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Abstract*The steady state constant velocity crack extension in poroelastic media is examined for
plane strain problems[ The _nite element formulation of the governing equations for steady crack
extension in poroelastic media is developed using a Galerkin technique[ The resulting system of
non!symmetric coupled matrix equations depends on the propagation velocity at the crack tip[ The
computational scheme accounts for the stress singularity in the e}ective stress _eld at the crack tip[
The numerical procedure is veri_ed by comparison with analytical solutions for the pore pressure
and displacement _elds at the crack tip[ The computational procedure is utilized to examine the
plane strain problem related to the steady growth of a crack in a poroelastic medium due to its
wedging by a rigid smooth indentor[ It is shown that the computational methodology can also be
applied to examine the penetration of an axisymmetric rigid smooth shell through a saturated
geomaterial[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ INTRODUCTION

The theory of poroelasticity developed by Biot "0830\ 0844# accounts for the coupled
processes of ~uid ~ow and elastic deformation of a porous medium which is saturated with
either an incompressible or a compressible pore ~uid[ Recent reviews "see e[g[ Selvadurai\
0885# indicate that the theory of poroelasticity has been successfully applied in the study of
variety of problems in geomechanics\ biomechanics\ materials engineering\ environmental
geomechanics and energy resource recovery from geological formations[ As the applications
of the theory diversify\ attention needs to be focused on other aspects of importance[ With
porous brittle geomaterials which are saturated with ~uids\ the study of the initiation and
extension of cracks is recognized as an area of both practical and fundamental interest[
This paper focuses on the _nite element modelling of the steady crack extension phenomena
in poroelastic media[

The problem of steady state constant velocity crack growth in an isotropic elastic
medium was _rst examined by Yo}e "0840# for the case of plane strain deformation[ Radok
"0845# and Broberg "0859# extended this study to examine the steady self!similar extension
of a crack in an elastic material[ The limits of propagation velocity in these studies are
established in relation to Rayleigh wave velocity in elastic materials[ A recent review of
these developments is presented by Freund "0889#[ In the context of poroelasticity\ Rice
and Simons "0865#\ Simons "0866# and Ruina "0867# have given analytical solutions to
problems of a semi!in_nite crack propagating quasi!statically in shear mode through a
saturated porous medium\ for various pore pressure boundary conditions on the crack
faces[ Cheng and Liggett "0873# applied the boundary integral equation method to solve a
similar problem[ The quasi!static crack growth governs the hydraulic fracturing phenomena
used quite extensively in oil resource recovery "Ingra}ea and Boone\ 0877#[ Fracture
extension in poroelastic media is of considerable interest to hydraulic fracture of resource
bearing geological formations[ A review of contributions in this area is given by Boone et
al[ "0880#[ The problem of a stationary hydraulic fracture in a poroelastic medium is given
by Detournay and Cheng "0880#[ The behaviour of a crack tip region during hydraulic
fracturing by a ~uid which has a power law constitutive response is given by Desroches et
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al[ "0883#[ Recently Craster and Atkinson "0880\ 0885# have examined in more detail the
crack tip stress and pore pressure _elds for steadily propagating semi!in_nite cracks in
poroelastic media[ They have given the analytical solutions for the pore pressure and stress
_elds near the crack of tip for various boundary conditions applied to pore pressure and
tractions on the crack faces[

In poroelastic and other materials which exhibit dissipative phenomena the extension
of a crack is likely to be dynamic and unsteady in the initial stages[ However\ a steady state
of crack extension can be obtained at limiting times when the crack extension has occurred
over a long period of time[ For poroelastic materials the ~ow of energy into the pore ~uid
tends to stabilize the crack growth and results in a quasi!static extension of the crack with
a certain velocity[ To preserve the conditions of steady state of crack extension\ the traction
distribution should be time invariant in a reference coordinate system moving with the
crack tip in an in_nite poroelastic medium[ The study of phenomena related to quasi!static
crack propagation in poroelastic geomaterials can be of interest to development of landslides
in overconsolidated clay "Palmer and Rice\ 0862 ^ and Rice and Cleary\ 0865# and aftershock
events in an earthquake "Booker\ 0863#[

