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Summary In this study, a new method of stand-alone short-term spring snowmelt river
flood forecasting was developed based on wavelet and cross-wavelet analysis. Wavelet
and cross-wavelet analysis were used to decompose flow and meteorological time series
data and to develop wavelet based constituent components which were then used to fore-
cast floods 1, 2, and 6 days ahead. The newly developed wavelet forecasting method (WT)
was compared to multiple linear regression analysis (MLR), autoregressive integrated mov-
ing average analysis (ARIMA), and artificial neural network analysis (ANN) for forecasting
daily stream flows with lead-times equal to 1, 2, and 6 days. This comparison was done
using data from the Rideau River watershed in Ontario, Canada. Numerical analysis was
performed on daily maximum stream flow data from the Rideau River station and on mete-
orological data (rainfall, snowfall, and snow on ground) from the Ottawa Airport weather
station. Data from 1970 to 1997 were used to train the models while data from 1998 to
2001 were used to test the models. The most significant finding of this research was that
it was demonstrated that the proposed wavelet based forecasting method can be used
with great accuracy as a stand-alone forecasting method for 1 and 2 days lead-time river
flood forecasting, assuming that there are no significant trends in the amplitude for the
same Julian day year-to-year, and that there is a relatively stable phase shift between
the flow and meteorological time series. The best forecasting model for 1 day lead-time
was a wavelet analysis model. In testing, it had the lowest RMSE value (13.8229), the
highest R2 value (0.9753), and the highest EI value (0.9744). The best forecasting model
for 2 days lead-time was also a wavelet analysis model. In testing, it had the lowest RMSE
value (31.7985), the highest R2 value (0.8461), and the second highest EI value (0.8410). It
was also shown that the proposed wavelet based forecasting method is not particularly
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accurate for longer lead-time forecasting such as 6 days, with the ANN method providing
more accurate results. The best forecasting model for 6 days lead-time was an ANN
model, with the wavelet model not performing as well. In testing, the wavelet model
had an RMSE of 57.6917, an R2 of 0.4835, and an EI of 0.4366.

ª 2008 Elsevier B.V. All rights reserved.
Introduction

Accurate flow forecasts are an integral component of sus-
tainable water resources management systems. The impor-
tance of an accurate flow forecast, especially in flood prone
areas, has increased significantly over the last few years as
extreme events have become more frequent and more se-
vere due to climate change and anthropogenic factors.
The accuracy of models used for any flood forecasting and
warning system is very important since an accurate flood
forecast with sufficient lead-time can provide advanced
warning of an impending flood at an early enough stage such
that flood damages can be reduced significantly.

Data-based hydrological methods are becoming increas-
ingly popular in flood forecasting applications due to their
rapid development times, minimum information require-
ments, and ease of real-time implementation. Although
they may lack the ability to provide physical interpretation
and insight into catchment processes, they are neverthe-
less able to provide relatively accurate flood forecasts. In
short-term flood forecasting applications where accuracy,
reliability and robustness are required, data-based models
are ideal.

In data-based flood forecasting, statistical models have
traditionally been used. Multiple linear regression (MLR)
and autoregressive moving average (ARMA) models are
probably the most common methods for forecasting floods.
More recently, artificial neural networks (ANN) have been
introduced for flood forecasting applications. However, a
problem with these and other linear and non-linear meth-
ods is that they have limitations with non-stationary data.
In the last decade, wavelet analysis has been investigated
in a number of disciplines outside of water resources engi-
neering and hydrology, and it has been found to be very
effective with non-stationary data. Wavelets are mathe-
matical functions that give a time-scale representation of
the time series and their relationships to analyze time ser-
ies that contain non-stationarities. Wavelet analysis allows
the use of long time intervals for low frequency informa-
tion and shorter intervals for high frequency information
and is capable of revealing aspects of data like trends,
breakdown points, and discontinuities that other signal
analysis techniques might miss. Another advantage of
wavelet analysis is the flexible choice of the mother wave-
let according to the characteristics of the investigated
time series. To summarize, wavelet transforms provide
useful decompositions of original time series, and the
wavelet-transformed data improve the ability of a fore-
casting model by capturing useful information on various
resolution levels.

