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1. Introduction

The modern governments’ mandate is to maximize
the societal benefit by acting as agents of the public, in
contrast with the private firms’ mission to maximize
its shareholder benefits. “The public sector includes
all government controlled entities such as min-
istries, departments, funds, organizations, and busi-
ness enterprises, which political authorities at all lev-
els use to implement their social and economic poli-
cies” (Statistics Canada 2008, p. 9). In some sectors,
such as energy and mining, government enterprises
compete with the private sector, whereas in others,
such as the construction of megahospitals, trans-
portation, and communication infrastructure, public-
private partnerships are becoming more common.
Nevertheless, in all of these endeavors, the govern-
ments’ overarching objective is to maximize the acces-
sibility of their services to the general public, while
maintaining their economic viability.

The healthcare sector is a good example of indus-
tries where the government-controlled entities and
private enterprises coexist. For example, private mam-
mography centers offer screening services for profit,

while state/provincial governments provide subsi-
dized breast cancer screening programs (in some
cases, by recruiting some of the screening centers to
form their network) so as to protect the largest number
of women within the designated age group. Another
example is long-term care where the establishment of
a network of long-term care facilities that are capa-
ble of caring for all of the elderly in need is typically
within government mandate, although private facili-
ties do exist. The education sector exhibits very similar
characteristics. Notwithstanding the abundance of pri-
vate universities, colleges, schools, and daycare facili-
ties, modern governments are obliged to provide pub-
licly funded education opportunities at all levels, so
that education is accessible to everyone regardless of
their household income.

The policy makers and regulators constantly face
the problem of (re-)designing a public service so as
to maximize the number of people who benefit from
the program. This is usually a better option than
simply increasing the budget allocated to that pub-
lic service, which often inherits the systemic obstacles
that mitigate performance improvement. Empirical
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evidence suggests that improved accessibility would
lead to increased participation in public services. For
example, Zimmerman (1997) found out that the con-
venience of access to a facility is a very important fac-
tor in the customers’ decision to have prostate cancer
screening. We define the maximal accessibility net-
work design problem as follows: Determine the opti-
mal number, locations, and capacities of a network of
(single server) facilities so as to maximize the number
of people who can benefit from the service being pro-
vided. In this context, the governmental budget allo-
cation manifests itself as a limit on the total amount
of service capacity that can be distributed across the
jurisdiction. Note that there are alternative ways of
configuring the resource levels to provide the same
capacity at a facility. This tactical capacity planning
problem, however, is out of the scope of our work.

Unless participation is mandated by the govern-
ment (e.g., separation of the recyclables and house-
hold waste), each individual is free to choose whether
or not to use the services of a publicly funded pro-
gram. The people who participate often patronize the
facility with highest accessibility. In representing this
customer-choice environment, we assume that the time
spent for receiving the service from a facility (ie.,
travel time to the facility plus the waiting and service
times at the facility) is a good proxy for its accessi-
bility. This is certainly a simplification, because we
ignore other potentially important factors such as the
variation among facilities pertaining to the quality
of service. An important feature of this problem is
the congestion at the facilities caused by the uncer-
tainty in demand and the limited capacity. Note that
the expected total time customers spend in the sys-
tem (waiting and receiving service) depends on the
level of congestion, and hence each individual’s facil-
ity choice is indeed affected by the preferences of the
other members of the public. Consequently, the total
demand at a facility is elastic with respect to its acces-
sibility to the people who reside in its vicinity.

The contributions of this paper are twofold: First,
we formalize and analyze the basic network design
pertaining to the public sector. Although there is
some literature that focuses on some of the features
of the maximal accessibility network design problem
(which will be discussed in §2), we are not aware of
a study that includes all of the features examined in
this paper. Second, we devise an e-optimal solution
method for the problem. Given the nonlinear nature
of the arising models for this problem family, an over-
whelming majority of the relevant literature is con-
fined to heuristic solution approaches.

We assume that a set of potential operational facil-
ities that can provide the new service (mammogra-
phy service) is available (e.g., hospitals). Therefore,

for location decisions, we consider those facilities that
will offer the new service.

There are two common ways to model flexible
capacity of a queuing system. One way, which takes
the micro view, is to assume multiple parallel servers
each with some service rate y and the control of the
system is the number of servers N. The other way,
which takes the macro view and that we follow in
the paper, is to assume a single server in each facility
with a flexible service rate u that is the control vari-
able. The discrete-capacity model may be more suit-
able to a single facility (for example a pump at a gas
station). The continuous model is more appropriate
for a complex system such as mammography service
in a hospital, where capacity is not only the mam-
mography machines but also doctors, nurses, and
examining rooms.

Zhang et al. (2010) and Aboolian, Berman, and
Krass (2012) constitute the most relevant papers to
our work. Here, we point out the differentiating
characteristics of this paper so as to better high-
light our contributions. Also aiming at maximizing
the total number of people who receive service in
a customer-choice environment, Zhang et al. (2010)
adopts the micro viewpoint of optimizing the number
of servers (in particular, the number of mammogra-
phy machines in each screening center) at each facility.
In contrast, we view the macro perspective, i.e., using
a service rate. In Zhang et al. (2010), the problem is for-
mulated as a bilevel problem where the allocation of
customers to facilities is determined in the lower level
and the location of facilities and their capacity level
are determined in the upper level. Their approach is
most efficient when the number of capacity options is
relatively small. When capacity is modeled as a con-
tinuous variable (as in our problem), however, bilevel
programming would be remarkably inefficient. There-
fore, in our paper the problem is solved as an exact
(single level) mixed-integer problem (MIP). Although
Aboolian, Berman, and Krass (2012) also optimize
the service rate at each facility in one version of the
problem studied, their aim is to design a service net-
work so as to maximize the total profit assuming that
the customer-facility allocations can be made by a cen-
tral planner. The problem in Aboolian, Berman, and
Krass (2012) is also formulated as a bilevel problem.

