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[1] This paper examines the problem of the nonreactive advective transport of a
contaminant that is introduced at the boundary of a three-dimensional cavity contained in a
fluid-saturated nondeformable porous medium of infinite extent. The advective Darcy
flow is caused by a hydraulic potential maintained at a constant value at the boundary of
the three-dimensional cavity. In order to develop a generalized solution to the problem the
three-dimensional cavity region is modeled as having either a prolate or an oblate shape.
Analytical results are developed for the time- and space-dependent distribution of
contaminant concentration in the porous medium, which can also exhibit natural
attenuation. The exact closed-form analytical results are also capable of providing
solutions to advective transport problems related to spherical, flat disc-shaped and
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1. Introduction

[2] The transport of chemicals and other contaminants in
porous geological media is a topic of fundamental impor-
tance in the general area of earth sciences and of particular
interest to geoenvironmental engineering. The basic mech-
anisms of transport range from advective transport, which
depends on an advective flow velocity, to diffusive transport
that depends on a concentration gradient. Although the
fundamental processes governing these basic modes of
transport can be highly nonlinear and dependent on the
microstructural morphology and chemistry of both the
contaminant and the porous medium, the linear theories
associated with these basic transport processes provide
useful first approximations for the study of both advective
and diffusive processes. The advective transport is related
to the flow velocity, which is governed by Darcy flow
whereas the diffusive transport processes are governed by
Fick’s law. The extent to which one process or the other
dominates depends primarily on the flow characteristics as
opposed to the diffusive transport characteristics of the
system, which consists of the porous medium, the pore fluid
and the contaminant that is being transported. There are,
however, situations, characterized by a Peclet number great-
er than unity, where the advective flow velocities are
sufficiently large enough to transport the contaminant solely
by advective means (The Peclet number, Pe = VL/D, where V
is a characteristic velocity, L is a characteristic length and D
is a diffusion coefficient associated with the problem). This
paper investigates the three-dimensional advective transport
problems resulting from such a situation. The three-dimen-

sional nature of the problem stems from the spheroidal
cavities with prolate and oblate shapes where the boundaries
are subjected to a hydraulic potential to induce steady flow
through the porous medium; with this steady flow in place,
the boundaries of the spheroidal cavities are maintained at a
constant concentration to induce the advective transport of
the contaminant. It is shown that the potential flow resulting
from the spheroidal cavities that are maintained at a constant
potential can be evaluated in exact closed form by adopting
solutions of Laplace’s equation referred to a system of
spheroidal curvilinear coordinates. The advective transport
problem is then solved using a Laplace transform technique.
It is shown that owing to the closed form nature of the
potential flow problem, the solutions for the advective
transport problem can also be obtained in explicit form.
The particular advantage of the results related to this study
are that specific solutions to advective transport problems
dealing with elongated needle-shaped cavities, spherical
cavities and flat disc-shaped cavities can be obtained simply
as limiting cases of the generalized solutions. The analytical
solutions have a further important function as benchmarks
for the calibration of computational procedures that model
advective transport in porous media.

2. Governing Equations

[3] The equation governing advective transport of either
contaminants or chemical species in a porous medium has
been presented in a number of textbooks dealing with both
mathematical modeling and engineering applications of geo-
environmental transport processes [Bear, 1972; Greenkorn,
1983; Bear and Verruijt, 1990; Philips, 1991; Bear and
Bachmat, 1992; Appelo and Postma, 1993; Banks, 1994;
Vukovich, 1997; Domenico and Schwartz, 1998; Nield and
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Bejan, 1999; Zijl and Nawalany, 2000]. Several studies
also point to the similarity between the partial differential
equation governing advective transport of a chemical in a
porous medium and partial differential equations govern-
ing a host of other problems, including flow of vehicular
traffic, movement of waves in shallow water, movement of
charged particles such as electrons, gas dynamics, biolog-
ical processes and marine ecology, salt movement
in oceans, mechanics of surging glaciers, meteorology,
migration of fine particles, bacteria and viruses in porous
media, resin migration during injection molding and
the physics of heat exchangers [Haight, 1963; Whitham,
1976; Gill, 1982; Bennett and Kloeden, 1982; Carroll,
1985;McDowell-Boyer et al., 1986; Edelstein-Keshet, 1988;
Shutie, 1992; Greenberg and Shyong, 1993; Chung, 1993;
Segol, 1994; Sun, 1996; Khilar and Folger, 1998; Ingham
and Pop, 1998; David, 1998; Massel, 1999; Panfilov, 2000;
Billi and Farina, 2000; Selvadurai, 2000a; Bird et al., 2002]
(the work by McDowell-Boyer et al. [1986] also contains
an excellent review of particle transport in porous media).
It is desirable, for completeness, to briefly document
the derivation of the basic partial differential equation
governing advective flow of a contaminant through a non-
deformable porous medium [see, e.g., Selvadurai, 2000a].
Consider an arbitrary region V of a porous medium with
surface S. The porosity of the medium, defined by the ratio
of the volume of pore space to the total volume, is denoted
by n*. The concentration of the contaminant per unit volume
of the fluid contained in the pore space is defined by eC(x, t),
where x is a position vector and t is time. We can also define
a contaminant concentration C(x, t), which is measured per
unit total volume of the porous medium. At any given
location at any time

