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Matrix Crack Extension at a 
Frictionally Constrained Fiber 
The paper presents the application of a boundary element scheme to the study of 
the behavior of a penny-shaped matrix crack which occurs at an isolated fiber which 
is frictionally constrained. An incremental technique is used to examine the pro
gression of self similar extension of the matrix crack due to the axial straining of 
the composite region. The extension of the crack occurs at the attainment of the 
critical stress intensity factor in the crack opening mode. Iterative techniques are 
used to determine the extent to crack enlargement and the occurrence of slip and 
locked regions in the factional fiber-matrix interface. The studies illustrate the role 
of fiber-matrix interface friction on the development of stable cracks in such fric
tionally constrained zones. The methodologies are applied to typical isolated fiber 
configurations of interest to fragmentation tests. 

1 Introduction 
The integrity of bond between fibers and the surrounding 

matrix is of fundamental importance to the development of 
adequate reinforcing action in fiber reinforced solids. De-
bonding and cracking at either the matrix or the fibre or at 
the fiber-matrix interface (Fig. 1) can be initiated by a variety 
of factors including non-uniformities in the geometry of the 
fibers, mismatch in the thermo-elastic properties of the fiber-
matrix system, dynamic fracture of individual fibers and en
vironmental effects associated with moisture migration and 
adhesion degradation at the fibre-matrix interface. The con
ventional approach to the study of micro-mechanics of fiber 
reinforced solids invariably assumes that there is perfect con
tinuity between the reinforcing fiber and the surrounding ma
trix (seee.g., Christensen, 1980; Selvadurai, 1981; Mura, 1982; 
Hashin and Herakovich, 1983; Kelly and Rabotnov, 1983; 
Dvorak, 1991). An alternative to the continuity of bonding at 
the fiber-matrix interface assumes that there is complete de
tachment of the fiber from the matrix. This basically results 
in a matrix with partially constrained cylindrical voids and the 
approximation becomes realistic only in situations involving 
short fibres embedded within a matrix. Problems involving 
sliding contact and bilateral contact between embedded inclu
sions and surrounding elastic media have been examined in 
the literature (see e.g., Ghahremani, 1980; Mura and Furu-
hashi, 1984; Mura et al. 1985; Selvadurai and Au, 1985; Jasiuk 
et al., 1987; Selvadurai and Dasgupta, 1990). In reality, the 
interface conditions are much more complex than the extreme 
idealizations described previously. These can include nonlinear 
and dissipative processes including Coulomb friction, finite 
friction, dilatancy with or without interface degradation and 
other experimentally derived nonlinear phenomena. These 
nonlinear phenomena can be coupled with processes such as 
interface separation and slip. The study of nonlinear processes 
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occurring at the interfaces of fiber reinforced elastic media is 
a nonroutine exercise. Such processes can occur in a random 
fashion even in unidirectionally reinforced solids. The com
plexities associated with fiber geometry and localized nature 
of the interface processes makes it difficult to develop purely 
analytical solutions to even relatively straightforward undi-
rectionally reinforced solids. 

Numerical methods based on either finite element methods 
or boundary element methods offer both accurate and efficient 
techniques for the investigation of nonlinear processes which 
can occur at fractured or delaminated fiber-matrix interfaces. 
The objectives of this paper are twofold; first to examine the 
influence of fiber-matrix interface nonlinear phenomena on 
the behavior of both an embedded isolated matrix-fiber crack 
and a bridged crack and second to illustrate the application 
of boundary element techniques to the study of microme-
chanics of nonlinear phenomena at fiber-matrix interfaces. To 
illustrate the methodology, attention is restricted to the study 
of two specific problems related to an isolated fiber, where 
the matrix fracture is accompanied with either fibre fracture 
or fibre continuity (Figs. 2 and 3).The numerical procedure 
illustrates the influence of interface nonlinear phenomena on 
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Fig. 1 Micromechanical processes of damage in fiber reinforced solids 
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Fig. 2 Frictionally constrained cracked short fiber at a fiber-matrix crack 
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Fig. 3 Frictionally constrained intact short fiber at a matrix crack 

the potential for the extension of the penny-shaped matrix 
crack in a self similar manner. Numerical results presented in 
the paper for a typical fiber reinforced material illustrate the 
influence of Coulomb friction at the fiber-matrix interface and 
fiber continuity on the development of self-similar stable ma
trix cracking. The results of the studies have applications to 
the modeling of "Fragmentation Tests" used to examine non
linear interface effects at a single fibre embedded in a matrix 
(Berg, 1990). 

