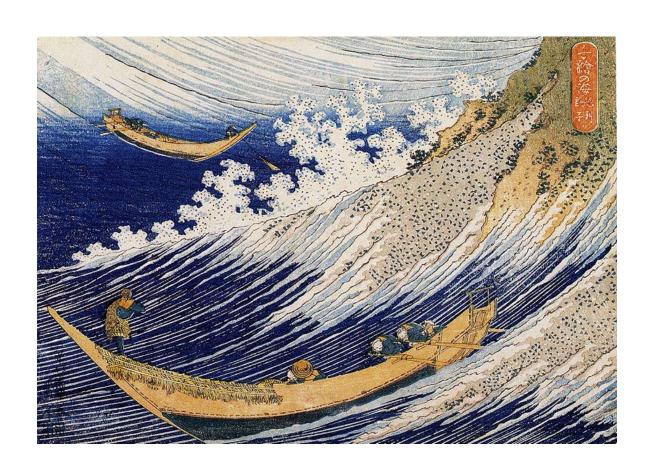


A Framework for Sharing High-Risk Data

Open Science in Action Isabella Chu, MPH Associate Director, Data Core, Stanford Center for Population Health Sciences November 18, 2019



Open Science, to accelerate discovery and deliver cures

The challenge: Large, high-risk datasets

- Commercial Claims
 - 58 million, 8 years
 - 149 million, 7 years
- Medicare
 - 11 million, 8 years
- EMRs
 - 80 million

Traditional Model

PHS Data Center

Discoverability

Personal relationship or literature review

Searchable using standard ontologies such as Medical Subject Headings (MeSH)

Access

Administration

Data Quality

Hosting

Goal: Research innovation—*not* disparate data access—defines the competitive advantage.

vailable across ciplines

ed processes

mmon model for interoperability

d ontologies such adings (<u>MeSH</u>)

Computing Capacity

Limited bandwidth and ad hoc security for large-scale analysis

Secure, cloud computing for performance and scalable use

Traditional Model

Optimal Model

Discoverability

Personal relationship or literature review

Searchable using standard ontologies such as Medical Subject Headings (MeSH)

Access

Limited to single teams and/or discipline

Data and agreements available across teams and/or disciplines

Administration

Dependent on research team knowledge and management

Centralized, automated processes

Data Quality

Fragmented, un-harmonized data sets requiring individual cleaning

Transformed data into common model for ease of replication and interoperability

Hosting

Individual computers or lab-specific servers

Cloud storage for ease of access and customization

Computing Capacity

Limited bandwidth and ad hoc security for large-scale analysis

Secure, cloud computing for performance and scalable use

A Data Ecosystem for High-Risk Data

Model Data Ecosystem

Goal: Combine disparate datasets together to answer population health questions

Strategic Priorities:

Data Governance

Data Management

Infrastructure

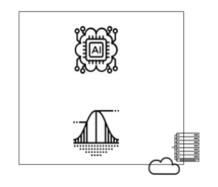
Incentives

Capacity Building

Secure Cloud Storage

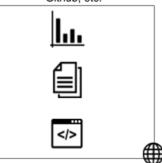
Capable of storage for data of many sizes and types

Data Discovery & Access


Host metadata, at a minimum Manage access

- Explore metadata;
 Frequency counts
- Complete access requirements, as needed

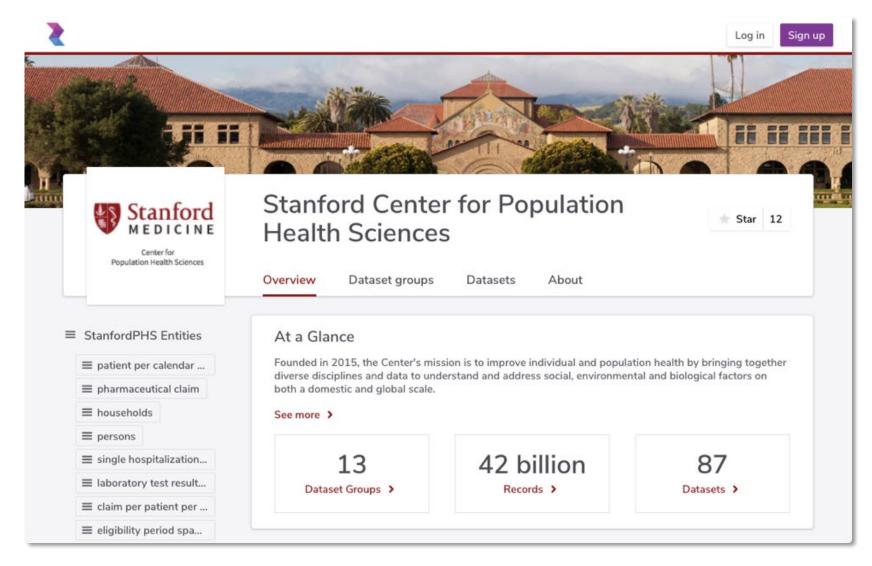
Compute platforms


Flexible depending on risk-profile, data type, analysis and budget

- Generate analytical datasets (link data, apply research criteria and filters)
- 2. Perform analyses
- Generate statistical and machine learning models

Reproducibility and Knowledge Sharing

Academic websites, Github, etc.



- Share findings
- Share code and methods
- Share data

PHS Data Portal

phsdata.stanford.edu

Looking forward

- Research on incentives
- New tools
- Grants to share what we've learned.
- New ontologies
- Data management and annotation
- Data landscaping

Join the conversation online!

@TheNeuro_MNI #OpenScienceinAction

