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TECHNICAL NOTE 

THE RESPONSE OF A DEEP RIGID ANCHOR DUE TO 
UNDRAINED ELASTIC DEFORMATION OF THE 

SURROUNDING SOIL MEDIUM 
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SUMMARY 

The equations governing the undrained linear elastic behaviour of a saturated soil are formally similar to 
the equations governing slow flows of an incompressible Newtonian viscous fluid. This principle of 
equivalence can then be effectively employed to obtain the load-deflection relationship for a deep rigid 
anchor with the shape of a solid of revolution which is embedded in bonded contact with an unbounded 
incompressible elastic medium. It is found that the load-deflection relationship for the deep rigid anchor 
can be directly recovered from the expression for the drag induced on an impermeable object with the 
same size and shape as the anchor, which is appropriately placed in a slow viscous flow region of uniform 
velocity. 

INTRODUCTION 

The behaviour of deep anchors is of importance in connection with the geotechnical study of 
foundations subject to uplift loads induced by wind, earthquake and other effects. (See for 
example, Hanna and Carr,’ Adams and Klym,’ Johnston and Ladanyi’ and Sel~adurai .~)  A 
deep anchor is generally regarded as one in which the depth of embedment is considerably 
greater than the largest dimension of the anchor region. It is further assumed that the presence 
of external boundaries does not in any way influence the mechanical behaviour of the deep 
anchor. The extent to which this assumption is realized in theory, or in practice, will depend 
upon a number of factors, including the geometrical shape of the anchor, the relative defor- 
mability characteristics of the soil and the anchor, and the boundary conditions at the 
anchor-soil interface. 

In this note we are primarily concerned with the analysis of the loaddeflection behaviour of 
a rigid deep anchor due to undrained elastic behaviour of the surrounding soil medium. The 
mechanical response of both the anchor and the soil medium is generally quite complex; to a 
first approximation, however, the undrained behaviour of most saturated cohesive soils can be 
represented by incompressible elastic behaviour and the anchor region can be regarded as 
being rigid. The geometrical shape of the anchor is assumed to be that of a solid of revolution. 
the anchor, which is in bonded contact with the surrounding soil medium, is subjected to a 
resultant force directed along its axis of symmetry. This causes a rigid body displacement of the 
anchor. The relationship between the applied load and the resulting rigid body translation 
constitutes the load-displacement relationship for the rigid anchor. The assumption of bonded 
contact at the anchor-soil interface may not always be fully realized in practice. It is, however, 
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reasonable to assume that as the depth of embedment increases the confining stresses due to 
the overburden may prevent any separation at the interface, especially at working loads. The 
analysis of such effects is beyond the scope of this note. In addition, we neglect any frictional 
restraint that may be offered by the anchor tie rod. 

The solution of the deep anchor problem for the undrained elastic case can be approached 
by making use of the mathematical equivalence which exists between the equations governing 
slow viscous flows of a Newtonian viscous fluid expressed in terms of a ‘stream function’ and 
the equations governing the linear elastic behaviour of an incompressible solid in terms of a 
‘displacement function’. Using this principle it can be shown that the expression relating the 
load-deflection behaviour of a deep rigid anchor with the shape of a solid of revolution, which 
is in bonded contact with an unbounded incompressible elastic medium, can be directly 
recovered from the expression for the viscous drag on an impermeable object of the same size 
and shape situated in an unbounded viscous fluid flowing with uniform velocity in the direction 
of the axis of symmetry. This universal connection enables us to establish the load-deflection 
characteristics of deep anchors of various axisymmetric geometrical configurations by simply 
considering the solution to the appropriate slow viscous flow problem. 