The plane strain problem of the steady quasi!static propagation of a crack\ in a
poroelastic medium\ moving at a _nite velocity and driven by tensile tractions "Fig[ 0# is
examined in this study[ While this class of two!dimensional plane strain problems give rise
to steady state crack extension phenomena\ the equivalent class of problems involving
extension of circular cracks do not yield a steady state[ The steady state crack extension
behaviour of saturated materials is assumed to depend on the velocity of crack propagation[
The response of material is assumed to be fully drained at low propagation velocities and
undrained at high velocity limits[ As a result\ the stress _eld near the crack tip will be a
function of propagation velocity[ When the assumptions of steady state crack extension
are invoked the governing equations of poroelasticity are modi_ed[ The modi_cation takes
the form of the elimination of the time variable by a suitable transformation which accounts
for the propagation velocity at the crack tip[ We present the basic equations governing the
steady state extension of a semi!in_nite crack under conditions of plane strain and that of
a cylindrical crack exhibiting a state of axial symmetry[ The _nite element formulation of
the transformed equations governing the steady state extension of a crack in a poroelastic
medium is developed by employing a Galerkin technique[ The _nite element approximation
results in a system of non!symmetric coupled matrix equations which are velocity!depen!
dent[ The numerical procedure accounts for the singular behaviour of the e}ective stress
state at the crack tip located in the poroelastic medium[ The computational scheme is
veri_ed by appeal to analytical solutions given by Rice and Simons "0865# and Craster and
Atkinson "0880# for the pore pressure and displacement _elds at the crack tip[ The numerical
procedure is _rst utilized to examine the plane strain problem related to the steady growth
of a crack due to its wedging either by a rigid cylindrical indentor "dipole of point forces#
or by a smooth rigid strip indentor[ The computational methodology is then applied to

Fig[ 0[ Steady extension of a crack in a poroelastic medium[
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examine the penetration of an axisymmetric rigid smooth cylindrical shell with a {{blunt
front|| through a saturated brittle geomaterial[

1[ GOVERNING EQUATIONS

The basic equations governing Biot|s theory of poroelasticity are summarized for
completeness[ The constitutive equations governing the quasi!static response of a por!
oelastic medium\ which consists of a porous isotropic elastic soil skeleton saturated with a
compressible pore ~uid take the forms

sij � 1moij¦
1mn

0−1n
okkdij¦apdij "0a#

p�bzv¦abokk "0b#

where sij is the total stress tensor ^ p is the pore ~uid pressure ^ zn is the volumetric strain in
the compressible pore ~uid ^ n and m are\ respectively\ the {{drained values|| of the Poisson|s
ratio and the linear elastic shear modulus\ applicable to the porous fabric\ dij is Kronecker|s
delta function[ In "0#\ oij is the soil skeleton strain tensor which is de_ned by

oij �
0
1
"ui\ j¦uj\i# "1#

where ui are the displacement components\ and a comma denotes a partial derivative with
respect to the spatial variables[ The material properties a and b which de_ne\ respectively\
the compressibility of the pore ~uid and the compressibility of the soil fabric are given by

a�
2"nu−n#

B	"0−1n#"0¦nu#
"2a#

b�
1mB	1"0−1n#"0¦nu#1

8"nu−n#"0−1nu#
"2b#

where nu is the undrained Poisson|s ratio\ and B	 is pore pressure parameter introduced by
Skempton "0843#[ The e}ective stress tensor s?ij of the porous skeleton is given by

s?ij �sij−apdij "3#

In the absence of body forces and dynamic e}ects\ the quasi!static equations of equilibrium
for the complete ~uid saturated porous medium take the form

sij\j � 9 "4#

The ~uid transport within the pores of the medium is governed by Darcy|s law which can
be written as

vi �−kp\i "5#

where vi are the components of the speci_c discharge vector in the pore ~uid and k� k:gw\
in which k is the coe.cient of hydraulic conductivity of porous material and gw is the unit
weight of pore ~uid[ The equation of continuity associated with quasi!static ~uid ~ow is