2 The Boundary Element Method 
Considering the nonlinear nature of the matrix-fiber inter

action, it is necessary to adopt an incremental formulation of 
the boundary integral equation. For isotropic bimaterial re
gions, the axisymmetric form of the boundary element integral 
equation for the location 'o ' takes the form 

f it (<*) __ c T * ( « ) • ( « ) 
I J Ik Uk -Ulk 7j«>} 

' ( a ) 
r0 

<_T = 0 (2.1) 

where _Va> and U/k
{a) are, respectively, the traction and dis

placement fundamental solutions (see e.g. Brebbia et al., 1984; 
Selvadumi and Au, 1985). In (2.1) clk = 0 if the field point in 
outside the body; C/k — &tk if the point is inside the body; c/k 

= h,k/2 if the point is located at a smooth boundary and 5 t t 

is Kronecker's delta function. The notation (') refers to an 
incremental value of the variable concerned and the Greek 
index (a) refers to either the matrix (jri) or fiber (/) regions. 

Considering (2.1), the boundaries TM can be discretized into 
boundary elements and the integral equation can be replaced 
by its discretized equivalent. For an isoparametric boundary 
element, the geometric, displacement, and traction variations 
can be represented in the form 
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with - 1 < £ < 1 . The discretized form of {2.1) can now be 
written as 
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where e is the element number and I/I is the boundary Jacobian 
matrix, which for an axisymmetric problem reduces to 

1/1 = (2.5) 
(drY dz\ 

W) + \?V 
The fiber-matrix region can be subjected to the conventional 
traction and displacement boundary conditions. In addition, 
the interface between the fibre and the matrix can be subjected 
to constraints of the type 

T^Rj + Kjjitj (2.6) 

where itj are the incremental relative displacements at an in
terface, Rj are the incremental residual or initial tractions and 
Kjj are stiffness coefficients which are derived through non
linear constitutive responses at the fiber-matrix interface. The 
evaluation of Ky for an interface which exhibits Coulomb 
frictional phenomena will be presented in a subsequent section. 
From the boundary element discretization (2.4), we can for
mulate a boundary element matrix equation of the form 

[H][u)=[G]{T) (2.7) 

where [H] and [G] are the boundary element influence coef
ficients matrices which are obtained by an integration of the 
fundamental solutions «, /" ' and Tj)1™' appropriate to the fiber 
and matrix regions. 

3 Interface Behavior 
The mechanical response of the fiber matrix interface is 

influenced by the material and surface characteristics of the 
fiber, the mechanical properties of the matrix including de-
formability and fracture phenomena, surface agents used to 
enhance bond action, and the topography of the delaminated 
surface. The interface processes can include friction, slip, sep
aration, yield, dilatancy, asperity degradation etc., which can 
be described by generalized elasto-plastic interface constitutive 
assumptions. For completeness of the presentation we assume 
that the incremental relative displacements it-, at an interface 
are composed of elastic and plastic components ii\e) and 
u}p\ respectively, i.e., 

(3.1) u,- •• u\e) + ufp) 

The elastic component of the increment relative displacement 
is related to the incremental interface tractions by the linear 
interface constitutive relationship 

f, = Ki,e)u}e) (3.2) 
where K\p are the linear elastic stiffness coefficients of the 
interface. In order to establish the irreverisble components of 
(3.1) it is necessary to define the stress level at which yielding 
occurs at the interface. For example, for an interface which 
exhibits Coulomb friction, the yield function F is given by 