The remainder of the paper is organized as follows.
Section 2 provides an overview of the most relevant
literature and positions this paper. Section 3 presents
the model we propose for the problem, whereas an
e-optimal procedure is highlighted in §4. Section 5
reports on the computational performance of the solu-
tion algorithm and presents a realistic illustrative
example. Our concluding remarks are in §6.
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2. Overview of the Literature

Two threads of research are immediately relevant
to the work presented in this paper: (i) the maxi-
mal covering location problem, and (ii) the design of
service facility networks with congestion. Schilling,
Jayaraman, and Barkhi (1993) provide a comprehen-
sive review of the early work on the covering prob-
lems in facility location, and a more recent review
can be found in Farahani et al. (2012). Concerning the
incorporation of congestion in service system design,
Berman and Krass (2015) provide an early survey of
the literature.

In location theory, each customer within a prede-
fined distance (or time) of a facility is considered
covered by that facility. The maximal covering location
problem involves determining the optimal sites for a
predetermined number of facilities so as to maximize
the total number of people covered. It is important
that everyone within the threshold distance is consid-
ered covered, and hence the reduction in accessibility,
as the distance to the facility increases, is not repre-
sented by the concept of coverage. As an implemen-
tation of partial coverage, Verter and Lapierre (2002)
used a linear decay function in modeling participation
in preventive healthcare programs. Berman and Krass
(2002) presented the gradual coverage decay function
using a step function. Berman, Krass, and Drezner
(2003) presented the gradual coverage decay model
with two prespecified threshold distances, where a
customer is considered fully covered within the first
threshold, partially covered between the two thresh-
olds, and “not covered” otherwise.

Note that these three models represent the cus-
tomer’s access to the facilities, and not necessarily to
the service being offered, because they do not incor-
porate the congestion at the facilities. Zhang, Berman,
and Verter (2009) extended Verter and Lapierre (2002)
by representing the accessibility of a service as the
sum of the travel and waiting times, the latter due to
congestion caused by the prespecified service capaci-
ties at each site.

In general, the incorporation of congestion at the
facilities under stochastic demand has been studied
within the context of the service network design prob-
lem. The problem aims at determining the optimal
configuration of the service facilities, i.e., their num-
ber and locations, as well as capacities, taking into
account the trade-off between the total cost of offer-
ing the service and the service quality. There are a
multiplicity of measures for service quality, includ-
ing the average waiting time per customer and the
average number of customers waiting for service.
There are two common ways of incorporating ser-
vice quality in a service system design model: (i)
including a measure of service quality as an addi-
tional cost term in the objective function and mini-
mizing the total overall cost (Elhedlhi 2006; Berman

and Drezner 2006; Aboolian, Berman, and Drezner
2008; Castillo, Ingolfsson, and Sim 2009); (ii) includ-
ing an additional constraint in the model to ensure
that service quality remains above a certain thresh-
old (Marianov and Serra 1998, 2002; Berman, Krass,
and Wang 2006; Baron, Berman, and Krass 2008). In
this paper, we adopt the second approach, using the
objective of maximizing accessibility. All of the ser-
vice system design models cited above assume inelas-
tic demand, whereas we make an explicit attempt to
incorporate demand elasticity in this paper.

In a related paper, Marianov (2003) presents a model
to site a predetermined number of multiserver facili-
ties so as to maximize the demand served under elas-
tic demand conditions. This paper differs from our
approach in three ways: (i) the number of servers at
each facility is given, (ii) the customer allocations are
done by a central decision maker, and (iii) the con-
gestion at the facilities is represented by the number
of customers. In contrast, the customer-choice model
we propose in §3 optimizes the capacity and captures
demand elasticity with respect to the total time spent
by the customer in receiving the service. Marianov,
Rios, and Barros (2005) (by taking the micro approach
discussed in §1 to model flexible capacity) extend the
earlier model to also determine the number of servers
allocated to each facility and represent the customers
sensitivity to the waiting time at a facility. Recall that
our model is focused on optimizing the service rate
at each facility (the macro approach). In addition,
they used heuristic concentration to solve small-scale
hypothetical problem instances.

Finally, it is important to note that other measures
of accessibility have been used. Two such measures
are the floating catchment area (Luo and Qi 2009) and
a modified catchment method that combines the float-
ing catchment area and the gravity model (Gu, Wang,
and McGregor 2010). These two measures are mainly
based on travel times and do not consider the service
and waiting times.

3. Maximal Accessibility Network
Design Problem

We consider a finite set M = {1, ..., m} of potential
facility locations, a finite set N = {1, ..., n} of popula-
tion zones, and a travel time metric i fori, je MUN.
Without loss of generality, we assume M C N and N
represents nodes of a network, in which case ¢ is the
shortest travel time between i and j. The facilities to
be located in M provide a prespecified set of public
services.