C x; tð Þ ¼ n*eC x; tð Þ ð1Þ

The velocity vector ev(x, t) defines the advective velocity in
the pore space. We can also define an averaged advective
velocity v(x, t), taken over the entire cross section over
which flow takes place, such that

v x; tð Þ ¼ n*ev x; tð Þ ð2Þ

The assumption here is that the area porosity is identical to
the volume porosity. There are no assurances that this is
indeed the case for all porous media [Drew and Passman,
1999]. For a porous medium, which displays a relatively
isotropic pore structure, the two measures of porosity are
assumed to be approximately the same. The flux is defined
as the mass of the contaminant either entering or leaving a
unit total area in unit time. The flux vector, or mass being
transported by advection, per unit total area per unit time is
given by

Fa ¼ n*veC x; tð Þ ¼ vC x; tð Þ ð3Þ

The total mass of the contaminant transported into the
volume V of surface S is given by

mi ¼ �
Z Z

S

Fan dS ð4Þ

where n is the outward unit normal to the elemental surface
area dS. Applying the divergence theorem, we can rewrite
(4) as

mi ¼ �
Z Z Z

V

r: vCf gdV ð5Þ

The contaminant is assumed to accumulate in the fluid
within the void space of the porous medium. The rate of
accumulation of the contaminant is given by

ma ¼
d

dt

Z Z Z
V

n*eCdV ¼
Z Z Z

V

@C

@t
dV ð6Þ

The rate of production/loss of the contaminant due to either
generation (+) or decay (�) processes within the porous
medium is given by

mp ¼ �
Z Z Z

V

n*xeC dV ¼ �
Z Z Z

V

xC dV ð7Þ

where x is a generation/decay factor and measured per unit
time. For conservation of mass of the contaminant we
require ma = mi + mp, which when combined with the
Dubois-Reymond Lemma for the existence of a local
equation, gives the partial differential equation governing
advective transport of a chemical species as follows:

@C

@t
þr: vCð Þ ¼ �xC ð8Þ

The representation in terms of the volume-averaged
contaminant concentration becomes more convenient and
appropriate when considering integral representations
applicable to the entire volume and the entire surface of a
control volume.
[4] In this paper we restrict attention to flow fields

characterized by Darcy flow. The spatially averaged flow
velocities are governed by Darcy’s law, which for a
hydraulically isotropic medium is given by

v ¼ �krf ð9Þ

where k is the hydraulic conductivity and f(x) is the
reduced Bernoulli potential governing fluid flow through
the porous medium, which includes only the datum
potential and the pressure potential. For incompressible
flow of the pore fluid and for nondeformability of the
porous solid

r:v ¼ 0 ð10Þ

and the partial differential equation governing the flow
potential is Laplace’s equation

r2f xð Þ ¼ 0 ð11Þ

The partial differential equations governing the advective
transport problem are therefore (8) and (11) respectively for
the time-dependent chemical concentration C(x, t) and the
flow potential f(x). These partial differential equations
represent a weakly coupled system, which has a second-
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order elliptic equation for f(x) and a first-order hyperbolic
equation for C(x, t). The initial boundary value problem
governing C(x, t) is subject to both an initial condition and,
in the case of the advective transport problem discussed
here, a Dirichlet type boundary condition on a given surface
and the boundary value problem governing f(x) is subject
to Dirichlet type boundary conditions on the subregion SD
of S. The uniqueness of solution to the potential flow
problem is well established [see, e.g., Selvadurai, 2000a],
and the uniqueness of solution for the advective transport
problem with Dirichlet boundary conditions can be proved
in a concise manner (see Appendix A) and it is noted that
uniqueness is assured for situations where only Dirichlet
boundary conditions are prescribed for C(x, t). When
Dirichlet and Neumann boundary conditions are prescribed
for C(x, t) on subsets of S, uniqueness can be established for
situations where the regions over which these boundary
conditions are specified coincide with the regions over
which Dirichlet and homogeneous Neumann boundary
conditions are prescribed for f(x) (A. P. S. Selvadurai,
Some remarks on the uniqueness theorem for the classical
advection-diffusion equation, manuscript in preparation,
2003).

3. Advective Transport From a Prolate
Spheroidal Cavity

[5] We first consider the problem of a nondeformable
porous medium of infinite extent, which is bounded inter-
nally by a cavity in the shape of a prolate spheroid where
the length of the major axis is 2ap and the length of the
minor axis is 2bp (Figure 1). The steady fluid flow into the
porous medium is caused by a flow potential, which is
constant at the boundary of the prolate cavity and reduces
uniformly to zero at large distances from the cavity. When
steady flow is maintained, the boundary of the cavity is
subjected to a contaminant concentration C0F(t), where F(t)
is an arbitrary function of time. In view of the spheroidal
nature of the cavity boundary, it is convenient to adopt a
spheroidal coordinate formulation of the boundary value
problem governing the hydraulic potential f(x) and the
initial boundary value problem governing the contaminant
concentration C(x, t). We introduce a system of prolate
spheroidal curvilinear coordinates (a, b, g) defined by

r ¼ cp sinha sin b ; z ¼ cp cosha cos b ð12Þ

such that the parametric surfaces a = const, say a0, b = b0,
and g = g0, form a triple orthogonal confocal family of
prolate spheroids, hyperboloids of two sheets and meridio-
nal half planes respectively, and (r, q, z) refers to the
cylindrical polar coordinate system. Every point in space
is represented by restricting the ranges of the prolate
spheroidal coordinates (a, b, g) as follows:

