/2(1 − ν)
, (49)

Kb
II = 2

π

F2(c)

c3/2
= �0EA2(c)

πc3/2(1 − ν)
, (50)
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where E is Young’s modulus of the elastic medium.

4. Numerical solution of the integral equations

The coupled Fredholm integral equations of the second kind (38) and (39) governing the
annular crack-disk inclusion interaction problem are not amenable to solution in an exact form.
In this section we outline a procedure that can be used to solve these integral equations in a
numerical fashion (see [27, Chapter 5] and [28, Chapter 10]) to evaluate the load-displacement
relationship for the embedded rigid disk and to establish the influence of the loading on the
Mode II stress-intensity factors at the boundaries of the annular crack. We can rewrite (38)
and (39) in the general forms

R1A
∗
1(s) +

∫ b

0
A∗

1(u)K11(u, s)du +
∫ ∞

c

A∗
2(u)K12(u, s)du = f1(s); 0 ≤ s ≤ b, (51)

R2A
∗
2(s) +

∫ b

0
A∗

1(u)K21(u, s)du +
∫ ∞

c

A∗
2(u)K22(u, s)du = f2(s); c ≤ s ≤ ∞, (52)

where we have assumed that A1(u) and A2(u) admit representations of the form

[A1(u);A2(u)] = −2u(1 − 2ν)

π(3 − 4ν)
[A∗

1(u);A∗
2(u)] (53)

and the kernel functions K11,K12, etc. are defined by

K11(u, s) =
{

C1

(u2 − s2)
{u log

∣∣∣∣a − s

a + s

∣∣∣∣ − s log

∣∣∣∣a − u

a + u

∣∣∣∣
}

,K22(u, s) = C2
a

su

K12(u, s) = K21(u, s) = C3

{
− s(

s2 − u2
) + 1

2u
log

∣∣∣∣s + u

s − u

∣∣∣∣
}

+ C4
1

2u
log

∣∣∣∣a + s

a − s

∣∣∣∣ .
(54)

In (51–54) the constants R1, R2, C1, C2, etc. are given by

R1 = 1 ;R2 = 4(1 − ν)2

(3 − 4ν)

C1 = 2(1 − 2ν)2

π2(3 − 4ν)
;C2 = −(1 − 2ν)2

(3 − 4ν)

C3 = 8(1 − ν)2

π(3 − 4ν)
;C4 = − 2

π

(1 − 2ν)

(3 − 4ν)

(55)

and the functions f1(s) and f2(s) are defined by

f1(s) = log

∣∣∣∣s + a

s − a

∣∣∣∣ ;f2(s) = πa

s
(56)

For the numerical evaluation of the load-displacement relationship (43) we require the
function F(u) defined by (44), which can be further simplified to

F(u) = 2(1 − 2ν)

π

∫ b

0

A1(η)

(u2 − η2)
dη − (1 − 2ν)

∫ ∞

c

A2(ζ )

ζ 2
H(ζ − u)dζ

+(1 − 2ν)
A2(u)

u
H(u − c),

(57)
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where H(·) is the Heaviside step function. Substituting the expressions (53) in (57) and using
the result in (43), we obtain the following expression for the normalized axial stiffness of the
rigid disk inclusion as

P(3 − 4ν)

32µ�0a(1 −ν)
= (3 − 4ν)

r(1 −ν)2
+ (1 − 2ν)2

4π(1 −ν)2

{∫ b

0

A∗
1

πa
log

∣∣∣∣a + u

a − u

∣∣∣∣ du +
∫ ∞

c

A∗
2(u)

u
du

}
. (58)

The stress-intensity factors at the locations r = b and r = c are given by

Kb
II = − 4(1 − 2ν)

π2(3 − 4ν)

µ�0√
b

A∗
1(b), (59)

Kc
II = − 4(1 − 2ν)

π2(3 − 4ν)

µ�0√
c

A∗
2(c). (60)

For the numerical solution of (51) and (52) we discretize the intervals [0, b] and [c,∞]
into N1 and N2 segments, respectively. In the interval [0, b], N1 segments are of equal length,
whereas in the interval [c,∞] the segment sizes are increased proportionally, so that the upper
limit of infinity can be approximated by a large number. The discretized forms of (51) and (52)
can be written as

[R∗δij + Aij ]{Xj } = {fi} (61)

with i, j = 1, 2, . . . , N, where N = N1 + N2. The coefficients of Aij are given by
(i) K11(u, s) when i ≥ 1; j ≤ N1,
(ii) K12(u, s) when 1 ≤ i ≤ N1; N1 < j ≤ N ,
(iii) K21(u, s) when N1 < i < N ; 1 ≤ j ≤ N1

and
(iv) K22(u, s) when N1 < i; j ≤ N .
The vector on the right-hand side of (61) is given by
(v) f1 when 1 ≤ i ≤ N1,
and
(vi) f2 when N1 < i ≤ N .
The unknowns are A∗