Let S C M be a set of facility locations (we call the
facility located at j € M, facility j). We assume that the
people at i € N generate a stream of Poisson demands
with homogeneous rate A; > 0, where A;, the demand
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rate of node i, is determined as follows. Let A" >0
denote the maximum demand rate that can be gen-
erated by node i—this can be thought of as the total
number of people at i who could potentially be inter-
ested in the services offered by the facilities in S. Sup-
pose that y;; is the fraction of the population of node
i € N who request service from facility j € S. Then
Ajj = ATy, is the actual demand rate from i seen by
facility j, such that

A :Z)‘ij :/\?wxzyijr (1)

jes jes

and A;—the total demand that facility j faces—is

given by
A= > Ajj= > ATy ()
ieN ieN
We assume that the service time at each facility j
is exponentially distributed with service rate u; >0
and the system is an M/M/1 queuing system (u;’s are
decision variables in our model). For the M/M/1 sys-
tem, W,, the expected total time customers spend in
facility j (which includes the expected waiting and
service times), can be computed as follows:

— Aj<p (3)
i

Define 7; = t;; + W, to be the expected total time that

customers from node i that receive service at facility

j spend (from the time that travel starts until the time

that the customer leaves the facility). Let f; be the

fraction of A that is realized. Then

1
Wi=W(Aj, pj)=——F+
n

fi= Zyijr 4)
jes
and
A= fidi"™. ©)

As we assume that customers select the facility with
the shortest expected total time, we denote by fl the
shortest total time incurred by customers at node i.
We also assume that this will happen only if the
shortest expected total time does not exceed a certain
threshold denoted by u,. Let T, = min{T;, n;}.

We consider f; to be elastic with respect to T;, such
that f; is a function of T;: F(T;) € [0, f™*], where
frx <1 is the maximum participation fraction of the
demand rate from node i. Although 7 (T;) can be gen-
eralized to any decreasing functions in [0, f™*], for
simplicity, we consider the following bounded linear
function (considered also in Zhang et al. 2010):

fi=F(T)=(f"—aT), forieN, 6)

where o represents the sensitivity level of demand
to T;. We note that T, <, = f™*/a and we can write
T; as a function of f: T;(f;) € [0, f*/a] such that

fimax _ fz

T(f)==——", forieN. (7)

In fact, for a given f;, T;(f;) is the total time thresh-
old that 100f;% of customers at node i are willing to
spend for receiving service and transit time, whereas
the actual total time that customers from node i spend

at facility j € S and in transit is 7;;.

REmMARK 1. We assume that the decision maker is
risk neutral as in most queuing models, and hence
the expected time customers spend in the system can
be used in conjunction with the elasticity and the
threshold.

Given the set of facility locations S and service
rates u;, j € S, the customers, when choosing which
facility to patronize, would like to minimize their
expected total time. The eventual choice of facilities
is a user-equilibrium problem, where at equilibrium,
customers do not want to change their choices.

As in Zhang et al. (2010), this equilibrium condition
can be stated as given S and i, jeSs,

=T(f) ify>0,
>T(f7) ify;=0,
forieN, jeS. (8)

Note that T;(f*) can be interpreted as the equilibrium
disutility for clients from node i € N. Thus, node i e N
will not be patronized from node j € S when 7; is
greater than the equilibrium disutility. To find y;; for
ieN, jeSin (8), we need to solve the following non-
linear complementarity problem:

tl]_l_ 1 _ fl _Zkesyik 20,
M= ZreN )‘Irmxyrj «
forieN, jeS,
1 .max — .
yij tl] + max o fl Zkes Jik = 0/
/-Lj - ZreN /\r yrj «
forieN, jeS,
y;>0 forieN,jeS. ©)

Equations (9) can be regarded as the equilibrium
condition.

To further explain the equilibrium condition for our
customer-choice system; let us first focus on the case
where y;; are binary variables. In this case if y; =1,
for ie N and j € S, we must have

i+ WA, wy) < i+ WA, ), k€S, (10)

which is equivalent to
i+ W(A;, ) <ty + W(AL )
+K(1-y;), keS, (11)

where K is sufficiently large to ensure that the
inequality holds when y; = 0. Because we seek allo-
cations under which no customer can do better by
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making a unilateral move, we need to ensure that Tjj
is the same for all j € S where y; is positive, and
hence (8) follows. Since y;; can indeed be a fraction,
we need to solve the following nonlinear complemen-
tarity problem:

b+ WAT, 1) = T(f) 2 0,

vt + W(AT, wy) — Ti(f) =0,
¥ =0,

forieN, jeS,
forieN,jeS,
forieN, jeS.

Given that from (2) and (3) we have W(A}, u;) =
1/(mj — Xren A7™y,;) for j €S and from (4) and (7)
we have T(f;) = (f™ — Y iesVYi)/a for i € N, the
above nonlinear complementarity problem is equiva-
lent to (9).

We next turn our attention to the objective of max-
imizing accessibility. Define a binary decision vari-
able x;, j € M to be 1 if an already located facility
at j decides to open a service with a service rate
of uj >0 and 0 otherwise, and let x represent the
m-dimensional location vector. As defined earlier, the
decision variable y;; is the fraction of the popula-
tion of node i € N who request service from facility
j € M. The customer allocation is then represented by
a (m x n)-dimensional matrix y, and given the service
rate vector p, the total number of people who would
benefit from the public service is

Zx,y, W) =22 ATy (12)

jeMieN

Define W™ to be the maximum waiting time that
is allowed at each facility such that W] < Wmax for
jeS. From (3), for je S

max 1
K= DAY+ Wmax

ieN
Define ™" and
Mmax (MmaX > 1/WmﬂX and Mmax 2 ZMmln)

to be the minimum and maximum possible service
rate at each facility, respectively, such that umin <
p; < um for facility j € S. Define C™ to be the avail-
able capacity to assign to all open facilities, such that
Yics uj = C™™. We also require u™" < C™.