0 
 a < 1 ; 0 
 b 
 p ; 0 
 g 
 2p ð13Þ

We consider the expression for a differential arc length (ds)
given by

dsð Þ2¼ da
h
p
1

� �2

þ db
h
p
2

� �2

þ dg

h
p
3

� �2

ð14Þ

where the metric or local scale coefficients are given by
[see, e.g., Selvadurai, 2000a]

h
p
1 ¼ h

p
2 ¼ c2p sinh2 aþ sin2 b

� �h i�1=2
¼ hp ð15Þ

h
p
3 ¼ cp sinha sin b

� ��1 ð16Þ

The focal distance cp can be expressed in terms of the
dimensions of the semimajor axis and the equatorial radius
of the prolate spheroid conforming to the internal boundary
of the porous medium, which is assumed to be defined by
a = a0, such that

a2p ¼ c2p cosh
2 a0 ; b2p ¼ c2p sinh

2 a0 ð17Þ

Figure 1. The spheroidal coordinate systems.
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and

cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2p � b2p

q
ð18Þ

We first consider the axisymmetric flow problem where the
axis b = 0 coincides with the z-axis, the axis of symmetry of
the prolate spheroidal cavity. For axisymmetric problems,
the hydraulic potential is independent of the azimuthal
coordinate g and in terms of the curvilinear coordinates
(a,b), Laplace’s equation (11) takes the form

r2j a; bð Þ ¼ h2p
@2

@a2
þ @2

@b2
þ cotha

@

@a
þ cot b

@

@b

� �
j a; bð Þ ¼ 0

ð19Þ

The partial differential equation is to be solved, subject to
the boundary conditions

j a; bð Þ ¼ j0 on a ¼ a0 ð20Þ

where a = a0 corresponds to the boundary of the cavity and

j a; bð Þ ! 0 as a ! 1 ð21Þ

For the solution of the boundary value problem we seek
Lame’ products associated with spheroidal coordinate
systems [see, e.g., Hobson, 1931; Morse and Feshbach,
1953; Selvadurai, 1976; Moon and Spencer, 1988], the
general expression for which can be obtained in the form

j a; bð Þ ¼ P mð Þ
n cos bð Þ or Q mð Þ

n cos bð Þ
h i

 P mð Þ

n coshað Þ or Q mð Þ
n coshað Þ

h i
ð22Þ

with m, n = 0, 1, 2, 3,. . ., and where Pn
(m) and Qn

(m) are
associated Legendre functions of the first and second kind
[Hobson, 1931; Morse and Feshbach, 1953]. Considering
the boundary condition (20) and the regularity condition
(21) applicable to the flow problem, we need to select
solutions of (19) for which j(a, b) = j(a). The single
solution that satisfies the regularity condition (21), can be
obtained by selecting m = n = 0 and neglecting the
remaining terms of the sequence (22); we have

j að Þ ¼ A0

2
ln xð Þ ð23Þ

where A0 is an arbitrary constant and

x ¼ coshaþ 1

cosha� 1

� �
ð24Þ

The arbitrary constant A0 can be obtained by considering the
boundary condition (20); this gives

j að Þ ¼ j0

ln x0
ln x ð25Þ

where

x0 ¼ x a0ð Þ ð26Þ

The solution to the potential problem is now formally
complete, in the sense that the velocity vector v(a, b, g) can
be obtained in explicit closed form by using (25) in (9); in
view of the axial symmetry we obtain

v a; bð Þ ¼ 2kf0

cp ln x0 sinha
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 aþ sin2 b

p ia ð27Þ

and note that all other components of the velocity vector are
identically zero. Considering (27) and in view of the
divergence free constraint (10) imposed by the incompres-
sibility of the fluid, the partial differential equation (8) for
advective transport of the contaminant now reduces to the
form

@C

@t
þ 2kf0

c2p sinha sinh2 aþ sin2 b
� �

ln x0

@C

@a
¼ �xC ð28Þ

The initial condition and the boundary condition applicable
to the problem are as follows: we assume that the porous
medium is initially free of the contaminant and that the
entire boundary of the prolate spheroidal cavity, a = a0 is
subjected to a contaminant loading with an arbitrary time
variation. These give

C a; b; 0ð Þ ¼ 0 ; C a; b; tð Þ ¼ C0F tð Þ ð29Þ

where C0 is a constant contaminant concentration and F(t)
is an arbitrary function of time. While there exists a
number of analytical and computational methods for the
solution of first-order partial differential equations of the
type (28) [see, e.g., Lapidus and Pinder, 1982; Ninomiya
and Onishi, 1991; Hill, 1992; Banks, 1994; Melikyan,
1998], in the context of the present problem it is
convenient and sufficient to consider a method of solution
that is based on the application of Laplace transforms. We
define the Laplace transform of C(a, b, t) with respect to
the time variable as [see, e.g., Sneddon, 1972; Watson,
1981]

�c a; b;sð Þ ¼ L C a; b; tð Þf g ¼
Z 1

0

exp �stð ÞC a; b; tð Þdt ð30Þ

and since the initial contaminant concentration in the
porous medium is zero (see e.g., (29)), we have

L
@C

@t

� 

¼ s�c a; b; sð Þ ð31Þ

Applying the Laplace transform to (28) we obtain a first-
order ordinary differential equation for the transformed
dependent variable �c(a, b, s); further restricting attention
to a natural attenuation processes in the porous medium,
we obtain the solution as follows:

�c a; b; sð Þ ¼ C0 f sð Þ exp � sþ xð Þ�p a; b;lð Þ
� �

ð32Þ

where

�p a; b;lð Þ ¼
c2p ln x0
6kj0


 cosh3 a� cosh3 a0 þ 3 cos2 b cosha� cosha0f g
� �

ð33Þ
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and f (s) denotes the Laplace transform of F(t). The exact
form of F(t) is not important to the discussion that follows;
it is only sufficient to require that the Laplace transform of
F(t) exists.
[6] We also note the following relationships, which

express the trigonometric and hyperbolic functions in (33)
in terms of the cylindrical polar coordinates (r, z) and the
geometric aspect ratio of the prolate spheroid:

cosha ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2p þ hp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p� �2
r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2p þ hp �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p� �2
r

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p

264
375

ð34Þ

cos b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2p þ hp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p� �2
r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2p þ hp �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p� �2
r

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p

264
375

ð35Þ

cosha0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2
p ; ln x0 ¼ ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
" #

ð36Þ

l ¼ bp

ap
< 1 ; rp ¼

r

ap
¼ ; hp ¼

z

ap
ð37Þ

The analysis of the advective transport problem is now
reduced to the inversion of the expression (32) for �c(a, b, s);
the formal result can be written as follows:

C a; b; tð Þ
C0

¼ L�1 f sð Þ exp � sþ xð Þ�p a; b;lð Þ
�� �

ð38Þ

where L�1 refers to the inverse Laplace transform. The
general result (38) for the advective transport in a porous
medium of infinite extent due to contaminant loading
applied at the boundary of the prolate spheroidal cavity can
be evaluated by specifying plausible time variations defined
by F(t), along with the use of the convolution theorem for
Laplace transforms defined by

L�1 f sð Þg sð Þf g¼F *G¼
Z t

0

F uð ÞG t � uð Þdu: ð39Þ

Alternatively, the inversion can be carried out by appeal to
Tables of Integral Transforms [see, e.g., Erdelyi et al., 1954]
or through the use of symbolic mathematical manipulation
software such as MAPLE1 or MATHEMATICA1 [see,
e.g., Wolfram, 1999] or through the use of numerical
inversion techniques. As an illustrative example, consider
the case where the boundary of the prolate spheroidal cavity
is subjected to a contaminant concentration, which is in the
form of a Heaviside step function, i.e.,

F tð Þ ¼
0 ; �1 > t � 0

1 ; 0 
 t < 1

8<: ð40Þ

In this case the result (38) gives

C a; b; tð Þ
C0

¼ exp �x�p a; b;lð Þ
� �

H t � �p a; b;lð Þ
� �

ð41Þ

where H[t � �p(a, b, l)] is the Heaviside step function with
the time shift �p(a, b, l). The relevant solutions for
situations involving no natural attenuation of the chemical
concentration during its migration through the porous
medium can be obtained by setting x = 0, in (41).

4. Advective Transport From an Oblate
Spheroidal Cavity

[7] The developments presented in the preceding section
can be extended, by considering a suitable coordinate
transformation, to cover situations where the cavity region
can be modeled as an oblate spheroidal cavity with the
length of the major axis as 2bo and the length of the minor
axis as 2ao (Figure 1b). For completeness, however, we
shall present a brief development of the problem in relation
to a system of oblate spheroidal coordinates defined by

r ¼ co cosha sin b ; z ¼ co sinha cos b ð42Þ

Again, each point in space is obtained once by limiting the
ranges of the oblate spheroidal coordinates to (a, b, g) to
those given by (12).
[8] The metric coefficients are

ho1 ¼ ho2 ¼ c2o cosh2 a� sin2 b
� �� ��1=2¼ ho ð43Þ

ho3 ¼ co cosha sin bð Þ�1 ð44Þ

c2o ¼ b2o � a2o ð45Þ

and the equivalent form of Laplace’s equation (19),
expressed in oblate spheroidal coordinates takes the form

r2j a; bð Þ ¼ h2o
@2

@a2
þ @2

@b2
þ tanha

@

@a
þ cot b

@

@b

� �
j a; bð Þ ¼ 0

ð46Þ

The boundary and regularity conditions (20) and (21),
respectively, applicable to the problem of fluid flow in a
porous region bounded internally by a prolate cavity also
apply to the oblate spheroidal region. The relevant solution
of (46), [see, e.g., Hobson, 1931; Morse and Feshbach,
1953], which also satisfies these boundary conditions, takes
the form

j a; bð Þ ¼ j0

cot�1 sinhað Þ
cot�1 sinha0ð Þ ð47Þ

The fluid velocity vector v(a,b) in the porous medium is
given by

v a; bð Þ ¼ kf0

cp cosha cot�1 sinha0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2 a� sin2 b

p ia ð48Þ
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The relevant partial differential equation governing the
advective transport of the contaminant from the oblate
spheroidal cavity is given by

@C

@t
þ kf0

c2o cosha cot�1 sinha0ð Þ cosh2 a� sin2 b
� � @C

@a
¼ �xC ð49Þ

The boundary and initial conditions governing the problem
are given by (28) and the solution to the problem is given
by

C a; b; tð Þ
C0

¼ L�1 f sð Þ exp � sþ xð Þ�o a; b; mð Þ½f g ð50Þ

where

�o a; b; mð Þ ¼ b2o 1� m2ð Þ cot�1 sinha0ð Þ
3kj0

h
sinha cosh2 a

� sinha0 cosh
2 a0 þ 2� 3 sin2 b

� �
sinha� sinha0ð Þ

i
ð51Þ

and

cosha ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2o þ ro þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p� �2
r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2o þ ro �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p� �2
r