F=(TlT,y/2-nTn = 0 (3.3) 

where ^ is the coefficient of friction at the interface and T„ 
and T, are, respectively, the components of the total traction 
at the interface in the normal and tangential directions. At the 
limit (3.3), the interface will slip and irreversible slip displace
ments can occur. These can be obtained from a flow/slip rule 
identical that used in the classical theory of plasticity, i.e., 
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where A is a proportionality factor defined as the plastic/slip 
multiplier, and $ is the plastic/slip potential. For an interface 
with Coulomb friction 

HTi)=T, 

From (3.2) and (3.5) we have 

T- = K>f 
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1 dT, 

(3.5) 
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where for problems with axial symmetry, /, j = r, z- When 
slip occurs at the interface between the inclusion and the elastic 
medium 

37} 
dTi = 0 

and 
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(3.7) 

(3.8) 

(3.9) 

Using (3.8) in (3.7) we obtain the elasto-plastic interface con
stitutive relationship as 

T^K^Uj (3.10) 

where 

trW - KW -—— K-<e>R-<e> ^F 

Aij ~ u QdT, " ",j dT„, 
(3.11) 

Therefore, as in conventional numerical implementation of 
classical associative or nonassociative plasticity phenomena, 
once the yield function F and the slip potential $ are known, 
it is possible to define K\fp). 

4 Modeling of Crack Tip Behavior 

In the boundary element discretization discussed previously, 
quadratic elements will be employed to model the boundaries 
of the matrix and fiber regions. That is, the variation of the 
displacements and tractions within an element can be described 
by 

.(«) 

T\a] 2>f (4.1) 

where f is the local coordinate of the element and a„ are con
stants of interpolation. However, in the context of linear elastic 
fracture mechanics, the stress field at the crack tip located in 
a homogeneous solid should incorporate a 1/Vr type singu
larity. Cruse and Wilson (1977) proposed a so-called singular 
traction quarter-point boundary element where the displace
ment and traction variations can be expressed in the forms 

M<(a) = 2 > / ' / 2 (4-2) 

n 
• ! < * ) - , . ( n - l ) / 2 (4.3) 

where 6, and c, are constants. The performance of the quarter 
point element has been extensively studied and documented 
(Blandford et al., 1981; Smith and Mason, 1982; Selvadurai 
and Au, 1987, 1988, 1989; Selvadurai, 1991). In the crack-
fibre interaction problem examined in this paper, the axial 
straining induces a state of axial symmetry in the fibre-matrix 
composite region. Consequently, in general, only the Mode I 
and Mode II stress intensity factors are present at the tips of 

a penny-shaped crack region. The incremental values of the 
stress intensity factors are given by 

(Ka+ I) - \ If, 

(Ara+l)"J k 

(4.4) 

+ uAE)-uAA)] (4.5) 

where /0 is the length of the crack tip element and ka = (3 — 4va). 

5 The Fiber-Crack Interaction Problem 

We apply the basic procedures outlined in the preceding 
sections to the study of problems associated with an isolated 
fibre of finite length which is embedded in an isotropic elastic 
matrix of infinite extent. We focus attention on two specific 
problems in which a penny-shaped crack is initiated in the 
matrix region. The plane of the crack is normal to the axis of 
the fibre and the axis of the fiber is assumed to coincide with 
the axis of the penny-shaped crack. Also for the purposes of 
illustration; the matrix crack is assumed to occur at the mid
section of the fiber. Two specific problems are examined to 
assess the influence of the fiber-matrix interface frictional phe
nomena on the performance of penny-shaped matrix cracks. 
The first (Fig. 2) considers the problem where fibre fracture 
has also occured at the matrix crack location. In the second 
problem (Fig. 3), fiber continuity exists in the presence of the 
matrix crack. The cylindrical surface corresponding to the 
fibre-matrix interface is debonded but exhibits Coulomb fric
tional phenomena which are characterized by a friction coef
ficient p. The composite region is subjected to a far field radial 
stress oR as indicated in Figs. 2 and 3. It is assumed that this 
radial stress is directly transmitted to the debonded fiber-matrix 
interface. This is admittedly an approximation which can be 
eliminated by incrementally applying the radial stress to its 
specified value OR. In such a case regions of frictional slip and 
locking could occur at the interface depending upon the value 
of JX and the elasticity mismatch between the fibre and the 
matrix. Alternatively, it could be assumed that aR represents 
stresses associated with the shrinkage of the matrix during 
curing (Busschen, 1991). For the purposes of this paper we 
assume that the uniform normal stress at the interface is uR. 
In the presence of the radial stress, the composite region is 
subjected to an axial stress <r0, in an incremental fashion. 