We can now state the mathematical programming
formulation of the maximal accessibility network
design problem (MANDP) as follows:

max {Z(X/ Y= A?“qu-}

jeMieN
subject to
> y;<1, ieN, (13)
jeM
vij <X, ieN,jeM, (14)

5
max xf .
Mj_z)‘i Yij— Jymax >0, jeM, (15)
ieN
ijmin E/*L/ EX/-,LLmaX, jG M, (16)
Z /J’] — Cmax, (17)
jeM
1

8(1 - xj) + lu‘] - ZreN Arrnaxyrj

_Mzo

, 1eN,jeM, (18)
(64

1
y’”<ti-+ max
! ! 8(1_xj)+/*"j_2rel\l )‘r yr]
S Ykem¥i )
o

7

ieN,jeM, (19)

y;>0,x€{0,1}, u;>0, jeM,ieN. (20)

Constraints (13) ensure that the number of peo-
ple served at each population zone cannot exceed its
population, whereas constraints (14) guarantee that
service can be received from only open facilities. Con-
straints (15, 16) ensure that the waiting time and the
service rate at each facility remain within their pre-
specified levels, respectively. Constraint (17) makes
sure that the total available service capacity is dis-
tributed to the open facilities. Constraints (18, 19) are
the equilibrium conditions, where ¢ is a very small
number and the term &(1 — x;) is to avoid division
by zero when x; =0 forcing the associated y;; and u;
variables to zero.

We note that in MANDP we do not include a bud-
get constraint on locating facilities because we assume
that the potential locations are already up and run-
ning and there is no fixed cost associated with allo-
cating servers to them.

The formulation above belongs to the customer
choice class of models because it is based on the
assumption that customers always travel to the facil-
ity with minimum expected time (rather than to a
facility chosen by a central authority). The main dif-
ficulty in solving the problem is, clearly, the equilib-
rium constraints (18, 19), which are nonlinear. In §4,
we will show how MANDP can be linearized to find
e-optimal solutions efficiently.

4. An e-Optimal Solution Method for
MANDP

In this section we outline an efficient approach to solve
MANDP as an MIP. In §4.1 we first formulate the
problem of finding the optimal customer allocation
y*(x, p(x)) given location vector x and server capacity
vector p(x). We then formulate the problem of jointly
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finding the optimal server allocation w*(x) and opti-
mal customer allocation y*(x, p*(x)) given a location
vector x. Because the resulting problem is nonlinear, in
§4.2 we describe how to linearize this problem. Finally,
in §4.3 we show how MANDP can be presented as
an efficient MIP. The idea we use in §4.2 is to replace
the decision variables {u;} by the waiting times {W;}
and then to approximate functions of {W;} using the
tangent line approximation (TLA) method developed
in Aboolian, Berman, and Krass (2007).

4.1. Formulation of Subproblems OCA and
OSACA

We first focus on a subproblem aiming at finding
optimal customer allocation (OCA) given a set of
open facilities each with a prespecified capacity. To
find the customer allocation, we just need to solve
the nonlinear complementarity problem (9) given S =
{j € M | x; =1}, the set of facility nodes under vector x,
and p(x).

Let z; be a binary decision variable that is equal to
one if any fraction of customers at i € N visits facil-
ity j €S (i.e, if y; > 0), and zero otherwise (if y; = 0).
Then clearly Yij < zij, ieN, jeS. To obtain the equilib-
rium solution to the nonlinear complementarity prob-
lem (9), we propose the following model for OCA
(recall that x and p(x) are known):

maX{Zx, w0 (¥) = 2 A (Zyij ) }

ieN jeS
subject to
y;—2;<0, ieN,jeS, (21)
o
Yik— (fimax—ati'_—mx> =0,
% k / :U’j_ZreN)\r ]/rj

ieN,jeS, (22)

D Yi— <fimax —at;—

)
keS M — 2 reN APy,

—-2;)<0, ieN,jeSs, (23)

o

fimax_ati‘_
! /*L] - ZreN A?’naxyr]’
+Z#;(1-z;)>0, ieN,jeSs, (24)

jeS,ieN, (25)

where ¥, is a large enough number. Later we show
how to compute ;. Consider the following exhaus-
tive cases:

Case 1. (y;>0). In this case, from (21) we have
z;=1 and from (22) and (23) we obtain } i syy =
" = aty — af(uj— 2, onATY,). Hence y(t; +
1/ (e = 22 en AT Y) — (™ = Lkes Yir) /) = 0.

Case 2. (y;=0). In this case, whether z;=1 and
then sy = f™ — aty — a/(u; — Xen A7),
or z;=0, and then, from (22) and (23), > sV >
[ —aty —af/ (1 — X,en ATY,;), we obtain y;(t; +
1/(mj = 2ren AT ) — (f™™ = Lkes Yin) /) = 0.

¥;;=0,z;€{0,1},

Therefore, constraints (21)—(23) ensure that the sec-
ond set of the equilibrium conditions in (9) hold and
because constraints (22) are the first part of the equi-
librium condition in (9), we can conclude that con-
straints (21)-(23) ensure that the equilibrium condi-
tion in (9) holds.

Constraints (24) ensure that if f,(T;) = (f™ — a7;)
< 0, then z; in (24) is forced to be equal to 0 and

therefore, fri)m (21), y; =0. If z; =1, from (24) 7; =
T.(f;) < f™*/a. In case Y sz =0, then from (21) we
have 3 sy =0 and from (22) f™ — a1 = f™™ —
ati—a/(1j—2,en ATY,) <0 for j €S, therefore, 7; =
Ti(f) = £/ a.

