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SUMMARY

Constitutive laws for rock joints should be able to reproduce the fundamental mechanical behaviour of real
joints, such as dilation under shear and strain softening due to surface asperity degradation. In this work, we
extend the model of Plesha1 to include hydraulic behaviour. During shearing, the joint can experience
dilation, leading to an initial increase in its permeability. Experiments have shown that the rate of increase of
the permeability slows down as shearing proceeds, and, at later stages, the permeability could decrease
again. The above behaviour is attributed to gouge production. The stress—strain relationship of the joint is
formulated by appeal to classical theories of interface plasticity. It is shown that the parameters of the model
can be estimated from the Barton—Bandis empirical coefficients; the Joint Roughness Coefficient (JRC) and
the Joint Compresive strength (JSC). We further assume that gouge production is also related to the plastic
work of the shear stresses, which enables the derivation of a relationship between the permeability of the
joint and its mechanical aperture. The model is implemented in a finite element code (FRACON) developed
by the authors for the simulation of the coupled thermal—hydraulic—mechanical behaviour of jointed rock
masses. Typical laboratory experiments are simulated with the FRACON code in order to illustrate the
trends predicted in the proposed model. ( 1998 by John Wiley & Sons. Ltd.
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INTRODUCTION

Discontinuities in rock masses, which shall be referred to as ‘joints’ in this paper, constitute planes
of weakness in the rock mass from the point of view of its mechanical behaviour. Under external
loads, sliding along the joints is likely to occur. Due to the presence of asperities at the joint
surfaces, dilation usually accompanies the shearing process, leading to an increase in the joint
aperture. As a consequence, the joint becomes more permeable. The asperities of the joint walls
have finite strength. Mechanical degradation of these asperities occurs during shear, and the
dilation of the joint will diminish at the later stages of the shearing process. During this process,
gouge material is being produced by the damage of the asperities and the accumulation of the
gouge material can result in the reduction of flow in the joint. The very limited number of
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experiments2—4 which investigate the effects of shear on joint permeability show that as shearing
proceeds, the permeability decreases as a result of gouge production.

Patton5 performed experiments on artificial joints with regular ‘saw-tooth’ shapes moulded out
of plaster of Paris. He proceeded to propose a bilinear model of a shear strength criterion; at low
normal stress, the joint shows dilation during shear due to overriding of the asperities; at high
normal stress, shear through the asperities occurs and limited dilation is observed. Ladanyi and
Archambault,6 Jaeger,7 Barton and Choubey8 and Bandis et al.9 proposed similar strength
criteria, with a smooth transition between the two extreme types of response proposed by
Patton.4 Barton and Choubey,7 and Bandis et al.8 introduce the empirical coefficients JRC (Joint
Roughness Coefficient) and JCS (Joint Compressive Strength) in their strength criterion. These
empirical coefficients are easily determined either in the laboratory or in situ and they are
a measure of the roughness of the joint surface (JRC) and the strength of the asperities (JCS).
Empirical relations are proposed by these authors in order to include scale-dependency of JRC
and JCS. The above strength criteria delineate the state of stress that separates pre-sliding and
post-sliding of the joints. In order to predict the stress—strain behaviour of joints in both stages,
numerous constitutive relationships have been proposed. These relationships could be categor-
ized into two main classes. The incremental relationships10—15 consist of piecewise linear relation-
ships between the increment of stress and the increment of strain. These relationships are usually
developed from direct shear tests under constant normal stress and their use under different load
paths is not straightforward. Graphical methods to use these models to predict shear behaviour
under constrained dilation (or constant normal stiffness) have been proposed with some suc-
cess.16~18 Boulon and Nova15 and Benjelloun4 proposed an incremental approach with direc-
tional dependency. In this approach, the stress—strain matrices are determined from elementary
stress paths derived from laboratory tests (such as shear under constant normal stress conditions).
A weighted interpolation procedure between the elementary stress paths is used to determine the
incremental stress—strain matrix for other stress paths. The second category of constitutive
relationships are the elastoplastic relationships, derived from the theory of plasticity. The models
which fall into this category assume that before sliding, the deformations are elastic (recoverable).
Post-sliding behaviour is characterized by plastic (irrecoverable) deformations. The state of stress
that separates elastic from plastic behaviour is defined by appeal to a yield criterion. For example,
Roberds and Einstein19 used the strength criterion proposed by Patton5 as the yield criterion to
formulate their elastoplastic model. Strain-softening (decrease in shear stress in the plastic stage)
often found in experimental behaviour of joints could not be predicted from the model proposed
by Roberds and Einstein.19 Numerous elastoplastic models exist in the literature (see, e.g.
References 1 and 19—23, to name only some). The elastoplastic approach has a particular appeal
since different load paths and directions could be accommodated. Among the above models, the
one proposed by Plesha1 is particularly attractive due to its simplicity and its ability to capture
certain fundamental aspects of the mechanical behaviour of real joints, such as dilation under
shear and strain softening due to surface asperity degradation.