The computational modeling first focusses on the exami
nation of the influence of fiber-matrix interface friction and 
fibre continuity across the matrix crack on the crack opening 
mode stress intensity factor at the matrix crack. In this instance 
crack extension phenomena are not considered. The objective 
of the analysis is to establish the relative influences of crack 
bridging by the fibre and the coefficient of friction jt, on the 
stress intensity factor at the tip of the matrix crack. The second 
aspect of the computational modeling focusses on the exam
ination of influences of interface friction and fibre continuity 
on the extension of the matrix crack. In order to conduct such 
an analysis, we assume the existence of a starter crack within 
the matrix region. In the case of an intact fibre, the annular 
matrix crack surrounding the fibre is assumed to have an outer 
radius of r* = 1.01a where a is the radius of the fibre. With 
a cracked fiber, the penny-shaped "fibre-matrix crack" is as
sumed to occupy an incremental starter crack configuration 
with a crack radius of r* = 1.01a. The crack is assumed to 
extend beyond r* at the application of an incremental stress 
<7o- The analysis is performed in an iterative manner to ascertain 
the regions of the fiber-matrix interface which exhibits fric
tional slip at the attainment of the failure condition (3.3). The 
crack opening mode stress intensity factor at the matrix crack 
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Fig. 4 Influence of Interface friction and fiber continuity on the am
plification or attenuation of Kt 

boundary is also evaluated and the crack is allowed to extend 
quasi-statically to a new location /• = r when the stress intensity 
factor at the crack tip satisfies the condition 

K^'^K^ (5.1) 
For a given increment of b0, the iterations are performed to 
determine values of f* la for which the crack extension ceases 
and stable regions of the fibre-matrix interface which expe
rience frictional slip are identified. The procedure is repeated 
with the application of a further increment of axial stress with 
the application of a final level of stress a0, the stable location 
of the tip penny-shaped crack b/a for which 
\K\m\=b<K\c' can be identified. In the current investigations 
it is explicitly assumed that the crack in the matrix region 
extends in a self-similar fashion. More advanced analyses can 
be made to examine situations where multiple conical and 
penny-shaped starter cracks can extend into the matrix region. 

6 Numerical Results 
For the purposes of presentation of appropriate numerical 

results, attention is focussed on a specific isolated fibre-matrix 
composite region which consists of an E-Glass fibre of finite 
length embedded in a polyester matrix of infinite extent. The 
elastic properties of the fiber and the matrix are as follows 
(see e.g., Busschen, 1991). 

E-Glass Fiber: 
Elastic modulus (£» = 70 GPa 
Poisson's ratio (vj) =0.20 
Tensile strength (</T) =2.5 GPa 
Diameter of fiber (2a) =15 /tm 

Polyester Matrix: 
Elastic modulus (Em) =1.5 GPa 
Poisson's ratio (iim) =0.35 
Tensile strength (a"i) = 87 MPa 
Critical stress intensity factor (K"'c) = 1 MPa Vm 

The coefficient of friction (/̂ ) at the fiber-matrix interface 
is assumed to vary between 0 to 1.0, which represents normal 
stress independent friction angles of 0 deg and 45 deg, re
spectively. 