Note that if Y s vy > 0 then there exists a j € S such
that z; =1 and from (22) and (23) we obtain } ;s v =
f* — a(t; + W;) < 1. Therefore, constraints (13) are
redundant in OCA.

Since when ™ —at; <0, we have z; =0, we can
replace in OCA and MANDP, the parameter N with
N; for any j € M, where N, denotes the set of all cus-
tomer nodes for which f™ —at; > 0.

As a next step we consider the subproblem aim-
ing at optimal server assignment and customer allo-
cation (OSACA). To this end, we assume that only
a location vector x is given, and consider the prob-
lem of determining also the corresponding optimal
capacity assignment vector p*(x) in addition to the
optimal customer allocation y*(x, p*(x)). Because the
service rate at each facility is a decision variable, we
should include the maximum waiting time, the ser-
vice rate, and the total service capacity constraints.
Let S be the set of open facilities corresponding to x.
Then, the mathematical programming formulation of
OSACA for S is

max Z,(y) =3 ¥ Ay,
J€S ieN;
subject to (21)—(24),
1

mi= D ATy + Tymax j€S, (26)
ieN

Mmin f /'l’] S Mmax, je S/ (27)

Z ,LL] — Cmax, (28)

jes
¥;=0,2;€{0,1}, u; >0, jeS§,ieN,.
Recall that constraints (26) ensure that W, < Wm
for all j € S and together with constraints (27) and
(28) are the relevant constraints from MANDP that
determine the size of K, ] €S. Thus, the only dif-
ferences between OSACA and OCA are constraints
(26)-(28) and the new decision variables u; >0, j € S.
Here it can be easily verified that we can set &; =
max;cs{at; + aW™} because it ensures that when
z; = 0, there is no conflict between (22) and (23)
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(e, DresVix = fi™™ — aty — af(pn; — X,en AT™Y,;), and
Y kes Vix < a (a is a number that is greater than or equal
to f™). We note that OSACA is still a very hard
problem to solve because of the nonlinearities in con-
straints (22)—(24).

In §4.2, we will convert OSACA into an MIP.

4.2, Formulating Subproblem OSACA as an MIP

The nonlinearity in OSACA is due to the expected
waiting times {W;}. As mentioned earlier, the main
idea here is to use {W;} instead of {u;} as decision
variables and then to approximate functions of {W,}.
Because W; =1/(u; — Lien, AT V),

1 .
pi=——+ A"y, forjes. (29)
I/vj ieN;
From (29) Yien, ATy == 1/W; for j € S and from
(28) Xjes mj = C™™, we can reformulate the objective
function

ZZZ)‘?axyijZ(Mj W) ZM] va,

J€S ieN; jes ] jes jes ")

Z(y)

as our new objective function

-1
Z (W) =C"™ 43—, (30)
jes I/v]

Note that (—1)/W; is concave increasing in W; for
j € S, and therefore we can use the TLA approximation
technique proposed in Aboolian, Berman, and Krass
(2007) and summarized in Online Appendix A (avail-
able as supplemental material at http://dx.doi.org/
10.1287 /trsc.2015.0595) to create an e-approximator
(piecewise linear approximation with maximum rela-
tive error €) for (—1)/W,.

Denote G(W)) = (—=1)/W; for W; € [1/u™>, Wm]
and G*(W,) to be the e-approximator for G(W;), such
that

G(W)) = G(W)) = (1+€)G(W)).
Let L be the number of linear segments in G*(W)),
with the endpoints of segment / given by c and clJrl
for I e{l,...,L5}. Let bl be the slope of segment I,
and a! = cm - c§ be the length of this segment (pro-

jected onto the W; axis). The function G*(W,) can be
represented as follows for W; € [1/u™>, W™*]:

LEW)
€ max 1 I
G (VV]) =—M + IX: ]b] i’ (31)

where in (31) we take into consideration (see (29))
that G(W,), which is a negative function, starts at
—u™™ and LE(W) = max{[: c =W} (note that L =
Ls(Wm)), and ej=1if I < LE(W) and el = (W, —cl)/a

if I=L(W,). Note that W, = Zzla L1/ pmax,

We now introduce the linearized ¢—optimal model
for OSACA. Let

Z;p(w) Cmax+z<z a]b]l ;_ max)
jes
j
=Y alblel + C™* S pm (32)
jes I=1 jes

The problem is

L€
]
Sy alblel - D umC(@3)

max Z#(W) =
jes =1 jes
subject to
yij_zluso’ ieN‘,jES/
Zy,k fmax_ _aI/V])zO, l'EZVj,].GS; (34)
keS
Zy,k fmax _ aI/VJ) — 31(1 — Zij) <0,
keS
€ ieN;, jeSs,
fimax_atl]_aV\[j—l—gi(l—Z,‘j)ZO., )
1e I\I]'/ ] € S/
; 1
V\/j_zu;e]l'z max ’ jGS,
=1 K

ij S Wmax, ]'e S,

i
Yoabie;— 3 ATy, =0, je€S, (35
1=1 zeN/-

j
Yoabie;— 30 ATy < p™—u™, jeS,  (36)
=1

1eNj

Z Z )‘?laxyij -

Jj€S ieN;

L€

]
S abfel = C -, (@)
jes I=1 jes
O<ej<1, jeS, lef

y; =0, z; € {0, 1}, W] >0,

L,..., L5},
JES, i€EN;,.

We note that the linearized version computes W*
instead of u}, j € S, but once {y;} and {N;} are known
we can simply compute u; =1/W; + Zigwj Ay,
j €S. Constraints (35)—(36) ensure that u™" < u; <
u™, j € S. Constraint (37) ensures that 3 q u; = C™.