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
264

375
ð52Þ

sin b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2o þ ro þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p� �2
r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2o þ ro �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p� �2
r

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
264

375
ð53Þ

cosha0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� m2
p ; sinha0 ¼

mffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p ð54Þ

m ¼ ao

bo
< 1 ; ro ¼

r

bo
; ho ¼

z

bo
ð55Þ

Figure 2. Advective transport of the contaminant from a prolate spheroidal cavity with bp/ap = 1/8
located in a porous medium with attenuation coefficient x = 0.
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Therefore when the exact form of the function F(t) is
known, the result (50) can be evaluated through Laplace
transform inversion. Again, as an illustrative example,
consider the case where the boundary of the prolate
spheroidal cavity is subjected to a contaminant concentra-
tion, which is in the form of a Heaviside step function as
defined by (40).
[9] In this case the result (50) gives

C a; b; tð Þ
C0

¼ exp �x�o a; b; mð Þ½ �H t � �o a; b; mð Þ½ � ð56Þ

Results for other forms of time-dependent variations in
the contaminant dosing at the boundary of both the oblate
and prolate spheroidal cavity regions can be obtained
by using an appropriate Laplace transform inversion
technique.

5. Numerical Results

[10] The expressions for the time-dependent variation
of the advective flow-induced distribution of the contam-
inant concentration in the porous medium, due to the

spheroidal sources are in forms amenable to evaluation
either numerically or in exact closed form, depending
upon the form of the function F(t) that defines the time
history of the boundary concentration. The numerical
results presented in this section are therefore restricted
to the special case where the boundary chemical concen-
tration is represented by a Heaviside step function of
time. The resulting closed form analytical solution repre-
sents a useful result that can be used to estimate the
maximum contaminant concentration that can be encoun-
tered within the porous medium for specified values of
the attenuation parameter x and the parameters ap

2/6kj0

and bo
2/3kj0. Prior to presentation of specific numerical

results, it is instructive to examine the limiting cases that
are applicable to spheroidal cavity geometries that corre-
spond to a spherical shape and to discuss an alternative
formulation of the advective transport from a disc shaped
region.
[11] Consider the formal solution (38) and the specific

result (41) for the time-dependent spatial distribution of the
contaminant resulting from the embedded source with a
prolate spheroidal shape. The influence of the cavity geome-
try is contained in the function �p(a, b, l). We can therefore

Figure 3. Advective transport of the contaminant from a prolate spheroidal cavity with bp/ap = 1/2
located in a porous medium with attenuation coefficient x = 0.
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consider the limiting cases for this function in order to
examine the dependency of the solution of the geometric
aspect ratio of the prolate spheroid.

5.1. Spherical Cavity

[12] In the particular case when l ! 1, the oblate
spheroidal cavity reduces to a spherical cavity of radius
ap = a. Taking the limit of (33) as l ! 1, we obtain

� r; hð Þ ¼ a2

3kj0

r2 þ h2
� �3=2�1
h i

ð57Þ

where

r ¼ r

a
; h ¼ z

a
ð58Þ

and r and z are the cylindrical polar coordinates. This result
can be easily derived by formulating the problem at the
outset in terms of spherical coordinates [Selvadurai, 2002].
The corresponding result for the contaminant concentration
in the porous medium can be obtained by using the result
(57) in (38) and (41). A limiting result similar to (57) can

also be derived by using the solutions (50) and (56)
involving the oblate spheroidal cavity. Again, this limiting
case is recovered by considering the behavior of the
function �o(ro, ho, m) as m ! 1 (spherical cavity).
Considering the limit of (51) as m ! 1, we recover the
result (57) that was obtained from the result (33) for the
prolate spheroidal cavity.

5.2. Disc-Shaped Cavity

[13] The importance of the analytical results (50) and
(56), which could be used to obtain results for the disc-
shaped cavity can be better appreciated by examining the
following alternative development of the problem con-
cerning advective transport from a disc-shaped cavity in
the form of a penny-shaped crack. We consider the
problem of a saturated porous medium of infinite extent,
which is bounded internally by a penny-shaped crack of
radius a, located on the plane z = 0, referred to a
cylindrical polar coordinate system (r, q, z). The boundary
of the penny-shaped crack is maintained at a constant
potential j0, to initiate flow in the porous medium. At
steady flow conditions, the boundary of the crack is
subjected to a contaminant concentration C0F(t), and the

Figure 4. Advective transport of the contaminant from an oblate spheroidal cavity with ao/bo = 1/8
located in a porous medium with attenuation coefficient x = 0.
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advective flow of the contaminant is governed by the
partial differential equation (8) while the potential flow is
governed by (11). Since the problem exhibits a state of
axial symmetry about the z-axis and about the plane z = 0,
we can formulate the advective transport problem in
relation to the half-space region occupying r 2 (0, 1)
and z 2 (0, 1). To determine the velocity field we
consider the mixed boundary value problem governing
the potential j(r, z), which should satisfy the mixed
boundary conditions

f r; 0ð Þ ¼ j0 ; r 2 0; að Þ ð59Þ

@f
@z

¼ 0 r 2 a;1ð Þ ð60Þ

Considering a Hankel transform development of (11),
the solution applicable to the half-space region occupying
r 2 (0, 1) and z 2 (0, 1) takes the form

f r; zð Þ ¼
Z 1

0

zA zð Þ exp �zzð ÞJ0 zrð Þdz ð61Þ

where A(z) is an arbitrary function. The mixed boundary
conditions now give rise to the system of dual integral
equations, of the formZ 1