Despite the above mentioned advantages, the use of
wavelet analysis as a stand-alone flood forecasting method
has not been explored in great detail in the literature,
and this constituted the main purpose of this research.
Previous research

Regression, time series, and artificial neural
network analysis

Many applications of regression methods can be found in the
hydrological literature (Tangborn and Rasmussen, 1976;
Curry and Bras, 1980; Phien et al., 1990; Tolland et al.,
1998; among others). Examples of hydrological applications
of ARMA and ARIMA models include McKerchar and Delleur
(1974), Noakes et al. (1985) and Yurekli et al. (2005), among
others. In one of the first applications of ANNs to river flow
forecasting, Kang et al. (1993) used ANNs and ARMA models
to predict daily and hourly river flows. They found that ANNs
could be used for forecasting river flows. Since then, a num-
ber of studies have confirmed the usefulness of ANN models
in river flow forecasting (among others, Hsu et al., 1995;
Tawfik, 2003; Piotrowski et al., 2006). Kim and Barros
(2001) used neural networks with radiosonde, rainfall data
and satellite derived characteristics of storm systems for
flood forecasting while Hsu et al. (2002) found that self-
organizing linear output map neural networks provide fea-
tures that facilitate insight into the underlying processes.
And finally, Nayak et al. (2005) found that neurofuzzy mod-
els provided more accurate flood forecasts than neural net-
work and fuzzy models.
Wavelet analysis

Wavelets, due to their attractive properties, have been ex-
plored for use in time series analysis. Examples in geophys-
ics include the El Nino-Southern Oscillation (Gu and
Philander, 1995), atmospheric cold fronts (Gamage and Blu-
men, 1993), and temperatures (Baliunas et al., 1997).

Wavelet transforms have become a tool for analyzing lo-
cal variation in time series (Torrence and Compo, 1998),
and hybrid models have been proposed for forecasting a
time series based on a wavelet transform preprocessing
(Aussem and Murtagh, 1997; Aussem et al., 1998; Zheng
et al., 2000; Zhang and Dong, 2001). Wavelet transforms
provide useful decompositions of original time series, so
that wavelet-transformed data improve the ability of a
forecasting model by capturing useful information on vari-
ous resolution levels.

In the field of hydrology, wavelet analysis has been re-
cently applied to examine the rainfall–runoff relationship
in a Karstic watershed (Labat et al., 1999), and to charac-
terize daily streamflow (Smith et al., 1998; Saco and Kumar,
2000) and monthly reservoir inflow (Coulibaly et al., 2000).
It has been found that an appropriate data pre-processing
stage using wavelet decomposition analysis can lead to
models that more adequately represent the true features
of the underlying system.
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Several studies have been published that developed hy-
brid wavelet-ANN models. Wang and Lee (1998) developed
a hybrid wavelet-ANN model to forecast rainfall–runoff in
China, Kim and Valdes (2003) developed a similar model
to forecast droughts in Mexico, and Cannas et al. (2005)
developed a hybrid model for monthly rainfall–runoff fore-
casting in Italy. Each of these studies found that the ANNs
trained with the pre-processed data had better perfor-
mance than the ANNs trained with un-decomposed time ser-
ies data, although the differences were small. As well,
Tantanee et al. (2005) developed a coupled wavelet-autore-
gressive model for annual rainfall prediction.

Outside of the hydrological and water resources litera-
ture, several authors have considered forecasting based
on wavelet methods but not supplemented with neural
networks. The forecasting method proposed by Wong
et al. (2003) relies on the decomposition of the time series
using wavelets into three summands: trend, harmonic and
irregular components. The method of Soltani et al. (2000)
exploits the de-correlating property of wavelets to fore-
cast long-memory processes. Zheng et al. (2000) combine
wavelets and Kalman filtering by modeling wavelet coeffi-
cients as state variables for the Kalman filter. Ikeda and
Tokinaga (1999) use wavelets to forecast fractal time
series.

There are a number of issues with respect to the use of
wavelet analysis for flood forecasting within the areas of
hydrology that have not, to the best knowledge of the
author, been explored in detail in the literature:

1. The use of wavelet analysis as a stand-alone short-term
river flood forecasting technique. The use of a stand-
alone wavelet forecasting method based on daily fore-
casting models would permit the models to fully take
advantage of one of the strengths of wavelet analysis
(which is its ability to handle non-stationary data on
a daily basis) because specific wavelet and cross wave-
let derived daily values of amplitude, wavelength,
phase and phase difference could be used in the fore-
casting models. Such a method was developed in this
study.