It can be easily verified that the ZI(y) < Z¢ (W) <
(1+¢)Z:(y), where

<€, if Yo <23 > Ay,
jes j€S ieN;
e+ Z/es ,LL]
=31 = ax
Z]eS ZIEN )‘ yz]

jes J€S ieN;
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and for a small enough € (e.g., € =0.001) the error ¢
will be negligible and we can consider the solution
to the ¢-optimal model as the optimal solution for
OSACA.

4.3. The MIP Formulation of MANDP

Next we introduce the linearized ¢-optimal model for

MANDP by extending the linearized ¢-optimal model

for OSACA to include the location of facilities as well.
We now use the binary variables x; defined earlier,

and because S is not given as in OSACA we consider

all of the potential customers in M. The problem is

L¢
1
max Z¢(W,x) =) Za§b§e§ — "y x4

jeM =1 jem
subject to
¥ij—z;<0, i€eN;, jeM,
z;j—x;<0, ieN;, jeM,
W s W™, jeM,

D Y — (= aty—aW,)+1-x;>0,

keM

ie Nj, jeEM,
D Ya— (fM™ —atj—aW) = Zi(1-z;) <0,
keM . .
ieN;, jeM,
flmax_at,]—aW]-i-szﬂ—ZU)ZO, ie]\]j,]'eM,
x, 5
Wi—— s~ 146 =0, jeM,
M =1
L5
Yoabie;— > Ay, >0, jeM,
I=1 ieN;
L
doabie;— 30 ATy < p—u™, je M,
I=1 ieN;

Le
]
X S ANy = X albel + ¥y =,

jeMieN; jeM I=1 jeM
O<ej<1, jeM,le{l,... L},
y; >0, W;>0, x;€{0,1}, z; € {0, 1},
jeM, ieN;. (38)

In this formulation we have a new constraint
(zj <xj,i€ Nj, j € M). To ensure that y;; cannot be pos-
itive unless there is a facility located at j, and because
(22) is not feasible when x; =0, an additional term is
added in (38) to ensure that > ;) yix = b (where b is

Table 1 The Number of Line Segments Required for Each
Potential Facility Location Due to Model Linearization
LM\ g 0.05 0.01 0.005 0.001
50 10 21 29 63
100 11 24 34 74
150 12 26 36 80
200 13 27 38 85
250 13 29 40 88
300 14 29 41 91
350 14 30 42 94
400 14 31 43 96
450 14 31 44 93
500 15 32 45 99

a negative number) when x; = 0. Again, it can be eas-
ily verified that Z*(x,y) < Z¢*(W,x) < (1+ ¢)Z*(x, y),
where

<e if Y opu;=2)0 3 ANy,
jeM jeMieN;
ZjeM M
max 6
2 jeM ZieNj Ay
if > mj>2 20 Ay,

jeM jeMieN;

py=—¢€+

and for a small enough € (e.g., e =0.001) the error ¢
will be negligible and we can consider the solution to
the ¢-optimal model as the optimal solution for the
original model of MANDP.

Please note that the number of line segments used
to approximate the inverse waiting time at facil-
ity j, L7, is a function of £ and u™*. Each line segment
corresponds to one continuous variable e!. Table 1
shows the number of line segments required for each
potential facility location for each combination of &
and p™.

5. Computational Results

In this section, we present a set of computational
experiments to demonstrate the performance of the
proposed algorithm as well as a realistic illustrative
example.

5.1. The Efficiency of the Algorithm

We consider the 40 p-median problems in Beasley
(1990) as a basis of our computational experiments.
These problems range from n =100 to # = 900 pop-
ulation zones. The values of p provided by Beasley
(1990) are irrelevant in the context of this paper. For
100 < n <500 and for 600 < n <900, we generate prob-
lem instances by, respectively, increasing the num-
ber of alternative facility locations m = 20, 40, 60, ...
and m=10,20,30... until the resulting instance can-
not be solved within a prespecified time. For exam-
ple, Beasley problem 6 with n =200 cannot be solved
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within 3,600 seconds for m > 160, and hence our ex-
periment set contains only seven instances for this
problem. For each Beasley problem, we selected
the m potential locations as nodes k - [(n/m)|, where
k=1,2,...,m. For example, for Beasley problem 1
(n=100), when m = 20 the chosen alternative facility
locations are nodes 5, 10, 15, 20, ..., 100.

Our aim is to evaluate the performance of the algo-
rithm in terms of the central processing unit (CPU)
time, for which we set the limit as one hour per
instance. A total of 168 problem instances were solved
to optimality on a computer with Intel Core i7 2.2 GHz
with 8 GB RAM running Windows 7. The program
was coded in C** and all resulting MIPs were solved
using CPLEX 12.6. The other model parameters were
set as follows: total service capacity C™* = n/2, service
rate limits u™" =5, u™> = 11/10, maximum wait time
W™ =1, maximum demand rate A" =1, maximum
participation fraction f™> =1, slope of the participa-
tion function @ =0.4, and maximum approximation
error £ = 0.001. For 100 < n <600, n =700, and 800 <
n < 900, we solved five, four, and three instances,
respectively. During the experiment we recorded the
true gap and for & = 0.001, we observed 0.00024 <
gap < 0.00512 with an average gap = 0.00156.

