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ABSTRACT The classical problem concerning the axisymmetric flexure of an
infinite elastic plate resting on a homogeneous isotropic elastic
halfspace is extended to include the effects of a Mindlin force,
namely, a concentrated force which acts at an interior point of
the halfspace along the axis of symmetry. Formal integral
relationships and numerical results are presented for the
deflection of the infinite plate and for contact stress at the
interface for the particular case where the plate is subjected
to a uniform circular load.

1. INTRODUCTION

The present paper is concerned with the flexural interaction of a thin
elastic plate of infinite extent with a homogeneous isotropic elastic half-
space under the combined action of axisymmetric loads applied at the surface
of the plate and in the interior of the elastic halfspace. In particular,
the internal loading of the halfspace is restricted to Mindlin's (1]
problem of a concentrated force which acts at a point in the interior of an
elastic halfspace with a traction free boundary.

As in previous investigations of the infinite plate problem, (see e.g.
Hetenyi [2] Sneddon et al. [3]) the contact at the infinite plate-elastic
medium boundary is assumed to be frictionless. Accordingly the plate'ls
free to deform horizontally relative to the elastic halfspace. If bonded
contact conditions are assumed at the interface (i.e. continuity of
horizontal displacements) then the flexural behaviour of the plate should
also take into consideration the effects of membrane stresses induced by
frictional forces introduced at the interface. It is further assumed that
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there is no loss of contact at the plate-elastic medium interface in the
vertical direction due to the action of the external and internal load
systems. Such an assumption would require the interface to be capable of
sustaining tensile normal tractions. From a physical point of view this
assumption would seem to be inconsistent with conditions associated with a
smooth interface. However, in relation to possible applications in the area

~ of structural foundation problems it could be assumed that the compressive

stresses induced by the self weight of the plate are sufficiently large to
prevent any loss of contact at the interface.

Using Hankel transform techniques outlined by Sneddon [4], formal
integral expressions are developed for the plate deflection, contact stress,
etc., for the case where the plate is subjected to an arbitrary axisymmetric
external load. Numerical results are given for the particular instance
where the external load corresponds to a uniform circular load.

The basic problem discussed here is of interest in connection with the
'prestressing' of structural foundations against uplift loads; -the interior
force approximately represents the influence of the anchor region. These
solutions can be further extended to investigate the influence of
distributed axisymmetric internal loadings.
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2. AXISYMMETRIC LOADING OF THE ELASTIC HALFSPACE

Firstly, the problem of a homogeneous isotropic elastic halfspace
which is subjected to an axisymmetric normal traction f£(r) on its plane
boundary and a concentrated force P at a distance c from the origin of
coordinates is :I.nyestigated. It is assumed that the direction of the force
P is in the negative z-direction (Fig. 1).

It can be shown that the transformed value of the surface displacement
of the halfspace in the z-direction, u:(r, 0) (= vI(r)) is related to the
transformed value of the applied normal stress f£(r) in the following manner
a(l-v)) '
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;‘; () = Ead13) ()

where a is a typical length parameter of the problem and Gs and v g are
respectively the linear elastic shear modulus and Poisson's ratio of the
elastic material. In (1), ;g (E) denotes the zeroth-order Hankel transforms
of the surface displacement defined as
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-0
w(E) = Ho(wI(r) i E} (2)
vhere the operator Ho is given by the equation

Hyle(r) 5 €) = .r":ﬂ:)ao(er/a) ar . (3)
0

Similarly, fo (€) denotes the zeroth-~order Hankel transform of the normal

stress £(r). The corresponding Hankel inversion theorem is

) = 37 1603 (Ex/e) g . @
(o]

The problem of a concentrated force acting at a point in the interior of an
isotropic elastic halfspace with a traction free boundary was first solved
by Mindlin [1] and later by Dean et al. [S5]. By using a combination of
solutions corresponding to Kelvin's problem for a concentrated force acting
at the interior of an infinite space and appropriate distribution of nuclei
of strain, Mindlin was able to obtain an exact closed form solution to the
problem of the halfspace loaded internally by a concentrated force which
acts in a direction normal to the traction free plane boundary. The
surface displacement u:I (x, 0) (-wn(r)) of the halfspace due to the action
of the internal load P, is given by
P(l-v)
471G