2. The use of cross-wavelet analysis in the development of
short-term river flood forecasting models. In this study,
cross-wavelet analysis was used to determine the phase
differences between flow and meteorological signals.

3. The use of wavelet decomposed meteorological data in
addition to wavelet decomposed flow data for the devel-
opment of models for short-term river flood forecasting.
In order to be able to use the wavelet decomposed mete-
orological data for flood forecasting, a calibration con-
stant has to be developed to link specific wavelengths
of flow and meteorological cycles. Such a calibration
constant was developed in this study.

4. The use of an edge effect correction technique devel-
oped from the continuous wavelet transform (CWT) for
artificially split data. In order to account for edge effect
discontinuities resulting from artificial data jumps, an
edge effect correction technique was developed in this
study.

5. The use of a modified version of the inverse Fourier
transform with calibration constant and edge effect cor-
rection for short-term river flood forecasting. In order to
reconstruct wavelet decomposed signals, the inverse
Fourier transform can be used. However, in order to
allow for a more precise reconstruction, an edge effect
correction and a calibration constant for meteorological
signals was applied to the inverse Fourier transform in
this study.

Study site and data

Rideau River watershed description

The Rideau River is located in southeastern Ontario, Can-
ada, and flows northeast for approximately 110 km from
its headwaters in the Lower Rideau Lake before discharging
into the Ottawa River at Ottawa (shown in Fig. 1). The Ri-
deau River watershed is a complex network of streams, riv-
ers and lakes covering an area of about 3830 km2. A flood
forecasting and warning system for the Rideau River basin
has been necessary to protect people from flood hazards
and to reduce flood damages. The main reason for this is
the annual snowmelt runoff flood, which is the most com-
mon type of flood in the Rideau River. This flood generally
occurs in the spring in March and April each year. During this
period of time, rapid melting of the snow under the com-
bined effect of warmer temperatures, sunlight, and winds,
releases significant quantities of water from the snow and
the ice and causes a heavy runoff which raises the water lev-
els in the Rideau River and causes flooding.

Rideau River data description

The data used in this study include a time series of stream
flow of the Rideau River at the Ottawa station provided by
the Rideau Valley Conservation Authority (RVCA), and a time
series of meteorological data at the Ottawa International
Airport obtained from Environment Canada for the Ottawa
region (both locations are shown in Fig. 1). Only data from
January to June were used in this analysis because the flood
occurs in the spring months. The stream flow data consist of
daily observations. The meteorological data consist of daily
observations of maximum temperature, minimum tempera-
ture, rainfall, snowfall, and daily readings of snow pack
depth on the ground. The temperature was taken 2 m above
the ground. The meteorological variables were chosen since
it was found that they were the most closely correlated with
flow. For both the flow and meteorological data, the time
series record begins in 1970 and ends in 2001. The data were
divided into training and testing data sets. The former set
began in 1970 and ended in 1997, while the testing set be-
gan in 1998 and ended in 2001.
Theoretical background

Wavelet transform

The Morlet–Grossman definition (Grossman and Morlet,
1984) of the continuous wavelet transform is

Wðs; nÞ ¼ 1ffiffi
s
p
Z þ1

�1
xn0w

� n0 � n

s

� �
dn0 ð1Þ



Figure 1 Rideau River watershed.
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where W(s,n) is the wavelet coefficient of the function xn0 ,
w is the analyzing wavelet (which is the Morlet wavelet in
this study), s (>0) is the scale, and n is the translation. Scale
is the width of the wavelet: a larger scale means that more
of the time series is included in the calculation and that fi-
ner details are ignored. A wavelet of varying width (scale) is
moved or translated through the entire time series. The
wavelet transformation is therefore localized in both time
(through the translation) and frequency (through the range
of scales).

