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Introduction

In the study of cracks in brittle solids such as composites, cera-
mic materials, concrete and rocks it is important to consider the
conditions that are present at the interfaces of the defects. The
classical analyses of such cracks invariably assume that they are
open and smooth. This assumption is violated in most situations
except in cases where the cracks are opened by tensile stresses
normal to its plane. During compressive and shear loads, the
interface behaviour is expected to exert a dominant influence on
the behaviour of the crack. Owing to the non-finear phenomena
associated with the frictional processes it is difficult to utilize
classical analytical procedures for the solution of such crack
problems. Crack problems with interface non-linearities have a
great deal of similarity with contact problems with frictional inter-
face constraints. Such problems have been examined by using
Incremental formulations of the coupled integral equations (see
€.g. de Pater and Kalker [1], Gladwell [2]). Recently Ballarini and
Plesha [3] have examined the shear loading of a plane crack with
exhibits frictional constraints at the crack surfaces. These ana-
lytical investigations examine crack problems and loading con-
figurations which are relatively simple. The boundary element
method can be successfully applied to the solution of crack
problems with interface non-linearities. Recently Selvadurai and
Au [4, 5, 6] have presented several studies which deal with the
boundary element analysis of elastic media with non-linear inter-
face constraints. The boundary element technique is particularly
effective for the class of problems in which predominantly elastic
regions exhibit non-linear interaction through contact
phenomena. The present paper applies an incremental boundary
element approach to the study of the fracture mechanics aspect
of a crack with a non-linear contact region.

The Boundary Element Method

The incremental formulation of the boundary element method is
briefly outlined for completeness. Further details of the method
are given by Brebbia [7] and Banerjee and Butterfield [8]. In the
absence of body forces, the incremental form of the boundary in-
tegral equation applicable to an elastic region is given by
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where Q denotes a general field point, ¢;(Q) and {,(Q) and the
j-th component of an incremental displacement and traction
respectively; S is the boundary of the elastic region; ¢, is a
constant; i, j = x, y for two dimensional problems and U}(P Q)
and T;(P Q) are the displacement and traction fundamental
solutions given by
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In (2) and (3) G and v are respectively the shear modulus and
Poisson’s ratio; r is the distance between (P) and (Q), §, is
Kronecker's delta function and n; is the jth component of the out-
ward unit normal on S. The BIE can be reduced to a matrix equa-
tion by discretizing S into elements with piecewise continuous
variation of displacements and traction over the element. Con-
sidering all locations of P on S we can obtain a system matrix
equation relating the incremental displacements and tractions
on S. For a well posed problem, the boundary S should be pre-
scribed as follows:

(@) boundary with known displacements (S;) on which

(:l, = l]r (48)
(b) boundary with known tractions (S,) on which
=t (4b)

(c) boundary on which there is a displacement and traction
coupling (S;)

t=Kru (4c)
where k¥ is a non-linear relationship at the boundary S;. The
conditions (4a-c) should make up the complete boundary. i.e.
S=8, uS;u S;. Applications of the boundary conditions of the
type (4a) and (4b) into the boundary element stiffness matrix and
omitting the boundary condition of the type (4c) we can write
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where fis a loading factor; {B! is the vector from the prescribed
boundary values: [h,] and [g,] are the coefficients matrices
derived from the fundamental solutions; the values of /, j = 1,2,3
indicate the location of the boundary S,, S,, Ss. Equation (5) does
not have a solution since the boundary conditions on S, have not
been applied. However, this is the BEM system equation with the
boundary condition on S; which needs to be determined.