Table 2 depicts the average CPU times for the
smaller Beasley problems (100 < n < 500) in our set
of experiments, whereas Table 3 reports on the larger
problems that were solved. For a given (1, m), the
number of problem instances solved to optimality is
denoted by [-], unless all of the instances were solved
to optimality. As expected, when the number of pop-
ulation zones #n is fixed, the problem becomes more
computationally challenging as the number of alter-
native locations m increases (see Table 2). This is not
necessarily true, however, when 7 is increased for
fixed m. For example Table 3 shows that the aver-
age CPU time for the n =700, m = 30 problems is
28.9 seconds, whereas the smaller n = 600, m = 30
problems require 34.25 seconds on average. Table 3
shows that the proposed algorithm performs well in
solving fairly large problem instances. For example,
we were able to solve two of the n =800 and m =40
instances within an average of about 6.5 minutes.

Table 2 Average CPU Times (Seconds) for the Smaller Instances
from Beasley (1990)

nmm 20 40 60 80 100
100 0.24 0.48 5.24 5.71 9.71
200 0.35 2.50 4.66 14.41 22.31
300 0.23 5.10 14.47 32.74 151.73
400 0.47 20.91 190.71 556.19 [4] 754.73 [2]
500 0.67 35.45 323.45 [4] —] [—]

9

Table 3 Average CPU Times (Seconds) for the Larger Instances from
Beasley (1990)

n\m 10 20 30 40
600 0.59 2.72 34.25 291.53 [4]
700 0.38 2.76 28.90 141.12
800 0.96 57.34 74.25 390.05 [2]
900 6.74 68.22 [2] 31.84 [1] [—]

5.2. An Illustrative Case Study

In this section, we present a realistic case that is based
on the network of 22 hospitals in the city of Toronto.
Berman, Krass, and Menezes (2007) is the source for
the 96-node network model we use here in repre-
senting the hospital system, which serves a popula-
tion of over 2.6 million according to the 2011 census.
Each node represents a forward sortation area (FSA)
defined by the first three digits of the Canadian postal
code. Berman, Krass, and Menezes (2007) placed the
nodes at the FSA centroids and established a link
between any two nodes if the corresponding FSAs
share a boundary. Using Euclidean distances among
the connected nodes, they computed the shortest dis-
tance between all node pairs. To obtain the travel
time between each node pair, we divide the short-
est distance between the nodes by the average speed
of travel.

As an illustrative case, we study the development
of a network of clinics as part of a preventive care pro-
gram offered by the government (e.g., cancer screen-
ing, vaccination, counseling). There are two hospitals
in three FSAs: M3N, M6M, and M6S, and a single
hospital in 16 FSAs. Thus, we assume that each of
the 19 hospital sites constitutes an alternative loca-
tion for the clinics to be established. The demand of
each node is the total number of residential and busi-
ness dwellings. There are 1.12 million dwellings in the
area represented by our model. For FSAs on the bor-
der of the city of Toronto, the number of dwellings in
the neighboring FSAs are added to represent the fact
that some of the customers of these hospitals do come
from outside the city. Without loss of generality, we
assume at most one annual visit per dwelling and set
the A7 values accordingly.

In developing the network of clinics, the govern-
ment needs to decide which existing hospitals should
be housing a new clinic, (xj), and the allocation of
the total investment in building the available service
capacity at each clinic, (u;). Given the strategic nature
of the MANDP, the optimal capacity levels prescribe
the target number of patients that can be seen in
a given time window. The most appropriate num-
ber of physicians, nurses, technicians, and equipment
needed to achieve this target is left to the detailed
operational design phase pertaining to each clinic.
The public reaction to the offered services is repre-
sented in the model by the participation rates (y;).



10

Aboolian, Berman, and Verter: Maximal Accessibility Network Design
Transportation Science, Articles in Advance, pp. 1-12, ©2015 INFORMS

We study the impact of increasing the overall sys-
tem capacity, C™, on the total number of people
served, when the clinic location and capacity alloca-
tion decisions are optimized. We work with an hourly
minimum service capacity (u™") of 10 patients and a
maximum service capacity (u™*) of 200 patients. We
assume 250 days/year, eight hours/day for the clin-
ics, and average travel speed of five miles/hour for
the patients. We also assume that 5% of the potential
customers will not participate regardless of the level
of accessibility, i.e., f™ =0.95 and people are will-
ing to spend about an hour and 45 minutes to get the
service, i.e., a =0.55. We also use W™ =1 hour and
€ =0.001 (the maximum error ¢ was recorded to be
less than or equal to 0.001). Given that m =19, hospi-
tals, e =0.001, and u™> =200 patients, we needed a
total of 1,615 line segments to linearize the model.

Figure 1 depicts the impact of increasing the total
available system capacity on the total participation.
The decreasing returns to scale in the capacity invest-
ment is expected. Note, however, that the total par-
ticipation rate remains under 65% for very high lev-
els of service capacity. The policy insight that can
be drawn from this finding is that the government’s
ability to increase participation by improving access
to preventive care is limited. In this illustrative case,
there seems to be room for improvement through
parallel investments into educational programs that
would highlight the importance of preventive care.
Consequently, the slope of the participation function,
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Figure 1 (Color online) The Impact of Total Available System

Capacity on Participation

a, can be reduced to enable the government to pro-
vide service to a larger population at the same levels
of accessibility.