There are a variety of wavelet functions that can be
used. In this study, the complex non-orthogonal Morlet
wavelet function was used, which can be used for signals
with strong wave-like features (which is the case with
streamflow data). The Morlet wavelet is a sinusoid with
wavelength s modulated by a Gaussian function, and has
provided robust results in analyses of time series records
(Appenzeller et al., 1998; Gedalof and Smith, 2001). The
parameter l is used to modify wavelet transform band-
width-resolution either in favor of time or in favor of fre-
quency, and represents the length of the mother wavelet
or analysis window.
The shifted and scaled Morlet mother wavelet can be de-
fined as (Morlet et al., 1982)

wl
s;n0 ðnÞ ¼ p�1=4ðslÞ�1=2e�i2p1sðn�n0 Þe�1

2
n�n0
slð Þ2 ð2Þ
Cross-wavelet transform

When comparing two different variables like temperature or
flow, or when analyzing tele-connections, one needs the
bivariate extension of wavelet analysis. Cross-wavelet anal-
ysis was introduced, among others, by Hudgins et al. (1993).
In hydrology, it has been used, for example, in rainfall–run-
off cross analysis (Labat et al., 1999). In this research,
cross-wavelet analysis was used to determine the phase dif-
ference D/n0 ;s values between the flow and meteorological
variables, and to develop cross wavelet constituent compo-
nents. The phase difference (shift) between variables x and
y is defined by (Jury et al., 2002)

D/x;y;n0 ;s ¼ tan�1
R s2

s1 ImðWx;y;n0 ;sÞdsR s2

s1 ReðWx;y;n0 ;sÞds
ð3Þ



Table 1 Best multiple linear regression models for each
lead-time

Model Lead-
time
(day)

Equation

MLR (1)-1 1 3.401 + 0.96Ft�1 � 0.77SGt + 0.78SGt�1 +
0.50Rt + 0.12St � 0.33Tmax + 0.34Tmin

MLR (2)-1 2 9.12 + 1.59Ft � 0.77Ft�1 � 1.37SGt +
1.5SGt�1 + 1.21Rt � 0.24St �
0.34Tmax + 0.38Tmin

MLR (6)-1 6 26.54 + 1.19Ft � 0.59Ft�1 � 2.18SGt +
2.47SGt-1 + 0.51Rt � 0.12St � 0.81Tmax +
0.77Tmin
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where Im and Re indicate the imaginary and real part,
respectively. The cross-amplitude of variables x and y is de-
fined by (Jury et al., 2002)

Wx;y;n0 ;s ¼ Wx;n0 ;sWy;n0 ;s ð4Þ

Eq. (4) has the advantage that s is used unambiguously for
both variables, resulting in very precise calibrations. For
flow components, there is no D/n0 ;s term.

Model performance comparison

The performance of a model can be measured by the root
mean square error (RMSE), the coefficient of determination
(R2), and the efficiency index (EI).

The root mean square error evaluates the variance of er-
rors independently of the sample size, and is given by

RMSE ¼
ffiffiffiffiffiffiffiffi
SEE

N

r
ð5Þ

where SEE is the sum of squared errors, and N is the number
of data points used. SEE is given by

SEE ¼
XN
i¼1
ðyi � ŷiÞ2 ð6Þ

where yi is the observed flow, and ŷi is the computed flow
from the model. The smaller the RMSE, the better the per-
formance of the model.

The coefficient of determination (R2) measures the de-
gree of correlation among the observed and predicted val-
ues. It is a measure of the strength of the model in
developing a relationship among input and output variables.
The higher the R2 value (with 1 being the maximum value),
the better is the performance of the model. R2 is given by

R2 ¼
PN

i¼1ðŷi � �yiÞPN
i¼1ðyi � �yiÞ2

ð7Þ

and

�yi ¼
1

N

XN
i¼1

yi ð8Þ

where �yi is the mean value taken over N, with the other
variables having already been defined.

As a measure of accuracy, one can use the efficiency in-
dex (EI), which measures the agreement between simulated
and actual values of a given parameter as a proportion of
the total range of that parameter in the data. The value
of the EI ranges from a maximum value of one to a minimum
of minus infinity. The higher the value of the EI, the better
is the performance of the model. It is given by (Nash and
Sutcliffe, 1970)

EI ¼ 1� SE

ST
ð9Þ

where SE is the sum square of errors given by

SE ¼
XN
i¼1
ðyi � ŷiÞ2 ð10Þ

and ST is the total variation given by

ST ¼
XN
i¼1
ðyi � �yÞ2 ð11Þ
and

�y ¼ 1

N

XN
i¼1

yi ð12Þ

where yi is the observed value, ŷi is the forecasted value,
and N is the number of data points.
Model development

Multiple linear regression, autoregressive integrated aver-
age, artificial neural network, and wavelet models were
developed for 1, 2, and 6 days lead-time flood forecasting
for the Rideau River in Ottawa, Canada.