1zv

1t
¦vi\i � 9 "6#

Considering requirements for a positive de_nite strain energy potential "see e[g[ Rice and
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Cleary\ 0865#\ it can be shown that the material parameters should satisfy the following
thermodynamic constraints ] m× 9 ^ 9¾B	 ¾ 0 ^ −0³ n³ nu ¾ 9[4 ^ k× 9[

The resulting equations of equilibrium for a poroelastic medium as introduced by Biot
"0830\ 0844# and reformulated in more physically relevant variables by Rice and Cleary
"0865#\ can be written in terms of the displacements and pore pressure as

m91ui¦
m

"0−1n#
okk\i¦ap\i � 9 "7a#

kb91p−
1p
1t

¦ab
1okk

1t
� 9 "7b#

To formulate the governing equations for steady crack extension in poroelastic media\ we
consider the idealized problem of a semi!in_nite plane crack moving steadily in a poroelastic
medium[ It is assumed that the coordinate system is located at the tip of the moving crack
"Fig[ 0#[ The crack moves along the x!direction with a constant velocity V[ The problem is
assumed to be quasi!static and inertial e}ects and body forces in the medium are neglected[
The acceleration of the system is also assumed to be zero[ We consider the transformation

x�X−Vt ^ z�Z "8#

where xÐz is a coordinate reference system moving with the crack tip[ The explicit time!
dependency can be removed by writing

1

1t
�−V

1

1x
"09#

The resulting time!independent equations of poroelasticity take the form

m91ui¦
m

"0−1n#
okk\i¦ap\i � 9 "00a#

kb91p¦V
1p
1x

−abV
1okk

1x
� 9 "00b#

Since time dependency is eliminated through transformation "8#\ for a well posed boundary
value problem\ only boundary conditions need to be speci_ed on the variables ui\ sij and p[

2[ FINITE ELEMENT FORMULATIONS

Finite element methods have been widely applied for the study of problems in por!
oelasticity "see e[g[ Sandhu and Wilson\ 0858 ^ Ghaboussi and Wilson\ 0862 ^ Booker and
Small\ 0865#[ Reviews of both analytical and computational procedures for the study of
soil consolidation related to poroelastic media are given by Lewis and Schre~er "0876# and
Selvadurai "0885#[ Applications of Galerkin procedures in _nite element modelling to the
study of poroelastic media are well documented by Sandhu and Wilson "0858#\ Lewis and
Schre~er "0876#\ and more recently\ by Selvadurai and Nguyen "0884# in connection with
isothermal consolidation of sparsely jointed porous media[ The Galerkin approximation
technique is applied to the governing eqns "00# to transform the partial di}erential equations
into a discretized matrix form[ The approximation used for the displacements ui and pore
pressure p can be obtained by

uÝ �Nu"u#

pÝ �Np"p# "01#
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where "u# and "p# are the nodal displacements and pore pressures\ and Nu and Np cor!
respond to the nodal shape functions for displacement and pore pressure _elds[ In general
Nu and Np can be di}erent but both Nu and Np must exhibit C9 continuity[ First\ the
Galerkin procedure is applied to the eqn "00b# which results in the following weak "weighted
residual# form of the equation

gR

Np $k
11p

1x1
i

¦
V
b

1p
1xr

−aV
1

1xr 0
1uk

1xk1%dR� 9 "02#

where R is the domain of interest\ and we note that x0 �x ^ x1 � z ^ and xr �x[ Application
of Green|s theorem to above equation results in the following

gB

Npk 0
1p
1xi

ni1dB−gR

1Np

1xi

k
1p
1xi

dR¦gR

V
b

Np 1p
1xr

dR

−gB

aVNp 1uk

1xk

nx dB¦gR

aV
1Np

1xr

1uk

1xk

dR� 9 "03#

where B is the boundary of domain R[ By substituting the interpolation functions given by
eqns "01# in the above equation\ one obtains