For predicting the hydraulic behaviour of rock joints, the parallel plate model, developed from
the application of the Navier—Stokes equation for laminar incompressible flow between two
parallel smooth plates, is widely used to calculate the effective permeability k of a fracture (see, e.g.
Reference 4). The permeability of the joint is thus expressed as a function of its effective opening to
fluid flow, called the hydraulic aperture. Since natural fractures are quite dissimilar to ideal
parallel plates, the hydraulic aperture of the fracture is not equal to its mechanical aperture.
Empirical relationships between the mechanical and hydraulic apertures were proposed by
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Barton,24 Elliot et al.,25 Witherspoon et al.26 and Benjelloun.4 The effect of gouge production on
the permeability of the joint, however, is not accounted for in these relationships.

In this paper, we employ the classical plasticity theory based on the methodology proposed by
Plesha1 to formulate the stress—strain relationship for a joint. We show how the parameters of the
above constitutive relationship could be estimated from two widely used and easily measurable
empirical coefficients, the JRC and JCS. In order to derive a relationship between the permeabil-
ity of the joint and its mechanical aperture, we further assume that gouge production is related to
the plastic work. A finite element code FRACON (FRACtured medium CONsolidation) for
simulating the coupled thermal—hydraulic—mechanical behaviour of jointed rock masses had
been developed by the authors. The extended version of the model proposed by Plesha1 is
implemented in the code. Laboratory experiments available in the literature are simulated with
the FRACON code in order to illustrate the trends predicted by the proposed model. The focus of
this paper is restricted to joints without infilling material. Temperature effects on the strength of
the joint are assumed to be negligible. Based on the experimental data obtained by Stesky et al.,27
this seems to be a justifiable assumption, at least for temperatures below 100°C.

ELASTOPLASTIC MODELLING OF THE MECHANICAL BEHAVIOUR OF A JOINT

Patton’s saw-tooth model

The surface asperities of dilatant rock joints are irregular in shape and height. Nevertheless,
their basic mechanical behaviour could be explained by assuming an idealized two-dimensional
saw-tooth pattern as proposed by Patton.5 This idealization is adopted by Plesha1 and several
other researchers (e.g. References 19, 30 and 38). Thus it is useful to review the basic concept of the
model attributed to Patton.5

Consider a joint with perfectly planar contact surfaces (Figure 1), subjected to a normal stress
p and a shear stress q. Sliding will not occur if:

DqD(!p tan/ (1)

where tan/ is the coefficient of friction between the two contact planes and tensile normal stresses
are considered positive. This is the basic Coulomb model for non-dilatant behavior.

The yield criterion required for the theory of plasticity is defined as

F (q, p)"DqD#p tan/ (2)

such that when F"0, sliding results in irrecoverable (plastic) deformation.
We introduce the relative displacement between the two adjoining planes, respectively, u"u

1
,

in the shear direction (direction 1) and v"u
2
, in the normal direction (direction 2). When F"0,

increments of stress will result in increments of plastic deformations. In order to determine the
direction and magnitude of plastic deformation, we define a plastic potential function Q"Q (q, p)
such that

du1
i
"dj

LQ

Lp
i

(3)

where i"1, 2; p
1
"q and p

2
"p, du1

i
are the plastic components of the relative displacement at

the surface of the joint and dj is a scalar multiplier.
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Figure 1. Joint model proposed by Patton5

By imposing the constraint that only shear traction can produce permanent deformation due
to sliding, Michalowski and Mroz28 proposed that, in the case of perfectly plane contact surface.