2
[ 2 + € 1. (5)
2+ )% (- v,) (r2+ c2)

P
The zeroth order Hankel transform of the surface displacement (5) can be

written as (see e.g. Erdelyi et al. [6])

wpp(c) =

-0 a(l- v)) _,
A ki ®
where . .
0 = B 124 S8t 53
8

3. IHE INFINITE PLATE PROBLEM

This section considers the axisymmetric flexure of the infinite
elastic plate subjected to a surface load p(r) and resting on a homc:geneous
isotropic elastic halfspace which is loaded internally by the conceatrated
force P (Fig. 1). Since there is no 1loss of contact at the interface,
the surface displacements of the elastic halfspace correspond to the flexural
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deflections of the plate w(r). The contact stress at the interface is
denoted by q(r). The transformed values of the plate deflection, the contact
stress and the external load are defined by

+°@© 5 @) 5 5%6)] - Hollw(r) ; q(r) ; p()] 5 €}.  (a)

For thin plates which satisfy the Poisson-Kirchoff Plate theory, the
differential equation governing axisymmetric flexure reduces to (see
Timoshenko and Woinowsky-Krieger [7])

D¥4w(r) + q(r) = p(r) - (9)
where )

2.8, 13 .

¥ =7 + T ar (10)

is the Laplage operator in plane polar coordinates; D( = E h3/12 (l-vz))
is the flexural rigidity of the plate; h is the plate thickness and Ep and
v are the elastic constants of the Plate material. Operating on (9) wit:h

P
the zeroth-order Hankel transform we obtain

“ - -
p &v’@ + @ - 5%@ . (1)

v
The surface displacement of the halfspace due to the combined action of
the contact stress q(r) and the internal load P can be obtained by the
combination of results (1) and (6); thus

a(l- v ) ”~ -0
e @e - P . (12)
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The elimination of Eo () between (11) and (12), and the subsequent
application of the inversion theorem (4) yields the following expression for
the plate deflection:

(1- v ) J (Ex/a)
- 8 w =0 _ § ‘ -Ec/a
w(r) ca g [p (E) {35 + } ] WE (13)
where
E 1 -2 .
n-%f(—z)(—ﬁ. ~ (14)
s

Similarly, the contact stress is given by
J (Ex/a)

.1 ® -0 PE*R -Ec/a
atn) = &7 " “,)_, + BBy J—%—}e ) T %- 45

The flexural moments (Mr ’ Me) and the shearing force (Vr) in the infinite
Plate take the forms
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(mrm:v)

; om0y _ By 4 C/a ycEe/a
(Hr. Mgs Vr) R{) p (&) - ¢ {3 + 2 (1= v )} ]-—{T-*—R—E?r df  (16a)
where
m_ = £235(Ex/a) = (- vIEE 3, (Ex/a) ]
mg = v £20 (Ex/a) + (- vp)i—‘l 3, (Ex/a) (16b)

v
r

3
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Of particular interest is the case where the plate is subjected to external
and internmal concentrated loads of equal magnitude. As a result of (3) and
(8), §° (E) = B/27; the equations (13) and (15) now reduce to the non-
dimensional forms

:I (Ex/a)
(__L - (- Ec/a -Ec/a
P v,/ ’(; s - U5 + 702 v yle I Re3T %
an
I (Ex/a)
) _ 3 Ec/a -fc/a
[p/mal] {;“" + REP0s + -y )} ¥ h+ REST % -

As the parameter c/a + =, the influence of the internal loading diminishes
and the solutions (17) reduce to their corresponding expressions obtained
independently by Holl [8] and Hogg [9] for the classical problem. As c/a + 0
the plate deflection becomes zero for all values of r; in this case the thin
plate is subjected to a doublet of concentrated forces at the origin.
Similarly, since

f‘aao(em) a =0 . - (18)
0

the contact stress at the plate-elastic halfspace interface also tends to
zero for all values of r as c/a + 0.