gR

1Np

1xi

k
1Np

1xi

pk dR−gR

V
b

Np 1Np

1xr

pk dR

¦gB

aVNp 1Nu

1xi

nxuij dB−gR

aV
1Np

1xr

1Nu

1xi

uij dR� gB

Npk
1p
1xi

ni dB "04#

The above equation can be written in matrix form as

"ðCBŁ−ðCCŁ#"u#¦"ðHŁ−ðEEŁ#"p# � "Fq# "05#

where

ðCBŁ � aV gB

Np 1Nu

1xi

nx dB "06a#

ðCCŁ � aV gR

1Nu

1xi

1Np

1xr

dR "06b#

ðHŁ �k gR

1Np

1xi

1Np

1xi

dR "06c#

ðEEŁ �
V
b gR

Np 1Np

1xr

dR "06d#

and "u# is the displacement vector ^ "p# is the pore pressure vector "Fq# is the outward ~uid
~ux through the boundary B[ The _nite element approximation for the equilibrium equation
can be derived by a similar approach "see e[g[ Sandhu and Wilson\ 0858 ^ Selvadurai and
Nguyen\ 0884# which takes the form

ðKŁ"u#¦ðCŁ"p# � "Fb# "07#

where
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Fig[ 1[ "a# Plane and quarter point isoparametric elements ^ and "b# node arrangement for com!
putation of the stress intensity factor[

ðCŁ � a gR

1Nu

1xi

Np dR "08a#

ðKŁ � gR

ðBŁT ðDŁ ðBŁ dR "08b#

where ðDŁ is the stressÐstrain matrix for the soil skeleton which depends on two elastic
constants m and n and ðBŁ is the matrix relating strains to nodal displacements which
depends on the shape functions Nu[

The _nite element formulation of the steadily propagating crack in a poroelastic
medium can be written by combining the eqns "05# and "07#[ The non!symmetric matrix
form of the discretized equations takes the form

$
ðKŁ ðCŁ

ðCB−CCŁ ðH−EEŁ% 6
u

p7� "F# "19#

where
K�sti}ness matrix of the soil skeleton ^
C�coupling matrix related to interaction between soil and pore ~uid ^

CC�modi_ed coupling matrix ^
CB�coupling matrix associated with the boundary conditions ^
EE�modi_ed compressibility matrix of ~uid ^
H�permeability matrix ^
F�force vectors due to external tractions\ body forces and ~ow _eld ^
u�vector of nodal displacements ^
p�vector of pore pressures

The governing eqns "19# are discretized in the spatial domain using a standard _nite element
procedure[ The element chosen to represent the intact region of the poroelastic medium is
the eight!noded isoparametric element where the displacements within the element are
interpolated as functions of the eight nodes\ whereas the pore pressures are interpolated as
a function of only the four corner nodes i\ k\ m\ and o "Fig[ 1#[ The rationale for this
procedure is now well documented "see e[g[ Lewis and Schre~er\ 0876 ^ and Selvadurai and
Nguyen\ 0884#[

3[ COMPUTATIONAL PROCEDURES

Simons "0866# has shown that the order r−0:1 of the stress singularity is preserved for
the e}ective stress _eld at the crack tip in poroelastic media[ Craster and Atkinson "0880#
have shown that the pore pressure behaviour at the crack tip as r: 9 is not spatially
singular for steadily propagating poroelastic fracture problems[ They have shown that the
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pore pressure gradients at the crack tip are\ however\ singular for the crack problems with
permeable pore pressure boundary conditions on the crack faces[

In addition to the regular isoparametric element\ it is also necessary to introduce a
singular element to model crack tip behaviour[ The quarter point singular element intro!
duced independently by Henshell and Shaw "0864# and Barsoum "0865#\ has been adopted
to model the singular behaviour at the crack tip "Fig[ 1#[ This element has been successfully
utilized to model both two dimensional "plane stress and plane strain# and axisymmetric
crack problems in classical elasticity[ The order of the singularity in the e}ective stresses at
the crack tip\ for the porous skeleton\ modelled by this approach corresponds to r−0:1[ The
pore pressure _eld around crack tip is\ however\ non singular and is modelled by con!
ventional isoparametric elements[