Q"DqD (4)

In Patton’s model shown in Figure 1, the asperities have regular angles of inclination a with
respect to the horizontal direction. Along a typical asperity inclined at angle a, the relationship
between the ‘macro’ values of the stresses q and p and the ‘local’ or ‘micro’ values of the stresses qa
and pa can be obtained by appeal to local equilibrium at the inclined sliding plane, i.e.

qa"(q cos a#p sin a) cos a (5)

pa"(q cos a!p sin a) cos a (6)

Movement will start along the asperity if according to equation (1)

Dqa D"!pa tan/ (7)
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and thus, the yield criterion for the saw-tooth joint model is

F"Dp sin a#q cos aD#tan / (q cos a!p sin a) (8)

Similarly, the plastic potential function is defined as

Q"Dp sin a#q cos aD (9)

Derivation of the elastoplastic stiffness matrix of the model by Plesha

In the formulation presented by Plesha,1 sliding along the asperities is considered. When the
magnitude of the applied shear stress is such that F, as defined in equation (8), is less than zero,
only elastic deformations in the shear direction take place. Plastic or irrecoverable deformations
in both shear and normal directions take place when F"0. The total increment of relative
displacement at the joint, in this case, is the sum of an elastic and a plastic component; i.e.

du
i
"du%

i
#du1

i
(10)

When plastic displacements occur, the asperities of the joint are damaged, resulting in a decrease
of the asperity angle. Plesha1 assumes that the asperity angle decreases as an exponential function
of the plastic work produced by shear

a"a
0
expA!P

W1

0

cd¼1B (11)

where a
0

is the original asperity angle, c is a degradation coefficient and ¼1 is the plastic work
produced by the shear stress

¼1"P qdu1
1

(12)

where du
1
"du is the relative joint shear displacement.

From the consideration of asperity degradation, strain softening behaviour will now occur at
the joint during plastic deformation, i.e. both the yield surface and the potential surface, as defined
respectively, by equations (8) and (9), will shrink in the q—p stress space. Both F and Q will now be
functions of not only q and p but also of the plastic work defined by equation (12) (i.e.
F"F (q, p, ¼1) and Q"Q(q, p, ¼1 ).

The increment of stress dp
i
is related to the increment of elastic displacement at the joint by

dp
i
"D

ij
du%

j
(13)

where D
ij

is the elastic stiffness matrix (with elements having units of Pa/m in SI units).
Following conventional procedures applicable to the mechanics of elastoplastic solids29 and

interface plasticity,1,30 it can be shown that

dp
i
"D%1

ij
du

j
(14)

where D%1
ij

is the elastoplastic stiffness matrix, given by

D%1
ij
"D

ij
!

1

t!H

LQ

Lp
k

D
ik
D

mj

LF

Lp
m

(15)
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and

j"
1

t!H

LF

Lp
i

D
ij
du

j
(16)

t"

LF

Lp
k

D
km

LQ

Lp
m

(17)

H"

LF

L¼1
q

LQ

Lq
(18)

With explicit expressions of F and Q as given in equations (8) and (9), the elastoplastic stiffness
matrix could be explicitly formulated as a function of the current stress level by performing the
differentiations in equation (18).

Parameters of Plesha’s model

The parameters required for the model proposed by Plesha1 are the elastic stiffness constants,
the degradation factor c, the initial asperity angle a

0
and the friction angle /. Usually, it is

assumed that

D
11
"k

4
D

22
"k

/
D

12
"D

21
"0

where k
4
and k

/
are, respectively, the elastic shear and normal stiffness.

Plesha1 estimated the parameters of the model by calibrating the results of experimental data
derived from shear test under constant normal stress. We propose here that these parameters can
also be estimated from Barton’s empirical coefficients JRC and JCS. First, we note that the
surface asperities in real joints do not follow a regular pattern as idealized by Patton5 and Plesha1
(Figure 2). Several orders of irregularities exist, and each order will be activated depending on the
size of the sample and the magnitude of the normal stress. For high normal stresses, the
higher-order asperities will be subjected to through-shear and sliding will occur only along the
lower-order asperities (with lower effective angle a). Similarly, for larger joint samples, the
lower-order asperities will be activated. It is clear from the above discussion that the effective
asperity angle for real joints will depend on the size of the joint, the magnitude of the normal
stress, and the strength of the joint wall material. These factors could be taken into account if one
adopts the Barton—Bandis8,9 empirical expression for the peak shear envelope