INCOMPRESSIBLE ELASTIC PROBLEM 

It can be shown (see e.g. Selvadurai”) that the fundamental equations governing the 
axisymmetric deformations of an incompressible isotropic linearly elastic material can be 
reduced to the solution of two equations of the form 

E4$(R, 0) = 0; V2p(R, 0) = 0 (1) 

where $(R,e) and p(R, 0) are respectively a displacement function and a scalar isotropic 
stress, referred to a system of axisymmetric spherical polar coordinates R, 8. Also for axial 
symmetry the Stokes’ operator E2 and Laplace’s operator V2 take the forms 

a2 1 a2 c o t e  a E 2 = - + 7 7 - - -  
aR R ae R ae 
a’ 2 a 1 a’ Cote a v =,+--+-,+-- 

aR R ~ R  R2ae  R2 ae 
The solution of (l), determined by satisfying the particular boundary conditions of the 
problem can then be utilized to generate the stress and displacement fields in the in- 
compressible elastic medium. The general formulation of the incompressible elastic problem in 
terms of a displacement function can be effectively employed to analyse problems in which 
displacement boundary conditions are prescribed. In the rigid anchor problems discussed here, 
displacement boundary conditions are prescribed at the anchor-elastic medium interface. For 
future reference, we cite here the load-deflection relationships, derived by this technique, for 
rigid anchors with spherical and disc shapes (Figures l(a) and l(b), respectively). 

(a) Spherical anchor. A rigid spherical anchor embedded in bonded contact with an infinite 
elastic medium is subjected to an axially symmetric load P, in the direction of the z-axis 
(Figure l(a)). The load-deflection relationship for this anchor is given by Joselin de Joq6 and 
Selvadurai4.’ 

P, = 67rGa6 ( 3 4  
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Figure 1. Spherical and disc rigid anchors 

where S is the rigid body translation of the anchor, a is the anchor radius and G is the linear 
elastic shear modulus of the incompressible medium. The result (3a) has also been obtained by 
Hill and Power' who have analysed the problem by an approximate method based on 
extremum principles. 

(b) Disc anchor. A rigid circular disc of radius b and of infinite thickness is embedded in 
bonded contact with an incompressible elastic medium. It is subjected to a concentrated 
central load Pd. The solution to this problem occurs as a special case of the various generalized 
results given by Collins,' Hunter and Gamblen,' Kanwal and Sharma" and Se l~adura i .~  The 
appropriate load-deflection relationship is given by 

P d  = 16Gb8 (3b) 

' THE VISCOUS FLOW PROBLEM 

The determination of flow of an incompressible viscous fluid about a rigid impermeable body 
immersed therein requires the solution of the Navier-Stokes equations and the equation of 
continuity. these solutions are in turn subject to the condition that the velocity of flow 
coincides with that of the external boundary of the body at each of its points. The non-linear 
character of the Navier-Stokes equations renders the solution of this problem extremely 
difficult; as such, several plaussible simplifying assumptions are made to render the problem 
more mathematically tractable. The oldest problem of this type is the so-called Stokes' flow 
problem in which the inertial effects are assumed to be negligible in comparison with those of 
viscosity, or more precisely, the Reynolds number (Re) of the flow is quite small. This situation 
is encountered when either the characteristic flow velocity or a typical body dimension is small, 
or when the viscosity of the fluid is large. Stokes" appears to have been the first to omit the 
inertial terms in the course of treating the steady motion of a rigid sphere in a viscous liquid. 
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The equations governing Stokes’ flow or slow viscous flow of an incompressible fluid are then 
identical to ( 1 )  in which the displacement function (L(R, 0) now corresponds to a stream 
function (L*(R, 0) and p corresponds to the hydrostatic stress p * .  Stokes’ formulation can be 
used to analyse the viscous drag induced on impermeabie rigid objects which are located in a 
stream of slow viscous flow of uniform velocity. Of particular interest here is the drag induced 
on rigid spherical and disc-shaped objects. 

(a) Rigid spherical object. The viscous drag F, exerted on a rigid sphere of radius a located 
in a stream of uniform velocity U and viscosity 77 is given by (Payne and Pe11’* and Langloi~’~) 

F, = 6nr)aU ( 4 4  

(b) Rigid circular object. The viscous drag Fd exerted on a circular disc of radius b situated in 
a slow viscous stream of uniform velocity is given by (Ray14) 

In the derivation of results (4) it is explicitly assumed that no separation of flow takes place at 
the fluid-ob ject interface. 