It is postulated that the crack in the poroelastic medium will extend when the mode I
stress intensity factor applicable to the singular e}ective stresses at the crack tip attains a
critical value of KIC[ The result of particular interest is the evaluation of the critical stress
intensity factor at the crack tip in relation to the propagation velocity[ For plane strain
problems\ the crack opening or mode I stress intensity factors K0 can be evaluated by the
displacement correlation method incorporating the nodes A\ B\ and the crack tip C
"Fig[ 1b# i[e[\

Fig[ 2[ Finite element discretization[
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KI �
1m

"0¦ka#X
1p

l9
"3uz"B#−uz"A## "10#

where ka �"2−3n# and l9 is the length of the crack!tip element[
An examination of the literature on elastodynamic fracture mechanics indicate that

the _rst mathematical treatment of steady crack propagation under plane strain conditions
was conducted by Yo}e "0840#[ The scope of mathematical modelling of elastodynamic
fracture phenomena was then extended by Broberg "0859# to examine solution to the steady
problem of the self!similar expansion of a crack in a uniform tension stress _eld[ Based on
the positive de_niteness of the energy ~ow to the crack tip\ Broberg "0853\ 0878# proved
that cracks cannot propagate in crack opening mode I with velocities greater than the
Rayleigh velocity cR given by

cR � a9cT "11#

where cT is the velocity of transverse "or shear# waves propagating through an elastic
material which is given by

cT �X
m

r
"12#

where r is the mass density and m is the shear modulus of elastic material\ and a9 is a
constant which depends on the value of Poisson|s ratio[ This constant is constrained to
range in a narrow domain close to unity "e[g[ a9 �9[77 for n�9 ^ and a9 �9[85 for n�9[4#
and can be assumed equal to unity for most engineering applications "Davis and Selvadurai\
0885#[ Most of analytical solutions for the steady crack growth in poroelastic media appear
to have neglected these limiting bounds on the propagation velocity which are attributed to
physical phenomena[ It is observed that the ratio of this critical velocity to the permeability
coe.cient of porous material is a key parameter which characterises the relevant limits for
the steady behaviour of crack extension in poroelastic media[ The relevance of these limiting
bounds on poroelastic e}ects of crack propagation should be considered[

The computational scheme developed for the steady crack extension in poroelastic
media is calibrated by comparison with the known analytical and numerical solutions[ The
plane strain problem of a semi!in_nite crack propagating steadily in a poroelastic medium
is considered[ Two di}erent traction boundary conditions on the crack faces are considered[
The faces of crack are _rst subjected to a uniform normal total stress over a _nite distance
l from the crack tip[ The _nite element discretization of the problem and associated
boundary conditions are shown in Fig[ 2[ The crack tip and associated loading move with
a steady velocity V along the x!direction[ Rice and Simons "0865# and Cheng and Liggett
"0873# have given analytical and numerical solutions for the variation of the energy release
rate G given by following with the velocity V ]

G�"0−n#K1
I :1m "13#

"It may be noted that the velocity dependence of G on V will materialize through the
calculation of KI[# The value of G varies between two limiting elastic cases of a drained
value "Ge# and an undrained value[ The crack extension criterion is satis_ed when the
energy release rate reaches a critical value Gcr which is dependent on the velocity V[ Figure
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Fig[ 3[ Crack propagation criterion[

3 illustrates variation of the normalized critical energy release rate Gcr with the propagation
velocity V[ This parameter approaches unity as V: 9 and asymptotically reaches a value
h1 "i[e[ h�"0−nu#:"0−n## as V:�[ The results are compared for the case of h�0[222
which corresponds to an overconsolidated clay "Cheng and Liggett\ 0873#[ The maximum
discrepancy of 4) occurs for very high velocity where the poroelastic e}ects become highly
localized and pore pressure _eld shows spatial oscillations[ Either a very _ne discretization
or a special crack tip element which captures the pore pressure _eld applicable to the high
velocities\ in an analytic manner\ are needed to address this e}ect[