Multiple linear regression analysis

Linear and multiple linear regression models were used to
determine the relationship between stream flow for the cur-
rent day Ft and the following variables: maximum tempera-
ture for the current day Tmax, minimum temperature for the
current day Tmin, daily total rainfall for the current day Rt,
daily total snowfall for the current day St, daily snow on the
ground depth for the current day SGt, daily snow on the
ground depth for the previous day SGt�1, and previous day
stream flow Ft�1.

All of the MLR models were first trained (to determine
the regression coefficients) using the data in the training
set (1970–1997) and then tested using the testing data set
(1998–2001), and compared using the three statistical mea-
sures of good fit. The S-Plus software package was used for
regression calculations. Only the best regression model for
each lead-time is provided in Table 1.

For 1 day lead-time forecasting, fifteen MLR models were
developed. The best model, MLR (1)-1, is a function of daily
stream flow from the previous day Ft�1, daily snow depth on
the ground for the current day SGt, daily snow depth on the
ground for the previous day SGt�1, daily total rainfall for the
current day Rt, daily total snowfall for the current day St,
maximum temperature for the current day Tmax, and mini-
mum temperature for the current day Tmin. This model is gi-
ven by

MLRð1Þ-1 ¼ 3:401þ 0:96Ft�1 � 0:77SGt þ 0:78SGt�1 þ 0:50Rt

þ 0:12St � 0:33Tmax þ 0:34Tmin



252 J.F. Adamowski
For 2 days lead-time forecasting, twenty MLR models were
developed. Five more models were developed for 2 days
lead-time compared to 1 day lead-time because more com-
binations of previous days were able to be used. The best
model, MLR (2)-1, is a function of daily stream flow in
the current day Ft, daily stream flow in the previous day,
daily snow depth on the ground for the current day, daily
snow depth on the ground for the previous day, daily total
rainfall for the current day, daily total snowfall for the cur-
rent day, maximum temperature for the current day, and
minimum temperature for the current day. This model is
given by

MLRð2Þ-1 ¼ 9:12þ 1:59Ft � 0:77Ft�1 � 1:37SGt þ 1:5SGt�1

þ 1:21Rt � 0:24St � 0:34Tmax þ 0:38Tmin

For 6 days lead-time forecasting, twenty MLR models were
developed. Five more models were developed for 6 days
lead-time compared to 1 day lead-time because more com-
binations of previous days were able to be used. The best
model, MLR (6)-1 is a function of daily stream flow in the
current day, daily stream flow in the previous day, daily
snow depth on the ground for the current day, daily snow
depth on the ground for the previous day, daily total rainfall
for the current day, daily total snowfall for the current day,
maximum temperature for the current day, and minimum
temperature for the current day. This model is given by

MLRð6Þ-1 ¼ 26:54þ 1:19Ft � 0:59Ft�1 � 2:18SGt þ 2:47SGt�1

þ 0:51Rt � 0:12St � 0:81Tmax þ 0:77Tmin
Autoregressive integrated moving average time
series analysis

There are four steps in model building: (a) testing for sta-
tionarity, (b) model identification (using ACF and other
functions), (c) model verification (Akaike criterion or other
tests), and (d) forecasting. Since the data were transformed
into a stationary model through differencing, ARIMA models
of order p, d, and q were used.

In the models that were developed, the number of auto-
regressive parameters (p) varied from 0 to 3 and the number
of moving average parameters (q) varied from 0 to 3. One
difference of the data set (d = 1) was required to transform
the series into a stationary process. A total of twelve ARIMA
models were selected to fit the trained stream flow series
and the Akaike criterion (AIC) was used to verify each of
the models. The best model for each lead-time is shown
in Table 2 along with its coefficients and AIC value.