Table 4 depicts a comparison between two over-
all system capacity scenarios: 150 patients/hour and
450 patients/hour. Under the former scenario, seven
clinics are established with an average utilization of
88.8%, whereas, the latter scenario results in 17 open
clinics, i.e., only M5B and M2K are not in the optimal
solution, with an average utilization of 72.8%. Note
that the utilization can be as low as 60% in MZ2R.
As expected, the standard deviation of the utilization
increases in response to increased total system capac-
ity, and hence the coefficient of variation of the utiliza-
tion increases from 0.035 to 0.064. A careful analysis

Table 4 Capacity Allocation Decisions as a Function of the Total Available System Capacity C™
Cm™* =150 C™>* =450
Facility Service Facility Service
Location FSA No. of FSA located rate Demand % located rate Demand %
No. No. hospitals code (1=yes) assigned served utilization (1=yes) assigned served utilization
1 11 1 M1P 1 34.97 25.75 73.63
2 16 1 M1W 1 39.87 31.03 77.83
3 20 1 M2K 1 18.19 15.93 87.58
4 22 1 M2M 1 17.19 15.41 89.65 1 27.22 20.49 75.28
5 25 1 M2R 1 15.31 10.42 60.06
6 34 2 M3N 1 10.00 8.39 83.90 1 20.74 14.83 71.50
7 37 1 M4C 1 38.17 30.04 78.70
8 39 1 M4G 1 22.29 15.38 72.24
9 43 1 M4M 1 15.54 8.93 69.95
10 44 1 M4N 1 28.31 20.70 73.12
11 52 1 M4y 1 18.38 13.18 7.7
12 54 1 M5B
13 57 1 M5G 1 57.89 54.57 94.26 1 11.24 7.36 65.48
14 65 1 M5T 1 38.14 29.51 77.37
15 77 2 M6M 1 32.68 24.55 75.12
16 81 2 M6S 1 37.11 28.45 76.66
17 89 1 M9C 1 10.98 9.68 88.16 1 25.94 19.22 74.09
18 92 1 M9IN 1 25.75 23.20 90.10 1 20.06 14.13 70.44
19 95 1 MoV 1 10.00 8.80 88.00 1 27.03 20.33 75.21
Average Average
Total 7 150 135.98 88.8% 17 450 334.3 72.8%
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of the service rate assigned to M3N, M6M, and M6S,
which currently host two hospitals each, under the
Cm* =450 scenario, reveals that having two hospitals
in these FSAs needs to be examined in more detail
(note that the service rates assigned to the clinics in
these three FSAs are well within the range of the opti-
mal service capacities of the other clinics). We believe
that the reason for having only seven facilities in the
case of C™> =150 is that the service pooling effect
results in more time saving (from reducing waiting
time) than the increase in travel time. In other words,
the pooling effect dominates.

Table 5 reports on our analysis pertaining to the evo-
lution of the clinic network as the total system capacity,
Cm*, is gradually increased. Focusing on the number
of open facilities, we identify three ranges: C™* < 250,
250 < C™* <400, and C™ > 400. Although the num-
ber of open clinics is not robust in the first range, it
is interesting to note that it takes the values 13 or 14
in the second range and 17 or 18 in the third range.
More importantly, nine of the 13 clinics established for
Cm* =250 remain in the solution as the overall sys-
tem capacity is increased to a level where all but one
of the clinics are open. The observed robustness has
two implications for the regulator: (i) the initial sys-
tem capacity should not be set less than a certain level
to avoid the range where the solution is not robust to
changes in C™®, and (ii) within the robust range, it is
possible to gradually build up the clinic network in
the event that there are budget limitations associated
with the number of clinics that can be established at
the outset.

Table 5 Facility Location Decisions as a Function of the Total

Available System Capacity C™*

Alternative
locationno. 50 100 150 200 250 300 350 400 450 500 550

1 1 1
1 1
1 1

O N O~ WN —
—_
—_
—_
—_ a
—_
—_.

—_
—_

O G G G GG G G O G G G Gy
O G G GG G U G G G Gy

—
o
~N = =
0 — -
—_
—_
—_
—_

Totalopen 1 3 13 13 14 14 17 18 18

facilities

6. Concluding Remarks

In this paper, we provide a mathematical formula-
tion for the problem of maximizing access to pub-
lic services by determining the configuration of a
facility network so as to optimize the incorporation
of the customers’ choices. In addition to the siting
decisions, we address the aggregate capacity deci-
sions at each facility to be established. We present
a procedure to linearize the resulting nonlinear inte-
ger program and identify an e-optimal solution. The
proposed approach proved effective in tackling fairly
large-scale problem instances.

In the context of a realistic case based on the
Toronto hospital network, we demonstrate the capa-
bility of the modeling framework to produce pol-
icy insights. For this instance, we were able to show
that (i) the capability of the Ontario government to
increase participation in its services by simply increas-
ing accessibility is limited; (ii) the current clustering
of the hospitals in downtown Toronto may not be
the best capacity allocation strategy (we note that
this is based on our model that ignores other con-
siderations such as quality that may be significant);
and (iii) a gradual capacity expansion strategy can
be robust in public services, as long as the system
is designed with an overall capacity that is above
a threshold level. It is important to note that, in
this context, the additional investment required for
increasing the overall system capacity needs to be
traded off against the potential benefits (i.e., cost sav-
ings and improved quality of life) of the more inva-
sive treatments that are avoided by the increased
service.

Our model can be generalized or extended in a
couple of ways. First, although bilevel programming
is not an efficient approach to solve our problem,
it can be an efficient approach for the special case
where only a limited number of service capacities
are available at each location. Second, our model
can be extended to the case where a fixed cost is
required to open a potential location. We could use
our approach to solve this extended case, but it will
result in an increase in the approximation error bound
¢ as defined in §4.3. Thus, the development of an effi-
cient approach for dealing with fixed costs for estab-
lishing new facilities remains a challenge for future
research.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287 /trsc.2015.0595.
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