0

zA zð ÞJ0 zrð Þdz ¼ j0 ; r 2 0; að Þ ð62ÞZ 1

0

z2A zð ÞJ0 zrð Þdz ¼ 0 ; r 2 a;1ð Þ ð63Þ

The solution of the dual system is standard [see, e.g.,
Sneddon, 1972; Selvadurai, 2000b] and the distribution of
the hydraulic potential in the half-space region is given by

f r; zð Þ ¼ 2j0

p

Z 1

0

sin zað Þ
z

exp �zzð ÞJ0 zrð Þdz ð64Þ

The partial differential equation governing axisymmetric
advective transport of the contaminant from the disc source
is now given by

@C

@t
þ 2kj0

p

� @C

@r

Z 1

0

exp �zzð Þ sin zað ÞJ1 zrð Þdzþ

@C

@z

Z 1

0

exp �zzð Þ sin zað ÞJ0 zrð Þdz

2664
3775 ¼ �xC

ð65Þ

Figure 5. Advective transport of the contaminant from an oblate spheroidal cavity with ao/bo = 1/2
located in a porous medium with attenuation coefficient x = 0.
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This integro-partial differential equation is to be solved
subject to the boundary condition

C r; 0; tð Þ ¼ C0F tð Þ ; r 2 0; að Þ ð66Þ

and the initial condition

C r; z; 0ð Þ ¼ 0 ; r 2 0;1ð Þ ; z 2 0;1ð Þ ð67Þ

The solution of this initial boundary value problem is
certainly nonroutine and requires the use of numerical
procedures based on either finite difference schemes, or
finite element or symbolic computational techniques [see,
e.g., Ganzha and Vorozhtsov, 1996, 1998; Zienkiewicz and
Taylor, 2000], where special care must be exercised to
model the singular behavior of the velocity field at the
boundary of the crack. The exact closed form result (50)
can, however, be evaluated to obtain results applicable to
the limiting case approximately resembling a penny shaped
crack (i.e., as m ! 0).
[14] Since the results for the time-dependent distribution

of the chemical within the porous medium have been
evaluated in exact closed form, it is sufficient to present

numerical results that demonstrate the basic facets of the
analytical results as they relate to the geometry of the
spheroidal region and attenuation effects in the porous
medium. For the purposes of the calculations, we set ap

2/
6j0k � 0.833 days. This advective transport coefficient can
be identified, for example, for the case of a prolate sphe-
roidal source of axial length 2ap � 10 m, embedded in a
porous medium of hydraulic conductivity k � 0.05 metres/
day and subjected to a flow potential j0 � 100 m. The
attenuation coefficient is assigned the value x = 0.005/day.
Similarly, for the purposes of presenting the results for the
oblate spheroidal cavity problem in relation to the time-
scales adopted for the prolate spheroidal cavity problem we
set bo

2/3j0k � 1.666 days. This would correspond to, say,
the advective transport from an oblate spheroidal cavity of
equatorial diameter 2bo � 10 m located in a porous medium
of hydraulic conductivity k � 0.05 m/day and subjected to a
flow potential j0 � 100 m.
[15] Figures 2 and 3 illustrate the pattern of contaminant

migration from prolate spheroidal cavity regions with
bp/ap = 1/8 and 1/2 and in the absence of any attenuation.
Similar results are presented in Figures 4 and 5 for the cases
where the cavity has an oblate spheroidal shape with

Figure 6. Advective transport of the contaminant from a prolate spheroidal cavity with bp/ap = 1/8 and
located in a porous medium with attenuation coefficient x = 0.005/day.
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geometric aspect ratios ao/bo = 1/8 and 1/2 respectively. In
these graphical representations, full advantage is taken of
the state of symmetry associated with both the prolate
and oblate spheroidal geometries. The results shown in
Figures 2–5 illustrate the influence of the surface area of
the cavity region on the extent to which the contaminant is
transported from the source. The region over which the
contaminant plume extends into the porous medium
increases as the surface area of the cavity region increases.
For the cavity aspect ratios considered in the numerical
evaluations, the lowest value of the cavity surface area is
derived for the prolate spheroidal cavity with bp/ap = 1/8 and
the largest value of the cavity surface area is derived for the
oblate spheroidal cavity with ao/bo = 1/2. Additional results
obtained indicate that for large values of the characteristic
nondimensional time t defined by

t ¼ 6j0kt

a2s

� �
> 105

where as = ap or bo, the profile of the contaminant migration
front is relatively uninfluenced by the geometry of the
axisymmetric source. The location of the contaminant

migration front, however, continues to be influenced by
the geometry of the axisymmetric source. As the geometry
of the contaminant-emitting cavity approaches the limits
applicable to a spherical shape, both the profile of the
contamination front and its location calculated from both
schemes approach the same result. Figures 6 and 7 illustrate
the advective transport from a prolate spheroidal cavity with
bp/ap = 1/8 and 1/2 in the presence of attenuation with
constant magnitude x = 0.005/day. Analogous results for
the case of an oblate spheroidal cavity where ao/bo = 1/8
and 1/2, are presented in Figures 8 and 9. These results
clearly illustrate the significant influence of a time invariant
natural attenuation factor in mitigating the migration of the
contaminant from the axisymmetric source. From the results
presented in the paper, it is evident that the results for the
contaminant migration problem for both needle-shaped
cavities and flat disc-shaped cavities located in porous media
can be obtained quite conveniently, despite the fact that
the potential problem for the limiting cases corresponding
to bp/ap ! 0 and ao/bo ! 0 both involve singular velocity
fields at, respectively, the extremities of the needle-shaped
source and the boundary of the flat disc-shaped source.
Finally, it is worthwhile to examine the influence of the

