GIS and Water Resources II

Dr Parris Lyew-Ayee Jr
Mona Geoinformatics Institute
University of the West Indies
Applications of GIS in Water Resources Management

- Remote Sensing
- Watershed management
- Flood management
- Groundwater
- Water quality
- Permitting
Remote Sensing

- Use of aerial photography and/or satellite imagery to assess water resources
- Allows rapid assessment of large areas, and selection of subsets for detailed analyses
- Water has distinctive spectral properties; water absorbs radiation – in infrared imagery, water appears black
- Water quality can also be picked up from remote sensing – turbidity and/or depth
Remote Sensing

- Provides a static ‘snapshot’ of water conditions; not an active system like stream monitoring gauges, etc
 - Strong temporal scale component

- Used for:
 - Flood plain delineation
 - Flood assessment
 - Monitoring changes in stream channels
 - In association with traditional GIS, can provide information for all GIS/Water Resources projects
Watershed Management

- Terrain modeling
- Flow modeling
- Debris flow probability
Watershed Management

- **Terrain modeling**
 - Creation of DEMs
 - Automated watershed extraction from topography
 - Flow determination – direction and accumulation
A transport digital elevation model (DEM) helped determine detailed drainage patterns. Green with red outline represents 100- and 500-year floodplains. Riparian picture insert is a common display of vegetation along stream banks examined. A color infrared image below all data layers provides land cover references. Erie, PA, from ArcUser Summer 2004 Issue
Watershed Management

- Debris flow probability
 - Saturation and viscosity calculation
Flood Management

- Flood plain delineation
- Channel characteristics
- Inundation modeling
- Infrastructure analysis
- Risk modeling and mitigation
Flood Management

- Flood plain delineation
 - Use of satellite imagery
 - Assessment/modeling of topography
 - Soil
 - Hydrology
Flood Management

- Channel characteristics
 - Channel cross-section
 - Channel length
 - Channel shape
 - Changes over time
 - Channel erosion and depositional features
Flood Management

- Inundation modeling
 - Prediction of return periods
 - Simulation of models on contemporary situation
 - Assessment of potentially flood-prone sites
 - Implementation of mitigation measures
 - Large-scale and small-scale mitigation
Flood Management

- **Infrastructure analysis**
 - From analysis of inundation models, determine effects on infrastructure
 - Assessment of bridge and other structures that span river channels
 - Assessment of dykes and other mitigation structures that run parallel to channel
 - Effects of these on sedimentation and erosion processes downstream
 - Assessment of road and other critical networks and facilities with respect to flood hazards
Flood Management

- **Risk modeling and mitigation**
 - From inundation models and infrastructural analyses, can compute risk factors, and determine probabilities, return periods, and acceptable risk
 - Can begin planning appropriate engineering mitigation plans
 - Mitigation can range from legislation (zoning) to engineering
 - All have to consider socio-economic realities with respect to:
 - Demand for land for development
 - Cost of implementing mitigation
 - Environmental impact of mitigation downstream
Groundwater

- Modeling subsurface flow – rate, advection, concentration
- Well and spring models
Water Quality

- Management of surface and subsurface water
- Use of GPS and photographic tie-points
- Use of passive and active water quality monitoring systems
Water Quality

- Management of surface and subsurface water
 - Instrument-based assessments
 - Used in conjunction with GIS/GPS, ties location of sample collection to map to show patterns and distributions
 - Water quality measurements of oxygen, pH, bacterial content, etc
 - Measures flow rates and turbidity
Water Quality

- Use of GPS and photographic tie-points
 - Hot-linking functions relate pictures, reports, and tables for each location within a single system
 - GPS transmission can relay real-time information on water flow and quality
Use of passive and active water quality monitoring systems

- Depends on costs and risk; may not need advanced active system on a river that floods often, but is far from any settlement or developments
- Need to consider quantity of measuring stations; more stations equal greater detail and accuracy but greater cost
Permitting

- Population and consumption demand analyses and forecasts
- Water quality modeling
- Flow analyses
- EIA and development review and approval
- Engineering
Permitting

- Population and consumption demand analyses and forecasts
 - Consider population and consumption characteristics as end users of water resources
 - Includes domestic, commercial, industrial and civil uses
 - Need to know the location and distribution of these
Permitting

- Water quality modeling
 - Level of quality monitoring is a function of the use of the resource
 - Water may be used for:
 - Generation of hydro-electricity
 - Agricultural irrigation
 - Human consumption
Permitting

- **Flow analyses**
 - Looks at:
 - Rate of flow of water for downstream flood control
 - Content and concentrations of dissolved and suspended particles for pollution control and sedimentation analyses
Permitting

- EIA and development review and approval
 - Important when considering major infrastructural development within watersheds and along rivers or flood plains
 - Downstream impacts important
 - Range from major capital development projects, such as dams, to smaller activities such as sand-mining
 - Implications may extend to other jurisdictions, locally and internationally
Permitting

Engineering

- For:
 - Generation of hydro-electricity
 - Agricultural irrigation
 - Human consumption
 - Flood control
 - Transport
 - Extraction of resource

- Consider topography and other natural physical elements, and population/demand centres to determine means to supply resource from source