Dq D#p tanAJRC Log
10A

JCS

p B#/B"0 (19)

Noting that equation (8) can be rewritten as

Dq D#p tan(/#a)"0 when p sin a#q cos a'0

Dq D#p tan(/!a)"0 when p sin a#q cos a(0
(20)

and by comparing equations (19) and (20), one can write

a"JRC Log
10A

JCS

p B (21)
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Figure 2. Schematic illustration of the many orders of asperities for real joints

The coefficients JRC (dimensionless) and JCS (MPa) and the friction angle / can be easily
estimated from two tests8,9: the tilt test and the Schmidt hammer test. To determine /, an
artificial clean joint is prepared by diamond-sawing of a rock specimen containing the real joint,
and sandblasting the surfaces. The jointed rock specimen is then tilted until sliding occurs along
the clear joint. The tilt angle measured will be equal to /

"
. The angle /

"
reflects pure friction

resistance of clean (unweathered) planar surfaces. The friction angle / for the real joint also
reflects pure frictional behaviour. Nevertheless, the real joint contains gouge material originating
from the failure of surface asperities. From the results of 135 shear tests on natural joints, Barton
and Choubey8 have proposed the following empirical relationship between / and /

"
, i.e.

/"(/
"
!20)#20(r/R) (22)

where, R and r are rebound value (m) from the Schmidt hammer test performed, respectively, on
a clean, dry unweathered surface and on a wet joint surface. JCS, the joint wall compressive
strength is obtained from a simple empirical relation with the Schmidt rebound value

Log
10

JCS"0·00088oR#1·01 (23)

where JCS is in MPa, o is the unit weight of the dry rock in kN/m3.
The value of JRC, on the other hand, is determined from the tilt test, by using equation (19)

JRC"(b!/r)/log(JCS/p
0
) (24)

where b is the tilt angle when sliding occurs and p
0

is the self-weight induced normal stress acting
on the joint, at the instant of sliding.

The parameters JRC and JCS are both scale-dependent. Bandis et al.9 proposed the following
empirical relations:

JRC"JRC
0A

¸

¸
0
B
~0>02 JRC0

(25)

JCS"JCS
0A

¸

¸
0
B
~0>03 JRC0

(26)

where JRC
0

and JCS
0

are laboratory-scale values, for joints with normal size ¸
0
"100 mm and

JRC and JCS are values for larger samples, of size ¸.
Bandis et al.9 also experimentally observed that u

1%!,
, the shear displacement corresponding to

the peak shear stress q
1%!,

, under constant normal stress conditions, can be considered to be
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independent of the normal stress but is scale dependent, i.e.

u
1%!,

"

¸

500 A
JRC

¸ B
0>33

(27)

Assuming linear elastic response of the joint up to the peak shear stress, we can obtain, from
equations (19) and (27), the elastic shear stiffness k

4
as follows:

k
4
"

Dq
1%!,

D
u
1%!,

"

p tan(JRCLog
10

(JCS/p)#/)

(¸/500)/(JRC/¸)0>33
(28)

The remaining parameter required for the model proposed by Plesha1 is the normal stiffness k
/
.

This parameter can be determined by performing compression tests on jointed rock specimens.
The most comprehensive experimental investigations on the normal closure behaviour of joints
under applied normal stresses are due to Bandis et al.9 In these studies, 64 pairs of specimens, with
a wide range or rock types and surface roughness were tested. Each pair of specimens consists of
one jointed specimen and one unjointed specimen. Normal compression tests were performed on
both specimens. The deformation of the unjointed specimen was subtracted from the deformation
of the jointed specimen in order to obtain the net deformation properties of the joint. Typically,
several cycles of loading—unloading were performed. Strong hysteresis is observed for the first few
cycles and this hysteresis progressively disappears with the number of cycles. The third or fourth
cycle is generally considered to be representative of in situ conditions. The normal stress-closure
curves have the shape of steep hyperbolae. Several authors9,10 adopt hyperbolic relations to
describe these experimental curves. For example, Bandis et al.9 proposed the following hyperbolic
relationship:

p"k
/*

v

1!v/v
.

