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Introduction 

Analysis of interaction between cracks and inclusions have important applications to 
the study of micro-mechanics of multiphase materials and to the examination of 
anchoring devices embedded in geological media. In multiphase composite materials 
with flat disc shaped inclusions, such interactions can occur during thermally induced 
fracture and damage evolution at the boundaries of the reinforcing particle. Examples of 
problems which investigate crack-inclusion interaction include the studies by Taya and 
Mura (1981), Tsai (1984), Selvadurai and Singh (1984, 1986), Tan and Selvadurai 
(1986), Selvadurai et al. (1989a,b; 1990; 1991) and Selvadurai (1985, 1989a,b). These 
investigations focus on the category of problems where the cracks either extend beyond 
the boundary of a disc shaped inclusion or delaminate at the plane interface. The 
modelling is applicable to situations where thermal loadings and the thermo-elastic 
mis-match between the matrix and the inclusion can induce either interracial delamina- 
tion or matrix cracking. Other situations can include debonding of the disc inclusion 
over an entire plane interface. Keer (1975) examined the problem of the axisymmetric 
loading of a penny-shaped crack by a rigid disc shaped inclusion which is bonded to one 
of its plane faces. The axial stiffness of the rigid inclusion is evaluated in exact closed 
form and the stresses at the region of contact are evaluated in integral form. The 
solution by Keer (1975) is an elegant exposition of the application of Hilbert transform 
techniques to the solution o f  this class of problem. Consequently the formulation 
accounts for the oscillatory form of the stress singularity at the tip of the crack which is 
located at the bonded rigid boundary. 

Disc inclusion problems also have useful applications in the field of geomechanics 
where the loaded inclusion models the behaviour of the rigid anchoring device embedded 
in a geological medium. The solutions to the directly loaded rigid inclusion problem can 
be used to evaluate the axial stiffness of circular plate anchors predominantly in the elastic 
range (Selvadurai, 1976, 1989a,b; Rowe and Booker, 1979; Selvadurai et al., 1991). 

This paper examines the axisymmetric problem of the complete indentation of the 
single face of a penny-shaped crack by a rigid disc inclusion. The contact between the 
inclusion and the crack is assumed to be smooth. Consequently, the analysis provides an 
estimate for the stiffness of the inclusion for the limiting case of frictionless contact (as 
opposed to full adhesive contact) between the inclusion and the elastic medium. The 
single integral equation governing the crack-inclusion interaction problem is numerically 
solved to develop results for the axial stiffness of the inclusion and the mixed mode stress 
intensity factors at the tip of the penny-shaped crack. 
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Fundamental equations 

Owing to the axial symmetry of the crack-inclusion interaction problem it is 
convenient to employ the representation based on the strain potential approach of  Love 
(1927). It can be shown that the solution to the displacement equations of  equilibrium 
can be expressed in terms of  a single function. In the application of the strain potential 
function to the crack-inclusion interaction problem (Fig. 1) it is convenient to adopt 
strain potential functions q0(O(r, z) applicable to regions z e (0, oo) and z e ( 0 , - o  c) 
which are designated by i = 1 and i = 2 respectively. In the absence of  body forces, 
functions qo(~ z) satisfy the biharmonic equation 

V2V2qo(O(r, z) = 0 (1) 

where 

0 2 1 (~ (~2 
V2 = ~ r  2 -}- r ~r  -}- ~z 2 (2) 

is the axisymmetric form of Laplaee's operator in cylindrical polar coordinates. The 
strain potential functions applicable to the regions 1 and 2 can be obtained by a Hankel 
transform development of  (1). The relevant results can be expressed in the forms 
(Sneddon, 1977) 

(p(1)(r, z) = r + zB(r e -r162 d~ (3) 

qr z) = ~[C(~) + ~D(~)] er d~ (4) 

where A(~), B(~), etc. are arbitrary functions. T h e  relevant integral expressions for the 
displacements and stresses in the two regions (z-> 0 and z-< 0) can be obtained by 
making use of  the results 
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Figure l 
The indentation of the penny-shaped crack by a disc inclusion. 



168 A.P .S .  Selvadurai ZAMP 

and 

a(i)(r, z) = (2 - v)V2q~ (e) - Oz ~ j 

o~9(r,~)=~ (l-v)V~m <') az ~ ] 

respectively. 