THE ELASTIC-VISCOUS ANALOGY 

The general similarity between the equations governing the two physically independent 
phenomena was first noticed by RayleighIs and later adopted by Goodier,16 Hill,” Prager,” 
Adkins,’’ Collins,” Richard? and others to examine various problems involving axially 
symmetric, plane stress and plate bending problems of infinitesimal elasticity theory. 
Selvadurai and Spencer” and Selvadurais.*’ have shown that the displacement function 
techniques employed in the analysis of the linear problem in incompressible elasticity theory 
can be further extended to the analysis of incompressible deformations in materials exhibiting 
moderately large deformations. 

Furthermore, we note that, for the illustrative examples considered here, the load-dis- 
placement relationship for the rigid anchor embedded in bonded contact with an in- 
compressible elastic medium is identical in form to the viscous drag-velocity relationship for 
the same rigid geometric shape located in a uniform stream of flow. Similar correlations can be 
established between results for spheroidal rigid anchors embedded in imcompressible elastic 
media (Kanwal and Sharma” and Selvadura?) and the results for spheroidal objects located in 
a uniform stream of fluid flow (Oberbe~k,’~ Sampson2’ and Happel and BrennerZ6). A 
generalized proof of the analogy between the load-deflection relationship and the viscous 
drag-velocity relationship applicable for anchor regions of an arbitrary axisymmetric shape is 
beyond the scope of the present note. However, the slow viscous flow analogy for the 
determination of the undrained load-deflection characteristics of rigid anchors embedded in 
incompressible elastic soil media can be generalized to the following statement: 

Proposition 

The undrained load-deflection relationship for a deep rigid anchor with the shape of a solid of 
revolution, embedded in bonded contact with an unbounded isotropic incompressible elastic 
medium, can be directly recovered from the analogous problem of the drag induced on the same 
geometrical rigid shape with an impermeable surface, when placed in a stream of slow viscous 
pow of uniform velocity; the magnitudes of the uniform velocity, viscosity and drag force of the 
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latter problem correspond to the anchor displacement, the linear elastic shear modulus and the 
force applied (to the anchor), respectively. 

In Table I the load4isplacement relationships for anchors of certain useful geometric 
shapes are listed. The load-displacement relationships for the oblate and prolate spheroidal 

Table I. Loaddeflection relationships for rigid anchors embedded in an incompressible 
elastic solid 

Anchor shape Load-deflection relationship 

Sphere (Figure l(a)) 
~ ~ - 

P. = 6 d u 6  
~. --_I ~ - 

Circular disc (Figure l(b)) P d  = 16GM 
- -~ 

Prolate spheroid (Figure 2(b)) P = 8 d & , [ ( ~ i  + 1)coth-’ T, - T, ] - ’  

[ C, = { U f - bf}’l2 ; T, = 

(P= load acting on the anchor; 6 =anchor displacement) 

anchors are directly obtained from the solutions for the analogous viscous flow problem. It 
should be noted that owing to the spatial symmetry of the deep rigid anchor problem, the 
load-displacement relationships obtained for the linear elastic problem are also valid for 
situations in which the surrounding soil medium experiences moderately large elastic defor- 
mations (see Selvadurais). 

( i i )  

Figure 2. Rigid spheroidal anchors; (i) the oblate spheroidal anchor (ii) the prolate spheroidal anchor 
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CONTACT STRESS DISTRIBUTION AT THE ANCHOR-SOIL INTERFACE 