The special case of external loading p(r) used to graphically illustrate
the effects of the internal concentrated force on the plate deflection and
the contact stress, corresponds to a circular load of radius a, and stress
intensity Pg- In particular, we assume that P = (Po“(z))' The transformed
value of the external load is
3, (6)

8e) = (19)
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where the length parameter a has been set equal to the radius of the
external load a,. The final solutions for the deflection of the infinite

plate and the contact stress at the interface are

Jl(E) - e/a 3, (Ex/ay)

w(r) -Ec/a o
P v )/m6 ad = G 0= )} 0] mdg (20a)
Ec/a, I (Ex/a, )
s(r) -Ec/a
[P/wa ] f [J €) + ROE {;2 + 20- v )} 0] m dag (20b)
where
Ry = [R] ’o'

4. NUMERICAL RESULTS

To illustrate the quantitative importance of the internal concentrated
force, the integral expressions for the plate deflection (20a) and the
contact stress (20b) are evaluated. The infinite integrals of the type (20)
do not appear to reduce to any integrals known from the literature. A direct
numerical integration tochg;ique is employed for the evaluation of the non-
dimensional expressions for the plate deflection w'(r) (= 7G saow(r)/l"(l-\al'))
; and the contact stress q'(r) (= 'ugq(r)/P). The numerical integration is
1 performed by representing the integral as an infinite series bounded by
subsequent zeros of Jl (E)Jo(Er/ao) and Jo(Er/ao). Integration, which
proceeds by one interval at a time, is carried out by using a 15 point
¥ Gauss-Legendre quadrature. The convergence of the series is slow and the

procedure was terminated when the contribution from each partial integration
was less than 0.01 percent. The accuracy of this numerical integration
procedure was checked by comparing the numerical results with those of
‘ certain standard infinite integrals involving products of first- and zeroth-
: order Bessel functions.

(E)J (rE/a)
fe.g. [ —-T:-G—Ezl—di - 11(1)1(0(:/;) for (r/a) > 1.]

Also, for the purpose of these numerical computations the following material
parameters have been utilized: lfoinaon's ratio of the elastic halfspace
Vg = 0, 0.5; relative rigidity parameter Ro = 0.1, 1.0. It should also be
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noted that the internal force P acts in the negative z-direction (Fig. 1).
The Figs. 2-5 illustrate the variation of the dimensionless plate
deflection w'(r) along a radial direction, computed for different locations

(c/ao) of the internal concentrated force, Poisson's ratio (vs) and -~
relative rigidity (Ro). The magnitude and distribution of the plate
deflection is considerably altered as the internal concentrated force
migrates to the surface of the halfspace. As (c/ao) -+ 0 the plate
deflections become negative and we may expect tensile tractions to develop
at certain locations of the interface. Since the theoretical development
of the interaction problem does not account for the development of such
tensile stresses (large c.f. the applied external stress) the numerical
results become inadmissible as (c/ao) + 0. As (c/ao) + =, the plate
deflections converge to the appropriate result related to the unloaded
elastic halfspace. Nmericgl computations indicate that when (c/ao) > 6.0,
the effects of the internal concentrated force on the plate deflection
become insignificant. The Figs. 6-9, similarly, illustrate the variation
of the contact stress at the plate-elastic halfspace interface along a
radial direction. The contact stresses are generally compressive for
(c/ao) > 0.4 although tensile tractions of small magnitude (< 0.01 po)

tend to develop in the regions (r/ao) > 2. Numerical computations indicate
that when (c/ao) > 5 the contact stress distributions are unaffected by
the internal concentrated force. The procedure outlined above can be further
extended to mmezﬁlcal].y evaluate the flexural moments and shearing force in
the infinite plate.
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