(7) 

(8) 

The crack-inclusion interaction problem 

We now focus a t tent ion  on the p rob lem of  the c o m p l e t e  indenta t ion  o f  a single face 
of  a penny-shaped crack o f  radius ' a '  by a rigid smooth  disc inclusion also o f  radius ' a '  
(Fig. 1). It is assumed that  axisymmetr ic  force P acting on the inclusion induces a 
displacement  A in the z-direct ion.  The mixed boundary  condi t ions  associated with the 
p rob lem are as follows: 

u(zl)(r, 0) = A; 0 -< r -< a (9) 

a~)(r,  0) = 0; 0 < r < a  (10) 

a~2)(r, 0) = 0; 0 < r < a  (11) 

a(=2](r, 0) = 0; 0 < r < a (12) 

u~l)(r, O) = u~2)(r, 0); a < r < oo (13) 

u~U(r, O) = u~2)(r, 0); a -< r < oe (14) 

~r2)(r, 0) = ~ ) ( r ,  0);  a -< r < oo (15) 

~7~U(r, 0) = a ~ ( r ,  0); a -< r < oo. (16) 

Consider ing the strain potentials  (3) and (4) and the relat ionships (5) to (8), the mixed 
boundary  condi t ions  can be expressed in terms of  the funct ions A(~), B(~), etc. in the 
fol lowing forms: 

o ~ ~[~A(~) + 2(1 - 2v)B(~)]Jo(~r) d~ = - 2 G A ;  0 -< r < a (17) 

o ~- ~2[~A(~) - 2vB(~)]J~ (~r) d~ = 0; 0 < r < a (18) 

o ~" ~[r - C(r + 2(1 - 2v){B(r + D(~)}]Jo(~r) d~ = 0; a < r < oo (19) 

o ~ ~ [ - ~ { A ( ~ )  + C(~)} + {B(~) - D(~)}]Jl(~r) d~ = 0; a -< r < oo (20) 

o ~~ ~2[~{A(~) + C(~)} + (1 - 2v) {B(~) - D(~)}]Jo(~r) d~ = 0; a < r < co (21) 

f0 ~'~ r162 - C(~)} - 2v{B(~) + D(r162 d~ = 0; a < r < oo. (22) 
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Avoiding details of  the procedures, which can be found in the references cited previ- 
ously, it can be shown that the set of  integral equations (17) to (22) can be reduced to 
the forms 

fl(S)+2 d f[ rdr fo~ f2(u) 
dss is 2 _ r 211/2 [u 2 - r 2] 1/2 

AG d ~' rdr 
- (f~-v)clsJo [s2-r21'/2 

(1-2v)  d fi~ rdr 
+-2(1----~ds Q(~)Jo(ir)d~; 0 < s < a  (23) 

2 d ~ ~~ rdr fa fi(s) ds 
f 2 ( u ) - ~ d u u  L [r2_,,211/2 / $211/2 ~ J JO [ r 2 -  

= duu [r 2 - 7 2 ]  1/2 P(i)Jo({r) d{; a < u < o9 (24) 

where fl(~,) and f2({) are defined by 

2[fo f] ] i{IA(i)  + (1 - 2v)B(i)] = 7 f~ ({) cos(is) ds + f2(i)  sin(is) ds (25) 

and 

Q(i) = ~[2vD(i) + iC(~)] (26) 

P({) = i[(1 - 2v)D({) - iC({)]. (27) 

The integral equations (23) and (24) can be further reduced to a single integral equation 
of the form 

l f~Ta(s)K,(r,s)ds ( 1 -  2v)2 f: 
V~(r) + ~ T j o  (r2 s2) ~a(~ 2-~2 r~(v) dv 

-1  
= 2 ( 1 _ v 2  ) ,  0 < r < a  (28) 

where 

Kl(r ,s )  [ r log~ a - r  a - s  

and 

fl(r) 
T~(r)- EA " (30) 

The solution of the integral equation (28) formally completes the solution of the mixed 
boundary value problem related to the smooth complete indentation of the penny- 
shaped crack by a rigid disc inclusion, defined by (9)-(16) .  