(29)

where k
/*

is the normal stiffness at zero normal stress, and v
.

is the maximum closure of the joint.
The normal stiffness at any level of normal stress is then

k
/
"

dp
dv

"k
/*A1!

p
v
.
k
/*
#pB

~2
(30)

The parameters k
/*

and v
.

that enter into equation (30) are best determined by performing
compression tests on jointed rock samples.

HYDRAULIC BEHAVIOUR OF A JOINT

The parallel plate model, developed by the application of the Navier—Stokes equation for laminar
incompressible flow between two parallel smooth plates, is usually used to calculate the permeab-
ility k of the fracture (see, e.g. Reference 4), i.e.

k"e2
)
/12 (31)

where e
)

is the hydraulic aperture of the joint.
Since natural fractures are quite dissimilar to ideal parallel plates, the hydraulic aperture of the

fracture is not equal to its mechanical aperture. Barton24 proposed the following empirical
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relationship to estimate the hydraulic aperture from the mechanical aperture

e
)
"

e2
.

JRC2>5
(32)

where e
)

is in lm, e
.

(also in lm) is the mechanical aperture of the joint.
Elliot et al.25 and Witherspoon et al.26 proposed a linear relationship between the hydraulic

and mechanical apertures

e
)
"e

)0
#f *e

.
(33)

where e
)0

is the initial hydraulic aperture, *e
.

is the variation in mechanical aperture due to the
combined effects of compression and shear as discussed in the above section, and f is a propor-
tionality factor. Benjelloun4 experimentally confirmed the validity of equation (33) and found that
f varies between 0·5 to 1. This factor comes from the roughness of the joint surfaces. A factor
f"1 applies to the limiting ideal case of parallel smooth plates; this situation prevails only when
the joint is relatively open, with apertures of the order of mm. For most other cases, f(1. The
geometry of the flow path has an important influence on f. For rectilinear laminar flow, f is
generally close to 0·8 and for radial flow, f close to 0·5 (see Reference 4).

In this paper, we adopt the linear relationship between the hydraulic and mechanical apertures
given in equation (33). During the shearing of a joint, dilation occurs as discussed in the previous
section. This results in an increase of the mechanical aperture *e

.
. Equations (31) and (33)

indicate that the permeability of the joint should increase with joint shear. Bandis et al.2
experimentally observed such an increase in permeability. Nevertheless, at later stages of shear-
ing, the permeability of the joint decreases. This observation is attributed to the effect of gouge
production due to asperity breakage, that could not be explained by the existing models, similar
to those defined in equations (32) and (33). In order to simulate the effect of gouge production on
the joint permeability, we assume that this effect is related to the total plastic work due to shear.
Adopting the form of the relation proposed by Plesha1 [equation (11)], we assume that the factor
f in equation (33) is related to the plastic work produced by the shear forces according to the
following equation:

f"f
0
expA!P

W1

0

c
&
d¼1B (34)

where c
&
is a gouge production factor. It is very likely that the additional parameters f

0
and c

&
introduced in this section can be empirically related to JRC, JCS and p. A detailed experimental
program will be needed in order to arrive at specific correlations.

SIMULATION OF LABORATORY EXPERIMENTS

The above joint model was implemented in the finite element code FRACON.31,32 The FRA-
CON code is a finite element code capable of simulating coupled thermal—hydrological—mechan-
ical processes in fractured media. The governing equations are derived from the classical theory of
consolidation developed by Biot (see e.g. Reference 39). Eight-noded isoparametric elements are
used to simulate intact blocks of the geological medium, while special six-noded elements are used
to simulate discontinuities such as joint. The FRACON code will now be used to simulate typical
laboratory experiments on rock joints.
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Shear under constant normal stress

Most laboratory experiments on joints are performed under constant normal stress conditions.
These conditions apply mainly to geomechanical problems associated with rock slope stability,
where the focus is on the analysis of the sliding movement of rock blocks near the surface of
a slope. The constant normal stresses across the joints between these blocks is due to the weight of
the blocks themselves.