In the second problem examined\ the faces of semi!in_nite crack are subjected to an
exponentially decaying normal total stress given by

szz �s9 ex:aH"t# ^ −�³x¾ 9 "14#

where H"t# is the Heaviside step function\ and a is a constant "Fig[ 2#[ Atkinson and Craster
"0880# have given a closed form solutions for the problem for the variation of ~aw opening
stress intensity factor KI with the velocity V as follows

KI �f"a0#K e "15#

where Ke is the elastic stress intensity factor given by "1a#0:1s9 ^ f"a0# is a function of
normalized velocity a0 � aV:C given by the following ]
"i# for a permeable crack

f"a0# �
0−nu

0−n¦1"nu−n# 0
0
a0

−0
0
a0 00¦

0
a011

9[4

1
"16a#

"ii# for an impermeable crack
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f"a0# �
0−nu

0−n¦
1"nu−n#

a0 00
0
a0 00¦

0
a011

−1

−01
"16b#

Also the generalized consolidation coe.cient C is given by

C�
1kB	1m"0−n#"0¦nu#1

8"0−nu#"nu−n#
"17#

Figure 4"a# illustrates the results for the variation of the stress intensity factor KI with the
normalized velocity aV:C at the crack tip\ derived from analytical solutions and numerical
simulations for material parameters n�9[2\ nu �9[3[ The results indicate that there is
good agreement between the analytical results and computational results[ An oscillatory
behaviour is also observed in the pore pressure _eld at the crack tip at very high velocities
for this case[ The nominal results also support Craster and Atkinson|s observation that the

Fig[ 4[ "a# Variation of the stress intensity factor KI with a0 � aV:C ^ and "b# pore pressure
distribution ahead of crack tip for velocity a0 � 0[ "Analytical results are due to Craster and

Atkinson\ 0880[#
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impermeable pore pressure boundary conditions on crack faces result in a lower stress
intensity factor than those applicable for the permeable case[ This indirectly implies that a
greater e}ort is required to extend cracks with impermeable surfaces of fracture[

The analytical solutions for the pore pressure _elds near the crack tip are also given in
an explicit form by Atkinson and Craster "0880#[ The pore pressure _elds along the crack
extension axis "x# ahead of the crack tip take the following forms ]
"i# for a permeable crack

p"X# � l $0
a0

pX1
9[4

"e−X−0#−eX:a0 0erfc""X¦X:a0#9[4#−erfc 00
X
a01

9[4

11% "18a#

"ii# for an impermeable crack

p"X# � l $0
a0

pX1
9[4

"e−X−0#¦eX:a0 0erfc 00
X
a01

9[4

1−
erfc""X¦X:a0#9[4#

"0¦a0#9[4 1% "18b#

where

X�"V:C#x ^ "29a#

l�
1B"0¦nu#"0−n#s9f"a0#

2"0−nu#
^ "29b#

and erfc"x# is the complementary error function given by

erfc"x# � 0−erf"x# � 0−
1

zp g
x

9

e−j1
dj "29c#

Figure 4"b# illustrates the pore pressure distribution ahead of the crack tip for similar
problem with parameters n�9[1\ nu �9[2 corresponding to a normalized velocity of a0 �0
for the permeable and impermeable pore pressure boundary conditions on crack faces[
There is good agreement between analytical solutions and numerical results[ The results
indicate that a signi_cant pore ~uid suction _eld can be developed ahead of crack tip which
reduces the e}ective stresses in the crack tip region particularly for permeable cracks[

4[ NUMERICAL RESULTS

The class of steady state self!similar expansion of cracks in poroelastic media is of
particular interest to geotechnical engineering and energy resource recovery from geological
formations[ The numerical procedure is utilized to examine the problem of crack growth
due to symmetric wedging of a crack by rigid indentors in saturated geomaterials under
conditions of plane strain and axial symmetry[

The mathematical treatment of steady!state self!similar crack extension under plane
strain conditions was _rst examined by Radok "0845# in solution of a moving punch
problem in an in_nite elastic medium[ Broberg "0864\ 0878# has examined the near!tip _elds
and directional stability of such crack propagation in elastic material both from the point
of view of experimental observations and analytical approaches[ Melin "0880# has recently
used the _nite element method using quarter!point singular elements for the evaluation of
stability criteria of wedging in an elastic material[