Figure 7. Advective transport of the contaminant from a prolate spheroidal cavity with bp/ap = 1/2 and
located in a porous medium with attenuation coefficient x = 0.005/day.
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attenuation factor x on the long-term distribution of the
contaminant from the axisymmetric source. For purposes
of illustration, we consider the contaminant distribution
pattern from the prolate and oblate spheroidal cavities at time
t = 10,000 hours, and the other parameters required for the
numerical evaluations are identical to those prescribed
previously. Figures 10–13 illustrate the typical influences
of a range of values of the attenuation parameter, x 2 (5 �
10�2, 5 � 10�5) and cavity geometries on the contaminant
profile. It is clear that the presence of a time-invariant natural
attenuation of a contaminant has a considerable influence on
the extent to which the contaminant plume progresses
spatially from the source.

6. Concluding Remarks

[16] The present analytical study deals with the modeling
of the linear problem of advective contaminant transport
from a spheroidal source that is located in a porous medium
of infinite extent. The solution of this problem is facilitated
by the fact that the advective flow velocity in the porous
medium bounded internally by a spheroidal cavity can
be evaluated in exact closed form. The resulting study

represents a convenient three-dimensional solution to
an advective transport problem from which sources with
elongated, spherical and disc-shaped cavity regions can be
modeled simply as limiting cases. These limiting cases
involving elongated and disc-shaped cavity regions are
nontrivial advective transport problems, in the sense that
their formulation in the relevant reduced coordinate systems
gives rise to integro-partial differential equations that can
be solved only by appeal to numerical techniques. The
formulation of these problems in relation to the spheroidal
coordinates, however, can be used to generate convenient
approximate analytical results, which can be expressed
in terms of suitable nondimensional small parameters
involving the spheroidal cavity geometries. Themore general
results for the advective transport problem involving both
prolate and oblate spheroidal cavities and including
linearly dependent attenuation in the porous medium can
be evaluated in explicit form and these results are amenable
to convenient numerical evaluation for special cases
involving boundary contaminant concentrations that are
maintained constant with time. The numerical results
presented in the paper demonstrate the effectiveness of
the mathematical solution as a benchmark for calibrating

Figure 8. Advective transport of the contaminant from an oblate spheroidal cavity with ao/bo = 1/8 and
located in a porous medium with attenuation coefficient x = 0.005/day.
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computational results for three-dimensional advective
transport problems from axisymmetric three-dimensional
sources. The numerical results also indicate that with
increasing time, the region of chemical migration also
increases with the result that the influence of the boundary
shape of the axisymmetric source, as distinguished by the
prolate and oblate cavity configurations, has a diminishing
influence on the shape of the contaminant front (i.e., both
spheroidal surfaces of the leading edge of the plume tend to
become spherical). This can indirectly be inferred from the
observation that the far-field behavior of the velocity field
associated with both prolate and oblate spheroidal shapes
corresponds to that of the velocity field resulting from
potential flow from a spherical cavity (see e.g., (57)). The
position of the contaminant plume is, however, influenced
by the shape of the cavity region. In this sense, the surface
area through which the contaminant release takes place
governs the extreme position of the leading edge at any
particular time. The numerical results also demonstrate the
strong influence of a persistent ‘‘natural attenuation process’’
in mitigating the advective transport of the contaminant
from the spheroidal source. It must be borne in mind that

the time-invariant attenuation assumed in the calculations is
an idealization and that in an actual setting the attenuation
process can be both time-dependent and nonlinear. The
analytical solutions and the methodologies presented in the
paper can be easily extended to include both time-dependent
variations of the chemical concentration at the boundary of
the spheroidal cavity region and plausible time-dependent
decay of the attenuation coefficient itself. It is also important
to note that the solutions presented here specifically address
cavity regions with specified geometries. This is a particular
advantage that avoids the thorny issue of treating the region
of contaminant recharge as a distribution of ‘‘point sources’’,
which have no geometry associated with them, except for
the spatial extent that is prescribed a priori. The region
from which the contaminant migrates now has specific
dimensions and the advective flow velocities are governed
by a potential prescribed on the surface of this region. The
consideration of the specific attributes of the surface region
over which the contaminant is introduced into the porous
medium becomes important particularly in situations where
the contaminant concentration in the vicinity of the cavity
region needs to be accurately estimated.