All of the ARIMA ‘time series’ models were first trained
using the data in the training set (1970–1997) and then
Table 2 Best autoregressive integrated moving average
model for each lead-time

Model (p,d,q) Equation AIC

ARIMA (3,1,0) Ft�1 + 0.6374(Ft�1 � Ft�2) �
0.1497(Ft�2 � Ft�3) +
0.022(Ft�3 � Ft�4)

30543.52
tested using the testing data set (1998–2001), and
compared using the three statistical measures of good fit.
The S-Plus software program was used for all ARIMA
calculations.

The best model for each lead-time is given by

ARIMAð1Þ-ð3;1;0Þ ¼ Ft�1 þ 0:6374ðFt�1 � Ft�2Þ
� 0:1497ðFt�2 � Ft�3Þ þ 0:022ðFt�3 � Ft�4Þ
Artificial neural network analysis

Back propagation feed-forward ANNs with the ‘generalized
delta rule’ (BP-MLP) as the training algorithm, were used
to develop all the ANN models. The Tiberius 2.0.0 neural
network modeling software package was used for the ANN
analysis. To develop an ANN model, the primary objective
is to arrive at the optimum architecture of the ANN that
captures the relationship between the input and output
variables. In this study, ANN networks consisting of an input
layer with 1–8 input nodes, one single hidden layer com-
posed of 4–7 nodes (1–8 were tested), and one output layer
consisting of one node denoting the forecasted stream flow
were developed. The optimum learning coefficients were
found to be between 0.01 and 0.09 for the ANN models.

The inputs of each model consisted of all or some of the
following variables: maximum temperature of the current
day Tmax, minimum temperature of the current day Tmin,
daily total rainfall for the current day Rt, daily total snow-
fall for the current day St, daily snow on the ground depth
for the current day SGt, daily snow on the ground depth
for the previous day SGt�1, the current daily stream flow
Ft, and the previous daily stream flow Ft�1. Twenty-five
models were developed for each lead-time. Only the best
model for each lead-time is provided in Table 3. All of the
ANN models were first trained using the data in the training
set (1970–1997) to obtain the optimized set of connection
strengths, and then tested using the testing data set
(1998–2001), and compared using the three statistical mea-
sures of goodness of fit.

The best model for 1 day lead-time, ANN (1)-1, is a func-
tion of daily stream flow for the previous day, daily snow
depth on the ground for the current day, daily snow depth
on the ground for the previous day, daily total rainfall for
the current day, daily total snowfall for the current day,
and maximum temperature for the current day. This model
had a 6–6–1 architecture and an optimized learning coeffi-
cient of 0.04.

The best model for 2 days lead-time, ANN (2)-4, is a func-
tion of daily stream flow for the current day, daily stream
flow for the previous day, daily snow depth on the ground
for the current day, daily snow depth on the ground for
the previous day, daily total rainfall for the current day,
daily total snowfall for the current day, and maximum tem-
perature for the current day. This model had a 7–6–1 archi-
tecture and an optimized learning coefficient of 0.03.

The best model for 6 days lead-time, ANN (6)-1, is a func-
tion of daily stream flow for the current day, daily stream
flow for the previous day, daily snow depth on the ground
for the current day, daily snow depth on the ground for
the previous day, daily total rainfall for the current day,
daily total snowfall for the current day, and maximum



Table 3 Best artificial neural network models for each lead-time

ANN model Lead-time (day) Network configuration I–H–O Parameters Learning coefficient

ANN (1)-1 1 6–6–1 Tmax, Rt, St, SGt, SGt�1, Ft�1 0.04
ANN (2)-4 2 7–6–1 Tmax, Rt, St, SGt, SGt�1, Ft, Ft�1 0.03
ANN (6)-1 6 7–6–1 Tmax, Rt, St, SGt, SGt�1, Ft, Ft�1 0.02
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temperature for the current day. This model had a 7–6–1
architecture and an optimized learning coefficient of 0.02.