4[0[ Plane strain movin` punch
The plane strain problem of steadily moving rigid punch wedging a semi!in_nite crack

in an in_nite poroelastic medium is examined in this section[ The indentor which moves
with velocity V results in a steady self!similar extension of the crack[ The crack extension
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Fig[ 5[ Wedging of a poroelastic medium by rigid indentors[

criteria is governed by attainment of a critical stress intensity factor KIC applicable to the
porous fabric which depends on the propagation velocity[ The shape of indentor is assumed
to be either a cylinder of diameter D "i[e[ the contact forces are idealized as a dipole of
point forces# or a strip punch with a thickness of D and a length of a "Fig[ 5#[ It is assumed
that during steady state crack propagation\ the crack tip takes its location at a distance l
from the edge of indentor[ The soil skeleton and the pore ~uid of porous medium are
asumed to be compressible with material parameters n�9[1 and nu �9[2[ Finite element
discretization given in Fig[ 2 is used for simulation purposes[ The result of primary interest
is the behaviour of crackÐindentor interaction with variations in the in situ stresses s9 and
the indentor geometry[

Figure 6"a# illustrates the variation of the crack opening stress intensity factor KI with
the geometry of crack and the in situ stresses s9 for a rigid smooth cylinder indentor moving
at a velocity of DV:C�9[90[ This indicates that for higher in situ stresses and tougher
materials\ the resulting crack length is smaller[ The e}ect of propagation velocity on the
crackÐindentor interaction behaviour is also illustrated in Fig[ 6"b# in comparison with the
static result for the problem with equivalent geometry "i[e[ V�9#[

Figure 7 illustrates the crack extension criterion for a moving rigid strip which moves
through a saturated porous medium at a velocity of DV:C�9[90[ It is assumed that
the indentor always remains in full contact with porous medium[ Similar crackÐindentor
interaction behaviour can be observed for various indentor geometries[ It is also indicated
that length of wedging indentor "a# in relation to crack length "l# has no signi_cant e}ect
on the steady crack propagation behaviour\ for a:l× 2[

4[1[ Axisymmetric penetration of a ri`id shell
In this section we consider the problem of the steady penetration of a rigid cylindrical

shell with smooth side walls and of _nite thickness into a saturated poroelastic material of
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Fig[ 6[ E}ect of crack geometry\ in situ stresses\ and propagation velocity on the stress intensity
factor for a dipole joint point force wedging[

in_nite extent[ The problem represents one of the few situations where a three!dimensional
axisymmetric problem gives rise to a self similar crack extension problem[ As indicated
previously\ a steady expansion of a three!dimensional penny shaped crack does not result
in a self similar problem[ The problem could be of interest to the study of the penetration
of the rigid casing of a shell into a saturated overconsolidated poroelastic medium which is
susceptible to fracture rather than elasto!plastic yield[ The situation could also be of interest
to jacking of pipes in saturated overconsolidated soils[ Admittedly\ the constraint of smooth
contact at the interface between the shell and the geomaterial is a restriction in the rigorous
application of the problem to a practical situation[ A further problem of interest would be
the penetration of a solid pile with a conical end into a saturated poroelastic geomaterial[
In this case however\ the displacements involved during pile penetration would be sig!
ni_cantly large so as to make the application of the theory of linear poroelasticity unwar!
ranted[ The problem of the penetrating cylindrical shell with the blunt end also complements
the plane strain rigid punch problem\ where\ as the radius of the shell increases in com!
parison to the thickness of the shell\ the two situations are expected to converge to the same
result[
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Fig[ 7[ E}ect of crack and punch geometry on the stress intensity factor KI for a wedging rigid strip[