Figure 9. Advective transport of the contaminant from an oblate spheroidal cavity with ao/bo = 1/2 and
located in a porous medium with attenuation coefficient x = 0.005/day.
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[17] Despite the attractiveness and the convenient pre-
sentation of exact closed form results for the linear advec-
tive transport problem, it must be emphasized that the
processes involving the migration of contaminants and
other chemicals in naturally occurring porous geomaterials
are generally much more complicated, involving complex
nonlinear processes that result from fluid flow in the porous
medium and the diffusion and attenuation of the chemical.
Factors such as contaminant-induced alterations in the
hydraulic conductivity of the porous medium and the
spatial decay of the attenuation process are expected to
exert a strong influence on the advective transport of the
contaminant. Such influences are best addressed via com-
putational schemes of the resulting nonlinear advective
transport problem. The results presented in the paper not
only serve as benchmark mathematical solutions for the
validation of the linear component of such nonlinear
computational schemes but also as convenient techniques
for establishing the limits of behavior of the advective
transport process by appeal to estimates that utilize the
linear approximation. Finally, the paper also presents a very
straightforward proof of the uniqueness of solution for the
advective transport problem where Dirichlet boundary con-

ditions are prescribed on the concentration. This topic is
rarely discussed in either texts or research articles on the
subject and should be of interest to students and educators
alike.

Appendix A: A Uniqueness Theorem

[18] We consider the advective transport equation defined
by (8) applicable to a domain of finite extent V with
surface S. We proceed to show that the solution to initial
boundary value problem governed by the partial differential
equation

@C

@t
þr: vCð Þ ¼ �xC ; x 2 V ðA1Þ

subject to the boundary and initial condition

C x; tð Þ ¼ F x; tð Þ ; x 2 S* ðA2Þ

C x; 0ð Þ ¼ G xð Þ ; x 2 V ðA3Þ

Figure 10. The influence of the attenuation coefficient on the pattern of contamination migration from a
prolate spheroidal cavity with bp/ap = 1/8 and at time t = 10,000 hours.
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where S* is a subset of S, F(x, t) and G(x) are, respectively,
arbitrary functions, v(x) is a unique velocity field. We
assume that the initial boundary value problem defined by
(A1) to (A3), admits two solutions C(1)(x, t) and C(2)(x, t).
Then the solution C*(x, t) defined by

C* x; tð Þ ¼ C 1ð Þ x; tð Þ � C 2ð Þ x; tð Þ ðA4Þ

satisfies

@C*

@t
þr: vC*ð Þ ¼ �xC* ; x 2 V ðA5Þ

and subject to the boundary and initial conditions

C* x; tð Þ ¼ 0 ; x 2 S* ðA6Þ

C* x; 0ð Þ ¼ 0 ; x 2 V ðA7Þ

We note that by virtue of the uniqueness theorem for the
potential problem, the velocity field is the same for both

states. We now consider the weak form of (A5) obtained by
multiplying the equation by C*(x, t) and integrating the
result over the region V. We obtainZ Z Z

V

C*
@C*

@t
þr: C*vð Þ � xC*

 !
dV ¼ 0 ðA8Þ

Noting that r.v = 0, we have

Z Z Z
V

C*r: C*vð ÞdV ¼
Z Z Z

V

C*rC*:vdV

¼
Z Z Z

V

1

2
r: C*ð Þ2v

h i
dV ðA9Þ

Using Green’s theorem (A9) gives

Z Z Z
V

1

2
r: C*ð Þ2v

h i
dV ¼ 1

2

Z Z
S

C*ð Þ2v:n dS

¼ 1

2

Z Z
S*

C*ð Þ2v:n dS þ 1

2

Z Z
S�S*

C*ð Þ2v:n dS ðA10Þ

Figure 11. The influence of the attenuation coefficient on the pattern of contamination migration from a
prolate spheroidal cavity with bp/ap = 1/2 and at time t = 10,000 hours.
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The first term in the right hand side of the equation (A10)
vanishes on the surface S*. For the second term in the right
hand side of (A10) to vanish, we require v(x) to vanish on
the subset (S � S*). This is a condition that will be satisfied
in three-dimensional domains of infinite extent, if we
identify (S � S*) as the remotely located boundary at
infinity, where for a well-posed potential problem the
velocity fields will decay to zero. With this proviso, the
result (A8) now reduces to

1

2

d

dt

Z Z Z
V

C*ð Þ2dV ¼ �x
Z Z Z

V

C*ð Þ2dV ðA11Þ

Denoting

I ¼
Z Z Z

V

C*ð Þ2dV ðA12Þ

equation (A11) yields a first order ordinary differential
equation for I. Integrating this equation we obtainZ Z Z

V

C* x; tð ÞdV ¼ A* exp �2xtð Þ ; x 2 V ; t 2 0; Tð Þ

ðA13Þ

where A* is a constant of integration and T is any arbitrary
time. We can use the initial condition (A7) to determine this
arbitrary constant. i.e.

Z Z Z
V

C* x; 0ð ÞdV ¼ A* � 0 ; x 2 V ðA14Þ

which reduces (A13) to

Z Z Z
V

C* x; tð ÞdV ¼ 0 ; x 2 V ðA15Þ

From the Dubois-Reymond Lemma, (A15) is equivalent to

C* x; tð Þ ¼ 0 ðA16Þ

which, from (A4) establishes the uniqueness of the solution
to the initial boundary value problem with Dirichlet

Figure 12. The influence of the attenuation coefficient on the pattern of contamination migration from
an oblate spheroidal cavity with ao/bo = 1/8 and at time t = 10,000 hours.
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Figure 13. The influence of the attenuation coefficient on the pattern of contamination migration from
an oblate spheroidal cavity with ao/bo = 1/2 and at time t = 10,000 hours.
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boundary conditions, associated with the advective transport
problem applicable to an infinite domain.
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