Interface relationships

The boundary element formulation of the problem can be com-
pleted by prescribing the constitutive relationships which are
applicable to the interface. There are a number of interface re-
sponses that can be adopted for this purpose. These can range



from Coulomb friction, finite friction to dilative frictional
phenomena. We shall consider the dilation model proposed by
Plesha and Belytschko [9]. Assuming that the interface is located
on the x-axis, a relative displacement can occur between both
sides of the interface. Adopting the generalized treatment
proposed by Fredriksson [10] the incremental form of the relative
displacement can be written as

R, = u,(x, 0% - i,(x, 07) 6)
where +ve or —ve signs refer to the regions corresponding to an
interface. The incremental relative displacement can be decom-
posed into its elastic (e) and plastic (p) parts:

RI = ;'?I(e) + R’lp) (7)
The elastic displacement can be obtained from the relationship
i =E® R® 8)

where E¢) is the elastic stiffness at the interface. This result is
valid provided the tractions at the interface do not exceed the
interface yield criterion
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where u is the friction coefficient at the interface and a is the
asperity angle; where a = 0 the result (9) reduces to the case of
Coulomb friction. Using conventional plasticity formulations
applicable to continua, we assume that the incremental plastic
deplacements R’ at the interface can be expressed as

0 if F(t)<O0orF(t)<0

R = (10)
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where A is a plastic multiplier and @ is an interface plastic poten-
tiali.e.,

®={(t,cosa+tsinag)?'? (1)
It can be shown that

{=EPR (12)

where the elastic-plastic stiffness at the interface is given by

ep) _ te) _ 1 SF 191\9®
Ef™ =Ef -5 gr EF EL S (13)
and
9F pe) 9O 9F i
Q=9 B St, WP e (14)

where W' is given by t,R¥, which is the plastic work of the
tractions tangential to the failure plane. This plastic work is re-
sponsible for the degradation of the asperity angle ai.e.
a= ay exp(-cW." {15)
where «y is the initial asperity angle and ¢ is a degradation con-
stant. The basic methodologies outlined here can be extended to
include interface phenomena which exhibit both frictional and
adhesive effects. Such adhesive effects can be characterised by

a Mohr-Coulomb model which possesses both cohesive (c) and
internal friction (¢; where u = tan ¢).

Stress intensity factors

The study of the influence of interface friction on fracture
mechanics primarily concentrates on the evaluation of the stress
intensity factors at a crack tip. In these studies, the singular be-
haviour of the crack tip is modelled by employing the singular
traction quarter point elements (Cruse and Wilson [11]) where the
displacement and tractions take the following forms

[U,,t]— 2 1 m/2

where b,, and ¢, are constants. The stress intensity factors can
be obtained by applying the displacement correlation method
which utilize the displacement of nodes on either side of the
crack. The incremental values of the stress intensity factors are
given by

m 1)/2)\ (16)
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where /is the length of the crack tip element k = (3—4v) for plane
strain; k = (3 — v)/(1 + v) for plane stress and the points A, B, C,
D, and E are shown in Fig. 1. The accuracy of the numerical
scheme has been verified by comparison with known exact solu-
tions [12).
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1 The crack tip element

A wedge indentation of a cracked region

In this section we apply the basic procedures outlined in the pre-
ceding sections to the study of the plane strain frictional indenta-
tion of a notch in an elastic medium of finite extent. The base of
the notch contains a crack of finite length. The interface between
the indenting rigid wedge and the elastic medium is charac-
terized by an interface friction property and cohesion. The rigid
wedge is subjected to a central load 2P, The angle of the wedge
and the length of the crack at the root of the notch are variables
in the problem. The Fig. 2 shows the problem under conside-
ration and the Fig. 3 illustrates the boundary element discretiza-
tion adopted in the solution of the problem. The Fig. 4 and 5
illustrate the manner in which the flaw opening mode stress in-
tensity factor at the crack tip is influenced by the magnitude of
the load (P), the coefficient of friction (u) between the indenting
wedge and the elastic region and the cohesion (¢/G) at the inter-
face. The results clearly indicate the importance of the conside-
ration of friction and adhesion at interfaces in the treatment of
problems where interfaces play an active part in fracture
mechanics considerations.



2 The wedge indentation of a crack
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