The assumption of perfect continuity or bonding at the anchor-soil interface is central to the 
development of the elastic-viscous analogy. It is therefore of interest to investigate the extent 
to which this assumption may be realized in practice. Such an investigation is naturally 
concerned with the assessment of contact stresses which are developed at the anchor-soil 
interface due to the simultaneous action of stresses resulting from the self weight of the soil 
and the anchor load. For the purposes of illustration and for the sake of brevity we shall 
restrict our attention to the case of a deep rigid spherical anchor. It is assumed that the rigid 
spherical anchor is located at a large depth H ( >> a )  from the free surface of a soil medium of 
unit weight y .  When the load, P, in the anchor is zero, the contact stresses which act at the 
interface are solely due to the self weight of the soil medium. A rigorous analysis of these 
contact stresses which takes into account the presence of the free surface is somewhat involved 
(see e.g. Datta2’); however, when the anchor is located at a large depth (e.g. H / a  >6)  the 
contact stresses at the interface can be estimated by making use of Goodier’s solution2* 
relating to a spherical inclusion contained in an isotropic infinite elastic medium which is 
subjected to arbitrary homogeneous states of stress at infinity. For the anchor problem posed 
here, these homogeneous stress states are assumed to approximately correspond to uzz = yH 
and urn = KoyH, where KO is the coefficient of earth pressure at rest. The contact stresses 
induced on the bonded spherical anchor interface due to these homogeneous stresses (and 
referred to a spherical polar coordinate system) take the relatively simple forms 

where uM and URe are, respectively, the normal and shear tractions on a surface R = constant. 
Similarly, the contact stress distribution due to the anchor load P is given by Se l~adura i ;~  a 
superposition of these two states of contact stress gives the following expressions for the radial 
normal and tangential shear traction at the anchor interface R = a :  

where 

P 4=- 
.rrazyH 

The stress component of particular interest with regard to delamination separation at the 
anchor-soil interface is uRR(u, 6); the expression (6a) has therefore been evaluated for KO = 1 
(this represents the correct value for the undranined case); KO = 0 (this value represents an 
extreme case for which the state of stress in the soil medium due to its self weight is purely 
one-dimensional, a result which is perhaps more consistent with a Poisson’s ratio of zero rather 
than 4) and for various values of 4. The computed results (Figure 3) indicate that the confining 
effects of the overburden stress with KO = 1 prevent the development of tensile normal traction 
at the anchor-soil interface for limited values of the anchor load P. The critical load at which 
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KO= 1 

KO= 0 
Figure 3. The distribution of normal stress at the anchor-soil interface of a rigid spherical anchor 
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tensile stresses occur at the interface in the undrained case given by P = 4.rru2yH. This load, 
which is approximately four times the weight of the soil above the spherical anchor, sets a 
realistic limit to the maximum safe load which can be supported by a spherical anchor buried at 
a large depth. Of related interest are the results provided by Hunter and Gamblen’ for the case 
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of a deep disc anchor located in an incompressible elastic soil medium; here, breakaway of the 
deep disc anchor occurs when P = 3 m 2 y H .  We note that when Ko=O,  tensile tractions 
develop at the anchor-soil interface even in the absence of the anchor load P. The presence of 
a three-dimensional state of confining stress is necessary, at least in the case of the spherical 
bonded anchor, to prevent breakaway at the anchor soil interface. 

CONCLUSIONS 

The technique outlined in this paper can be effectively employed to obtain the undrained 
load-deflection characteristics of deep rigid anchors embedded in bonded contact with an 
unbounded isotropic incompressible elastic medium. 

In conclusion, it should be mentioned that solutions to other problems associated with deep 
anchors embedded in incompressible elastic media, namely, (i) the behaviour of groups of 
anchors, (ii) the frictional boundary conditions at the anchor-soil interface, (iii) the influence 
of neighbouring boundaries, etc., may have their viscous flow analogue already to be found in 
the literature on fluid mechanics. Such correlations, however, need further investigation. In 
this connection it should also be noted that experimental techniques associated with slow 
viscous fluid flow analysis can be used to great advantage to evaluate the load-deflection 
relationships for rigid anchors of complicated geometric shapes. The work described here 
forms part of a detailed theoretical study on the performance of a prolate spheroidal anchor 
embedded in an infinite medium. The load-deflection characteristics for such an anchor 
embedded in compressible elastic (see e.g. Selvadurai4), visco-elastic and consolidating media 
will be reported in subsequent papers. 
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