We show here the simulation of experiments involving shear under constant normal stress
performed by Skinas et al.18 The tests were conducted on 15 cm]10 cm model joints. These
joints were cast from natural joint surfaces, using a brittle, artificial material consisting of a sand-
barytes-cement mixture. Skinas et al.18 presented experimental results for joints with the follow-
ing properties:

JRC"9, 12, 15 and 18 JCS"28 MPa /"37°

We performed the simulation with the FRACON code of the tests performed on the joint with
JRC"9. The input data required for the FRACON code are:

JRC"9 JCS"28 MPa /"37°

Three levels of normal stress are considered: 1, 2 and 5 MPa. In order to obtain a good agreement
between the calculated and experimental results (for shear stress versus shear displacement)
different values of the asperity degradation coefficient c are assumed for different normal stress
values: 1·1]1~4 m/N (p"1 MPa), 0·4]10~4 m/N (p"2 MPa), 0·25]10~4 m/N (p"5 MPa).
Figure 3 shows that the asperity degradation coefficient decreases with increasing compressive
normal stress. This observation is consistent with experimental results obtained by Benjelloun.4
However, Hutson and Dowding34 and Qiu et al.35 observed the reverse trend.

The finite element model consists of a single joint element (Figure 4). Constant normal stresses
are applied on the element, and shear displacements are imposed at the appropriate nodes.

Figure 3. Variation of asperity degradation coefficient with normal stress
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Figure 4. Finite element model for joint shear under constant normal stress condition

Figure 5. Shear under constant normal-stress—shear stress vs. shear displacement

The results for shear stress versus shear displacement are shown in Figure 5. A close fit was
obtained between the results derived from the numerical modelling and the experimental results.
Figure 5 shows that the shear strength of the joint increases with the normal stress level, at the
same time the joint becomes more brittle (i.e. strain softening becomes more pronounced). The
displacement corresponding to the peak shear stress does not depend on normal stress level, but
only on the size of the joint sample [cf. equation (31)]. These observations are also consistent with
experimental results obtained by other researchers (e.g. References 4, 8, 9).

The joint dilation due to shear is shown in Figure 6. For a value of the normal stress of 1 MPa,
the FRACON code overpredicts dilation by approximately 15 per cent when compared to the
experimental results. This might be due to an inherent feature of the implementation of the model
by Plesha1 into the FRACON code. This model does not allow the joint surfaces to approach one
another as the asperities are degraded. Plesha33 included this damage deformation in a recent
version of his model. The FRACON code nevertheless correctly predicts decreasing dilation with
increasing normal stress, as found experimentally by numerous researchers (e.g. References 4, 8,
9). No experimental data were given by Skinas et al.18 for dilation at normal stress values of
2 MPa and 5 MPa.

Figures 7—9 illustrate the effects of degradation on the joint behaviour, for a typical case
(normal stress of 1 MPa). From Figure 7, it may be observed that the joint would behave in an
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Figure 6. Shear behaviour under constant normal stress conditions—joint dilation

Figure 7. Effects of degradation on shear stress

Figure 8. Effects of degradation on dilation
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Figure 9. Effects of degradation on the asperity angle

elastic—perfectly plastic fashion if no degradation takes place (c"0). For this latter case, Figure 8
shows that dilation of the joint will take place indefinitely at a constant rate, while this rate would
decrease and tend to zero if degradation is considered. Figure 9 shows that due to degradation
(case when c"1·1]10~4 m/N), the asperity angle gradually tends to zero.

Shear under constant stiffness

Skinas et al.18 also presented results of shear tests performed under constant external stiffness
conditions. The external stiffness variations are achieved by incorporating springs of different
stiffnesses which restrain normal movement of the joint samples. The joints are then sheared by
the application of a force in the shear (horizontal) direction. These test conditions correspond to
the situation that can be encountered in rock joints located at some depth within a rock mass. The
tendency for dilation of the joints will be restricted by the stiffness of the surrounding rock mass.
We perform simulation of these tests under external spring stiffnesses of 1·03, 3·33 and
13·33 GPa/m and an initial normal stress of 1 MPa. The joint sample has properties similar to
those described in the previous section. In particular, the degradation coefficient is assumed to
vary according to a power law of the normal stress as shown in Figure 3. The coefficients of this
power function are estimated by the curve of best fit derived from the discrete calibrated values
obtained from the simulation of the shear tests under constant normal stress. The normal stiffness
of the joint, which does not play a role in the previous case, has to be taken into account under the
current conditions. In the absence of experimental data, we have assumed that k

/
is given by

equation (30), with k
/*
"2]109 Pa/m and v

.
"8]10~4 m.