1(u) for 1 ≤ i ≤ N1 and A∗
2(u) for N1 < i ≤ N . The coefficient R∗ in

(61) is such that R∗ = 1 when 1 ≤ i ≤ N1 and R∗ = R2 when N1 < i ≤ N . For the diagonal
terms Aij with 1 ≤ i ≤ N1, limiting values of K11(u, s) are considered, i.e.,

Lim
u → s K11(u, s) = C1

2s

[
2as

(a2 − s2)
+ log

∣∣∣∣a − 2

a + s

∣∣∣∣
]

. (62)

Upon solving the matrix equation (61) for the vector of unknowns
{
Xj

}
, we use the discretized

values to determine the load-displacement relationship (58) and the normalized stress intensity
factors

K
b

11 = 4π2b3/2(1 − ν)Kb
11

(1 − 2ν)P0
, K

c

11 = 8πc3/2(1 − ν)Kc
11

(1 − 2ν)P0
, (63)

where

P0 = 32µ�0a(1 − ν)

(3 − 4ν)
(64)
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represents the load-displacement relationship for a disk inclusion embedded in an infinite
space region void of any cracks (see, e.g. [29–31]). The result (64) can also be recovered as
a special case of the present problem where we set b → c. In this case the problem can be
simplified at the outset, with

M(ξ) = −4�0µ sin(ξa)

πξ
(65)

and

σzz(r, 0) = −8�0µ(1 − ν)

π(3 − 4ν)

1

(a2 − r2)1/2
. (66)

The substitution of (66) in (42) gives the result (64) with the appropriate interpretation of P0.

5. Numerical results

The Figures 3a–d illustrate the variation in the normalized axial load P/P0 required to induce
an axial displacement of �0 in the disk inclusion. Figure 3a also presents the results for the
case b/c ε (0·01, 0·08) and a/b ε (0, 1). In the case where b/c = 0·01, and a/b → 1·0 we
can interpret the solution as a limiting case where the inclusion is embedded in bonded contact
within two identical halfspace regions. For this limiting case the exact closed-form solution
can be deduced from the result for the load-displacement relationship for a rigid punch which
is bonded to the surface of a halfspace region, which was obtained by Mossakovski [32] and
Ufliand [33] (see also [23, Chapter 10]). The analysis of the bonded-punch problem yields
the following results for the axial stiffness of an inclusion in bonded contact between two
halfspace regions

Lim
(b/a → 1)

(c/a → ∞)

{
P(3 − 4ν)

32µ�0a(1 − ν)

}
= (3 − 4ν) log(3 − 4ν)

4(1 − ν)(1 − 2ν)
. (67)

In the limit as ν → 1/2, the normalized stiffness reduces to unity. In this case the so-
lution also corresponds to the result for the axial stiffness of a rigid-disk inclusion which
is embedded in smooth contact between two halfspace regions. (Implicit in such a model is
the requirement for a pre-compression of the inclusion to enable the development of tensile
contact stresses without separation during axial displacement of the inclusion.) Also, the result
(67) for the case as (b/a) → 1 and (c/a) → ∞ is derived by a Hilbert-problem approach for
the analysis of the adhesive contact between the rigid circular punch and an elastic halfspace
region. Such an analysis accounts for the oscillatory form of the stress singularity at the
boundary of the bonded rigid punch. In the case of the annular crack-inclusion interaction
problem, the stress singularities both at the boundaries of the crack and at the boundary of the
rigid-disk inclusion are regular and of the 1/

√
r-type. In the limit as (b/a) → 1, this order

of the singularity is maintained without account for any oscillatory singularities. Selvadurai
[34] has examined the influence of the form of the stress singularities (oscillatory vs. regular)
on the axial stiffness of the bonded rigid circular punch. In the case where the regular stress
singularity is incorporated in the bonded contact problem, the analysis can be reduced to
the solution of a single Fredholm integral equation of the second kind, which can be solved
numerically. It is shown in [34] that, in the limiting case when ν → 0, the influence of the
nature of the singularity will result in a difference of approximately 0·05% in the calculation
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Figure 3a. Influence of the annular crack on the
displacement of the bonded disk.

Figure 3b. Influence of the annular crack on the
displacement of the bonded disk.

Figure 3c. Influence of the annular on the displace-
ment of the bonded disk.

Figure 3d. Influence of the annular crack on the
displacement of the bonded disk.
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of the axial stiffness. In the limit when ν → 1/2, the oscillatory form of the stress singularity
at the boundary of the bonded region reverts to the regular 1/

√
r-type and the computed axial

stiffness estimates are identical. These same observations apply to the case where, in the limit
as (b/a) → 1 and (c/a) → ∞, the solution reduces to that of the axial displacement of a disk
inclusion in bonded contact with two halfspace regions.