The first set of numerical computations deals with a general 
evaluation of the mode I stress intensity factor at the tip of a 
stable matrix crack. The factors influencing the problem are 
the following: 

(a) geometric aspect ratio of the fibre (h/a) = 5.0 
(b) matrix crack radius-fibre radius ratio (b/a) = 2.0 
(c) radial stress to axial stress ratio (aR/a0) = 1.0 
(c) coefficient of fibre-matrix interface friction (fi) e (0,1) 
(e) fibre-matrix modular ratio (Ef/EIH) = (1,10,102) 

Figure 4 illustrates the manner in which the stress intensity 
factor at the tip of the matrix crack is influenced by the fibre-
matrix modular ratio and the coefficient of friction at the fibre-
matrix interface. The mode I stress intensity factor at the matrix 
crack in the composite is normalized with respect to the mode-
stress intensity factor at the tip of a penny-shaped crack of 
radius b located in a homogeneous matrix (Sneddon, 1946), 

A? = 
2o<y\[b 

(6.1) 

Figure 4 presents results for the two situations where the fiber 
either exhibits continuity across the faces of the crack or is 
cracked at the plane of the matrix crack. The results of the 
computations, albeit for a specific fiber-matrix system, indicate 
that the interface friction, the fiber-matrix modular ratio and 
either the presence or absence of fiber continuity have im
portant influences on the amplification or attenuation of the 
mode I stress intensity at the matrix crack. 

The analysis is now extended to the consideration of the 
matrix crack extension due to the attainment of the crack 
extension criterion (5.1). In this case, the computations are 
also specifically related to the examination of the E-Glass fibre-
polyester matrix system described previously. Figures 5 and 6 
illustrate the influence of a0/aR and the fiber-matrix interface 
friction coefficient /i on the dimensions of the stable matrix 
crack b/a. As is evident, the extent of stable crack development 
is considerably influenced by the relative magnitude of the 
axial stress and the presence or absence of fibre continuity 
across the faces of the crack. 

Conclusions 
Classical studies of inclusion problems invariably consider 

idealizations of interface characteristics between the embedded 
inclusion and the surrounding elastic medium. The limiting 
cases of either perfect continuity or sliding conditions are useful 
models which provide bounds for the relevant results pertaining 
to embedded inclusion problems. In fiber reinforced materials, 
the interface between reinforcing fibers and the surrounding 
matrix can exhibit frictional characteristics particularly at re
gions of the composite which experience interface debonding. 
This paper examines a specific problem in which a crack ex
tends within the matrix at a detached frictional interface lo
cation. The boundary element technique can be effectively 
applied to examine the self-similar extension of a matrix crack 
in the presence of Coulomb friction at the interface. The pro
cedure can be used to examine the dimensions of stable matrix 
cracks that could exist at debonded but frictionally constrained 
interface regions. The analysis indicates that the presence of 
a nominal amount of friction and confining stress is sufficient 
to influence the matrix crack extension process. As the fric
tional constraint increases, the crack extension is suppressed 
in instances where the fiber exhibits continuity across the faces 
of the crack. When the fiber is cracked, the frictional constraint 
at the interface tends to amplify the stress transfer which ac
centuates matrix crack extension. This observation is expected 
to be generally true in most situations where the fibre inclusion 
has a higher elastic stiffness than the surrounding matrix. The 
boundary element technique is advocated as an efficient method 
for the study of this class of micro-mechanics problem. The 
efficiency of the method rests on the a priori identification of 
the interface on which the irreversible phenomena occur in the 
form the frictional effects. The iterative procedures can then 
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Fig. 6 Influence of interface friction on the extent of stable crack de
velopment in a E-glass-polyester system (continuous fiber at the matrix 
crack) 

be effectively employed for the identification of both the lo
cation of slip (and frictional locking) and quasi-static crack 
extension under applied axial strain. The methodologies dis
cussed in the paper can be extended to cover other forms of 
interface characteristics including dilatancy and degradation. 

Such effects can have an important influence on the modeling 
of micro crack extension under quasi-static load cycling. 
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