Load-displacement relationship for the inclusion 

The axial stress distribution at the inclusion-elastic medium interface can be used 
to evaluate the load-displacement relationship for the inclusion. From (3) and (7) 
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we have 

a(~)(r, 0) = ~2[~A(r + (1 - 2v)B(~)]So(~r ) d~. (31) 

The load-displacement relationship is obtained by considering the equilibrium equation 
for the inclusion. The total force P in the inclusion is given by j'o 

P = 27r a(~2(r, O) dr (32) 
o 

which can be expressed in the form 

P f~  E-A = 4 T~(r) dr. (33) 
0 

The stress intensity factors 

The indentation of the penny-shaped crack induces both Mode I and Mode II stress 
intensity factors at the crack tip. The stress intensity factors are defined by the 
relationships 

K] = lim {2(r - a)}l/2az.(r, 0 )  (34) 
r ~ a +  

K]I = lim {2(r - a)}l/Zar~(r, 0). (35) 
r ~ a +  

Making use of  the results developed in the previous sections it can be shown that 

K] 2 7"1 (a) 
EA ~ x/~ (36) 

g~, 1 ( 1 - 2v) / '"  
EA 2~z(1 ~y~3/2 Jo T~(v) dr. (37) 

Numerical results 

The integral equation (28) governing the indentation of the penny-shaped crack can 
be solved by employing a numerical procedure. The interval (0, a) is divided into N 
segments with r/ (i = 1 to N + 1) such that r~ ---- (i - 1)h and h = a/N. The equivalent 
matrix representation of (28) can be written as 

[Au]{Tl(rj) } = {B~} 

withi ,  j = l , 2 , . . . , N ;  

(38) 

B i = -1 /2 (1  - v  2) and the coefficients Aij are given by 

f h  K(ri, r#) (1 - 2v) 2 h 
4 )  lfi j' ,2 ,  

= 1 h A~j [)_5[~riloge a _ r  i rih 1 ( 1 - 2 v )  n (39) IV  ,.I if i = j .  

Upon solution of (38), the load-displacement relationship for the indenting inclusion 
and the stress intensity factors at the tip of  the penny-shaped crack can be evaluated by 
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Figure 2 
The stiffness of the indenting inclusion. 
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making use of the results (33), (36) and (37). The accuracy of  the numerical scheme is 
verified by comparison with known exact solutions for contact problems. 

The results for the axial stiffness of the indenting circular inclusion are presented'in 
Fig. 2. The normalized results for P/P* (where P* = 2EAa/(I - v2)) are compared with 
equivalent results derived by Keer (1975) for the problem of the loading of  a penny- 
shaped crack by an inclusion fully bonded to one of  the crack surfaces. Keer's result is 
given by 

4~GAa F14 {log,,(3 - 4v)}27 
P -  ( 3 -  4v) L na ]" (40) 

Figure 3 
The mode I stress intensity factor at the crack tip. 
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Figure 4 
The mode II stress intensity factor at the crack tip. 
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The comparison of  results indicates that adhesion at the inclusion-elastic medium has only 
a minor  effect on the elastic stiffness. Also when v = 1/2, the solution for the adhesive 
contact problem converges to the result developed in this paper  for the smooth contact. 
The accuracy of  the numerical scheme is also verified for this part icular limit. It  is found 
that for N = 10, the error in the two sets of  numerical results is approximately 1%. 

The numerical results derived for the stress intensity factors K] and K~ are shown in 
Figs. 3 and 4. The results indicate that the Mode I stress intensity factor is relatively 
insensitive to the Poisson's ratio of  the elastic material. In contrast, the Mode II stress 
intensity factor is part icularly sensitive to the Poisson's ratio. In the instance when 
v = 1/2, the shear stresses a~) ;  a ~  ) on z = 0 (r > a) vanish with the result that KTz = 0. 

Concluding remarks 

The classical elasticity problem related to the complete indentation of  a single face 
of a penny-shaped crack by a rigid smooth inclusion is examined. It is shown that the 
interaction problem can be reduced to the solution of  a single Fredholm type integral 
equation of the second kind. This equation can be solved in a numerical fashion to 
generate results of engineering interest. These results are compared with equivalent results 
available in the literature for the adhesive indentation of  a penny-shaped crack. It is 
shown that when v = 1/2, solutions for both the smooth contact and adhesive contact  
problems reduce to the same result. The dominant  influences of  interface conditions occur 
only in the estimate for the Mode II stress intensity factor evaluated for v = 0. 
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Abstract 

The present paper examines the problem of the complete indentation of the surface of a penny- 
shaped crack by a smooth rigid disc inclusion. The integral equation governing the problem is solved 
numerically to evaluate the axial stiffness of the rigid inclusion and the stress intensity factors at the tip 
of the penny-shaped crack. 
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