Figures 4a–d, illustrate the variations in the normalized Mode II stress-intensity factor K
b

11
at the boundary r = b of the annular crack for various values of ν, a/b and b/c. The results
are computed for only a value of a/b approaching unity. As previously indicated, at the limit
a/b = 1, the traction-free region of the elastic medium terminates at the boundary of the inclu-
sion; the stresses at the boundary a/b = 1 will have an oscillatory form. While the omission
of the oscillatory form of the stress singularity has only a marginal effect in the calculation of
the axial stiffness, it is expected to be important in the calculation of stress-intensity factors at
the boundary of the adhesively connected region. In this case, the stress intensity factors can
be calculated separately by using the oscillatory forms of the stress singularity associated
with the bonded flat punch problem. Figures 5a–d illustrate the corresponding results for
the normalized Mode II stress-intensity factor at the boundary r = c of the annular crack.
Since the non-dimensional forms for K

b

11 and K
c

11 are normalized with respect to b and c,
respectively, a direct comparison of the results is not warranted. We can rewrite the ratio of
the stress intensity factors Kb

11 and Kc
11 in the form

Kc
11

Kb
11

= 1

2

(
b

c

)2/3
K

c

11

K
b

11

, (68)

where the values of K
b

11 and K
c

11 are given in Figures 4a–5d. It can be shown that for the range
of values of (b/c) ε (0·01, 0·8), ν ε (0, 0·5) and (a/b) ε (0, 0·99),

Kc
11 < Kb

11, (69)

indicating that during quasi-static loading of the elastic medium by the embedded rigid inclu-
sion, a circumscribing annular crack is most likely to extend, in the Mode II, at the circular
boundary closest to the inclusion. Selvadurai and Singh [35] examined the problem of the
axisymmetric loading of an annular crack by a doublet of concentrated forces spaced at a
distance 2h. In this case, the location of Mode I crack extension will depend upon the ratio
h/b, b/c and ν.

6. Concluding remarks

The class of problems that deals with the interaction of cracks and inclusions is of some
interest to the study of the mechanics of composite materials reinforced particulate solids.
Cracks can be generated in such reinforced materials due to a variety of mechanical and
environmental effects. The generalized analysis of the crack-inclusion interaction problem
is not amenable to a rigorous analytical treatment and solutions can be obtained through some
numerical procedure based on boundary-integral equation or finite-element techniques. For
simplified geometries dealing with planar cracks and planar inclusions, some progress can be
made to develop analytical results. Even with such simplifications, the problems that can be
analyzed are few in number. This paper examined the axisymmetric interaction between an
annular crack and a disk-shaped rigid inclusion that is located in the central intact region of
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Figure 4a. Normalized Mode II stress intensity fac-
tor at the crack tip, r = b.

Figure 4b. Normalized Mode II stress intensity fac-
tor at the crack tip, r = b.

Figure 4c. Normalized Mode II stress intensity fac-
tor at the crack tip, r = b.

Figure 4d. Normalized Mode II stress intensity fac-
tor at the crack tip, r = b.
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Figure 5a. Normalized Mode II stress intensity fac-
tor at the crack tip, r = c.

Figure 5b. Normalized Mode II stress intensity fac-
tor at the crack tip, r = c.

Figure 5c. Normalized Mode II stress intensity fac-
tor at the crack tip, r = c.

Figure 5d. Normalized Mode II stress intensity fac-
tor at the crack tip, r = c.
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the annular crack. It is shown that, when the annular crack is loaded by the axial translation
of the disk inclusion, the resulting elastostatic problem can be effectively reduced to the so-
lution of two coupled Fredholm integral equations of the second kind. The solution of these
equations can be achieved in a number of ways and in this paper the equations were reduced
to a system of algebraic equations where a quadrature technique was used to evaluate the
associated integrals. In particular, it was shown that the axial stiffness of the disk inclusion
and the Mode II stress-intensity factors at the tip of the crack can be evaluated to a sufficient
degree of accuracy that enables comparison with other results for appropriate limiting cases
available in the literature. It was shown that the larger of the Mode II stress-intensity factors
occurs at the inner boundary of the annular crack, indicating that during axisymmetric Mode II
dominated loading, the annular crack will extend to the boundary of the rigid-disk inclusion.
As a likely scenario, if the bond between the inclusion and the elastic medium is sound,
further crack extension will now take place at the outer boundary of the annular region. If
on the other hand, the bond between the disk inclusion and the elastic medium is weak, the
crack will extend through detachment at one of its faces. In this case the problem reduces to
that of the loading of a penny-shaped crack through the axial loading of a rigid-disk inclusion
that is bonded to one of its faces. Solutions to this category of crack-disk inclusion interaction
problem are available in the literature [36, 37].
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