The finite element model used in the FRACON code is shown in Figure 10. The stiffness of the
springs is simulated by an eight-noded element which has elastic properties and height H equiva-
lent to the corresponding spring stiffness K

/
:

H"1 m, E"1·033 GPa (for K
/
"1·033 GPa/m),

3·33 GPa (K
/
"3·33 GPa/m), 1·33 GPa (K

/
"13·33 GPa/m), l"0
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Figure 10. Finite element model for shear under a constant normal stiffness condition

Shear stress and normal stress are shown in Figure 11. Reasonable agreement was obtained
between the results derived from the FRACON code and the experimental data. Both sets of
results show that the stiffness of the external springs, because of its restraining influence on the
dilation, results in a strengthening of the joint. The pre-yield behaviour of the joints is essentially
the same for all values of external stiffness. The post-yield behaviour shows a completely different
picture. For an external stiffness of zero (which can be interpreted as a constant normal stress
condition), the shear stress decreases due to asperity degradation. This is the strain softening
-behaviour discussed in the previous section. When the external stiffness increases, strain harden-
ing of the joint occurs. Both the shear and normal stress increase when shearing continues beyond
the yield point, as shown in Figure 11.

Effects of shear on joint permeability

Bandis et al.2 presented results of hydromechanical experiments performed on rock joints. The
experimental setup is a biaxial cell (Figure 12). The joint sample is first compressed without shear
by increasing p

1
and p

2
in equal increments. The joint is then sheared by maintaining one load

constant and increasing the other. At specific values of shear displacement, the permeability of the
joint was determined by injecting water through the joint and measuring the flow rate. Bandis
et al.2 record the evolution of the joint permeability with increasing shear displacement (Fig-
ure 13). Although both the normal and shear stresses vary during the experiment, Bandis et al.2
assume constant normal stress conditions to simulate the evolution of joint permeability. The
assumed constant normal stress is the average value of the actual normal stress. In this paper, we
also computationally simulate the experiment by assuming constant normal stress conditions.
The joint material is gneiss for which Bandis et al.2 give the following properties:

JRC"7 JCS"110 MPa joint length: ¸"0·15 m average normal stress: 1·5 MPa

The finite element model used in the FRACON simulation is similar to that shown in Figure 4.
The joint properties given above are used as input to the simulation. In addition, an asperity
degradation factor c"1·5]10~4 m/N was assumed. When sheared, the joint dilates. The
dilation calculated by FRACON is shown in Figure 14. This dilation is accompanied initially by
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Figure 11. Joint behaviour under constant normal stiffness conditions

a corresponding increase in the permeability of the joint (Figure 13). However, this permeability
later decreases due to gouge production by joint asperity breakage. Bandis et al.2 could not
simulate this permeability decrease (Figure 13), using Barton’s24 model [cf. equation (32)]. The
FRACON code simulation, with a gouge production factor c

&
"0, produces results similar to

those presented by Bandis et al.2. Assuming c
&
"0·001 m/N, the trends in the permeability

variations predicted by the FRACON code agree relatively well with the experimental results.
Most importantly, the tendency for the reduction in the permeability of the joint with increasing
shear is correctly predicted.

Scale effects

Bandis et al.9 studied scale effects on joints by making identical pairs of replicas of natural joints,
using a brittle model material. These artificial joint samples were tested full-size or were divided

MECHANICAL AND HYDRAULIC BEHAVIOUR OF A ROCK JOINT 43

( 1998 by John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech., Vol. 22, 29—48 (1998)



Figure 12. Schematics of the hydromechanical experiments performed by Bandis et al.2 and Makurat et al.3

Figure 13. Hydromechanical experiments—effects of shear on joint permeability

into smaller samples for testing separately. In these experiments shear tests were performed under
constant normal stress conditions.

In this study, the scale effects in the tests conducted by Bandis et al.9 are simulated by using the
properties given in their studies:

¸
0
"6 cm JRC

0
"16·7 JCS

0
"2 MPa normal stress"24·5 kPa
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Figure 14. Hydromechanical experiments—shear dilation calculated via the FRACON code

Figure 15. Scale effects on joint shear

Scale effects are simulated with the FRACON code by using the empirical equations (25) and (26).
The finite element mesh used in the study is similar to the one shown in Figure 4.