The generalized problem examined here deals with the problem of a rigid cylindrical
shell of thickness D and radius a "to the mid!section of the thickness D# which penetrates
the saturated poroelastic geomaterial with a steady velocity V[ Attention is restricted to the
case where the shell has penetrated a su.cient distance into a poroelastic geomaterial
region so as to warrant the modelling by appeal to a steady state condition encountered in
the vicinity of the crack tip[ The displacements are prescribed over the contact length of
the penetrating shell and traction boundary conditions are prescribed over the crack opening
region of length l[ This length is controlled by the ratio KI:KIC of the saturated geomaterial[
The pore pressures are assumed to be zero over the entire contact zone and the opened
region l[ The pore pressure boundary conditions that are applicable to a contact zone can
vary between both fully permeable and impermeable boundary conditions[ In view of the
fact that the contact zone is assumed to be smooth\ it is appropriate to take a zero pore
pressure boundary condition at the contact zone[ The set of moving coordinates are
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Fig[ 8[ Finite element discretization of the rigid shell penetration[

cylindrical polar coordinates "r\ z# which are located along the axis of the penetrating shell
and _xed to coincide with the plane containing the crack tip[ The _nite element discretization
used in the modelling is shown in Fig[ 8[ The far _eld boundary conditions applicable to
the problem are also shown in Fig[ 8[ There are several ways in which the results derived
form the computations can be presented[ Figure 09 illustrates the variation in the normalized
crack opening mode stress intensity factor with the non!dimensional parameter

DV
C

�
8DV"0−nu#"nu−n#

1kB	1m"0−n#"0¦nu#1
"20#

which e}ectively represents the velocity to permeability ratio\ which must satisfy the wave

Fig[ 09[ Variation of the stress intensity factor KI with radius a for a rigid smooth shell penetrating
steadily through a poroelastic medium[
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speed constraints discussed previously\ the aspect ratio of the opened length to the shell
thickness "l:D# and the aspect ratio of the shell geometries "a:D#[ The computations indicate
that as a:D increases the result for the plane strain solution is recovered[ The alternative
presentation of results could include the evaluation of l:D which corresponds to maintaining
KI:KIC �0[ This would require the speci_cation of KIC in the computations[

5[ CONCLUDING REMARKS

An important class of problems arises in the study of steady moving boundary problems
in the theory of poroelasticity[ The steady state crack extension in poroelastic media is
motivated by the potential application of the results to crack extension in brittle saturated
media[ An important step in the treatment of such problems is the introduction of a
coordinate transformation which depends on the steady state velocity with which a dis!
continuity such as a crack moves within the poroelastic solid[ This transformation has the
e}ect of removing the time!dependency associated with the poroelasticity problem and
reducing it to a conventional boundary value problem where only boundary conditions
need to be prescribed on the displacement\ traction and pore water pressure variables[ This
paper has presented the computational modelling of steady state crack extension problems
via _nite element modelling[ The computational modelling accounts for the singular e}ec!
tive stress _elds associated with the crack tip[ The computational modelling is veri_ed with
analytical solutions available in the literature for steady crack extension in poroelastic
media[ It is shown that the computational modelling procedure successfully predicts the
stress intensity factors at the crack tip and the pore pressure _elds ahead of crack front[
The versatility of the computational modelling procedure is demonstrated by application
of the methodology to the study of the opening of a plane crack by a dipole of moving
forces or a rigid punch with a uniform thickness[ It is shown that the stress intensity factors
at the crack tip due to the steady state movement of the crack tip can be evaluated quite
conveniently by the numerical scheme[ The versatility of the computational procedure is
further established by considering for the _rst time a crack extension associated with a
problem exhibiting axial symmetry[ This involves the penetration of a thin cylindrical shell
into a poroelastic solid[ The computational procedure gives estimates for the stress intensity
state factor KI which can be compared with analogous results for the two!dimensional
plane strain problem[ This result has certain practical merit in that the relative geometric
dimensions of the rigid shell "i[e[ radius and thickness# which permits the consideration of
a plane strain solution to an axisymmetric problem can be identi_ed[ The computational
procedure represents an e.cient technique which can be used to examine the factors of
importance to steady state crack extension in brittle ~uid saturated poroelastic geomaterials[
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