Figure 15 shows that the FRACON code correctly predicts that with increasing size, strain
softening is less pronounced, i.e. the joint behaviour becomes less brittle. With increasing size, the
shear stiffness prior to failure decreases and the displacement required to reach the peak shear
stress increases. The shear strength of the joint is somewhat underestimated by the numerical
modelling, especially for the larger specimens.
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Figure 16. Scale effects on joint dilation

Figure 16 shows scale effects on joint dilation. The FRACON code correctly predicts a de-
crease in shear dilation with larger samples. The experimental data shows that dilation starts
before the peak shear stress is attained. As can be seen in Figure 16, the model by Plesha1
incorporated in the FRACON code assumes linear elastic behaviour in the pre-peak phase. Thus,
dilation is predicted to start only after the attainment of the peak shear stress. As previously
discussed, because no damage deformation is incorporated in the model, with the smaller joint
samples, the FRACON code overpredicts the dilation value.

CONCLUSIONS

A joint model was implemented in a finite element code (FRACON) to simulate coupled
thermal—hydrological—mechanical processes in fractured geological media. The stress—strain
relationship of the joint was formulated using the classical incremental theory of plasticity
applicable to non-linear interfaces. The geometry of the joint surfaces is idealized by a series of
regular asperities with constant angle with respect to the shear direction. During shearing, the
joint dilates as a result of ride up at the asperities. Also, the shearing process can result in
breakage of the asperities, resulting in the decrease of the dilation rate and strain softening of the
joint. Following the work by Plesha1 it is assumed that asperity damage can be related to the
plastic work of the shear stress and as a consequence the asperity angle is assumed to be
a decaying exponential function of this plastic work of the shear stress at the joint. We have
extended this concept to describe the hydraulic behaviour of the joint in the following manner.
Dilation of a joint during shear leads to an increase of its permeability. On the other hand, gouge
produced from breakage of the asperities would block the flow path and tends to decrease the
joint permeability. The results of experimental work available in the literature indicate that
shearing of the joint leads to an initial increase followed by a decrease of the joint permeability.
Existing models do not allow for the prediction of this behaviour. In the present work, we assume
that the increase in the hydraulic aperture is proportional to the increase in the mechanical
aperture. The results of several experimental investigations in the literature have confirmed this
assumption. These investigations also showed that the factor of proportionality f varies between
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0·5 and 1·0 depending on the geometry of the flow direction. We assumed that gouge production
is due to the plastic work from the shear stress, and thus the factor f is assumed to be a decaying
exponential function of the plastic work.

The parameters of the proposed joint model could be back-calculated from shear tests under
constant normal stress conditions with permeability measurement and normal closure tests.
Alternatively, most of these parameters could be estimated from the empirical coefficients JRC
and JCS. Using the latter approach, the effects of the normal stress on dilation and scale effects
become integral aspects of the proposed model. The two parameters which could not be
expressed as empirical functions of JRC and JCS at the present time are the asperity degradation
factor, c, and the gouge production factor, c

&
. In order to achieve such correlations, it is necessary

to conduct an extensive series of experiments involving both natural and artificial joints.
The proposed joint model has been implemented in a finite element code (FRACON). The code

was used to simulate several experiments: shear tests under constant normal stress and under
constant normal stiffness conditions performed by Skinas et al.8 and coupled shear-flow experi-
ments performed by Bandis et al.2 The model performs quite statisfactorily in simulating the
trends observed in the above experiments. Scale effects, as evidenced from the experimental
results of Bandis et al.,9 are also correctly predicted by the proposed model. It is recognized that
more sophisticated models, based on the classical theory of plasticity exist in the scientific
literature. For example, the models proposed by Desai and Fishman36 and Desai and Ma37 allow
for more accurate predictions of a wide range of laoratory tests, under a variety of test conditions.
These models allow for an expanding yield function F in the stress space, include hardening and
softening behaviours, and correctly predict the occurence of shear dilation before the peak stress
state is attained. Nevertheless, the number of constants needed for these models becomes much
more important. The model proposed in this paper on the other hand requires only a minimal
number of parameters (JRC and JCS) which are easily measured in practice.
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