Proposed stand-alone wavelet flood forecasting
method

The proposed stand-alone wavelet flood forecasting method
is composed of the following steps:

1. Data editing: In order to reduce the number of vari-
ables in wavelet analysis, the variable ‘precipitation’
(P) was calculated using:
Tabl

Wav
(day

Wav
subt
P ¼ RainðtÞ þ SnowðtÞ þ ½Snow on Groundðt� 1Þ
� Snow on GroundðtÞ� ð13Þ

Using the variable P (as opposed to R, S and SG as in
the MLR, ARIMA, and ANN models) was necessary in
the case of the wavelet models in order to reduce
the number of possible model combinations because
of the very high number of model combinations that
could potentially be developed with the wavelet de-
rived constituent components.
2. Overview wavelet analysis: Overview wavelet analysis
was performed with a software program entitled
CWTA.F (Prokoph and Barthelmes, 1996) in UNIX. In
the overview wavelet analysis, the scales used ranged
from 3 days to 5000 days and the translation (or shift-
ing interval) was 5 days. Overview wavelet analysis
was done on the flow (F), precipitation (P), minimum
temperature (TI), and maximum temperature (TA)
variables. The waveband subtitles for the wavelet
analysis are shown in Table 4. The waveband subtitles
182, 48, 35, 25, 12, and 5 used in the forecasting mod-
els are simply ‘designations’ since the actual values
(in addition to all other values) vary on a day to day
basis from January 1st to June 30th.

3. Cross-wavelet analysis: Cross-wavelet analysis was
performed with a software program entitled XCWT.F
(Prokoph, 2006), which was very recently created as
a companion software program for the CWTA.F soft-
ware. Cross-wavelet analysis (XWA) was used to
determine the phase difference values between the
e 4 Waveband subtitles for wavelet analysis

eband
s)

5–7 10–15 22–28 32–38 44–52 180–183

eband
itle

5 12 25 35 48 182
flow and the meteorological variables once it was
determined that a relatively stable phase shift existed
between the flow and the meteorological variables.

4. Calculation of histograms: Histograms were created
from the wavelength columns of the wavelet analysis
results from the decomposition of flow, precipitation,
and maximum and minimum temperature, in order to
determine the frequency peaks, and to determine
whether the same signals occur in the meteorological
data as in the flow data so that the former can be
used to effectively forecast the latter. In this manner,
it was determined which wavelengths (periods)
occurred most frequently and should therefore possi-
bly be used in the construction of the forecasting
models. The choice of signals was confirmed via spec-
tral analysis.

5. Spectral analysis: Spectral analysis was used to con-
firm the results of the overview wavelet analysis and
histograms in terms of the choice of major signals to
be used in the reconstruction and forecasting models.

6. Narrowband wavelet analysis: Narrowband wavelet
decomposition analysis was used to decompose the
selected wavebands into their exact wavelengths with
their amplitudes and phase. This step was done on the
selected wavebands on all variables (i.e. F, P, TI, and
TA). For narrowband wavelet analysis, the scales ran-
ged from 3 days to 100 days (in order to make sure
that the dominant 182 day waveband did not domi-
nate). The translation used was 1 day.

7. Calculation of edge effects: Two types of edge effects
influence the wavelet coefficients. The first edge
effect is the decreased wavelet coefficients at the
beginning and end of the data sets (1970 and 1997)
due to the window width of the Morlet wavelet used.
It does not play a strong role in the Rideau River case
for two reasons. First, the use of l = 5 in this applica-
tion results in the zero-padding ‘overhang’ not being
very wide. And second, because the longest wave-
length used (�182 days) is only about 3% of the entire
record (�5075 days), only the beginning and end of
the data sets (1970/1971 and 1996/1997) are influ-
enced by edge effects. The shorter components are
even less affected. As such, although the ‘Morlet edge
effect’ is large for long wavelengths in other applica-
tions, it can be neglected in this application since all
cycles are comparably small (smaller than 183 days).
The second edge effect is the annual data cutoff on
June 30th which provides un-natural signal jumps in
all sub-annual cycles. This cutoff results in wavelet
coefficients that are too high for the first and last days
of each year. A correction technique was developed in
this study to account for the annual data cutoff. For
this correction, it was sufficient to use any single year
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(1972 was chosen) to correct for this jump since the
jump was approximately the same amplitude each
year. To account for the edge effects on the wavelet
coefficients at the beginning and end of each year of
artificially split data, an edge effect correction Yn0 ;s

was introduced (and is applied to data sets which have
been artificially split). The edge effect correction in
this case is defined by
Yn0 ;s ¼
½Wn0 ;sðannual cycle of day� for year yÞ�=½Wn0 ;sðannual cycle average of day� from beginning of cut data to end of cut data of year yÞ�

Wn0 ;sðannual cycle average of day� for all training yearsÞ
ð14Þ
where n 0 is time, s is the waveband, Yn0 ;s is the wave-
let edge effect correction, and Wn0 ;s is the ampli-
tude.As such, for each variable (i.e. F, P, TI, TA), a
set of edge effect corrections for each day from Jan-
uary 1 to June 30 was calculated (having the same va-
lue for each year) and then applied to the 20–50 day
cycles. Only the 20–50 day cycles were edge cor-
rected because the annual cycle is shortened (i.e.
365–182 days) but not altered as the peak always ap-
pears approximately in the middle (i.e. approximately
day 90–120) for each year. The short cycles (smaller
than 20 days) are affected, but the last 10 and first
10 data points of each year were omitted for modeling
and testing, thereby avoiding abrupt transitions
(which would result in models that would likely be
incorrect). This removal took care of the edge effects
on the sub-20 day wavebands.
8. Calculation of calibration constants: A calibration
constant was developed in this study which calibrates
meteorological components to flow components. The
calibration constant is the ratio in amplitude between
each specific wavelength, and it permits forecasting
of flow data by meteorological data by calibrating
the meteorological components to the flow compo-
nents of the same wavelength (e.g. temperature cycle
to river flow cycle).

Calculation of calibration constants was done for
the selected wavebands for P, TI, and TA. Each single
day (i.e. 10593 days) of training data was used to cal-
culate the calibration constants. The calibration con-
stant Zn0 ;s for each meteorological variable for each
component was calculated by dividing the amplitude
of the meteorological cycle from the corresponding
amplitude of the flow cycle, and is shown by
Zn0 ;s ¼ ½Wn0 ;sðflow dataÞ�=½Wn0 ;sðmeteorological dataÞ� ð15Þ
9. Reconstruction of constitutive series: From the above
steps, the following was derived: (1) amplitude (i.e.
wavelet coefficient) for each Julian day, for each com-
ponent, for each variable (flow and meteorological);
(2) wavelength for each Julian day, for each compo-
nent, for each variable (flow and meteorological); (3)
phase difference and phase for each component of
each variable for each Julian day; (4) edge effect cor-
rection for each variable for each Julian day; and (5)
calibration constant for each component of eachmete-
orological variable. The average values of the above
are shown in Tables 5–10.The wavelet constitutive
components were reconstructed through the inverse
Fourier transform multiplied by a calibration constant
and an edge effect correction, along with a phase dif-
ference. For reconstruction, the wavelet coefficients
(i.e. amplitude) were assumed to be equal to the Fou-
rier amplitudes, and the Morlet wavelet scales were
assumed to be equal to the Fourier period. An assump-
tion that was made was that there is a linear relation-
ship between changes in amplitude of meteorological
signals (e.g. temperature, precipitation cycles) and
streamflow cycles, with particular calibration con-
stants and differences in phase. Including the calibra-
tion constant, the phase difference between a
meteorological component and its corresponding flow
component, and noting that s defines the individual
waveband (e.g. 40–45 days), while sn0 defines the
strongest wavelength inside the waveband s at location
(or time) n 0, each wavelet constitutive component was
reconstructed for each Julian day by
xn0 ;s ¼ Zn0 ;sYn0 ;sWn0 ;s cos 2p
n0

sn0
þ /n0 ;s þ D/n0 ;s

� �
ð16Þ

The parameters in the above equations vary through
the year for each day, and as such explicitly take into
account the daily non-stationarities in the data. In
other words, there are separate constitutive series
(and therefore forecasting models) for each specific
day from January 1 to June 30 (the testing period
the models were developed for). This is how the mod-
els should be used in an operational context. Only
average values of the parameters are presented in
the tables for the sake of succinctness.
10. Calculation of averaged reconstructed constituent
components: The reconstructed daily constituent com-
ponentswere averaged for the same Julian day year-to-
year for each day of the training period for the January
1 to June 30 period, and not the phase, amplitude, and
wavelengths for each model. These averaged daily
reconstructed components were then used in the con-
struction of the forecasting models. This averaging
assumed that there was no significant trend in the
amplitudes, and that a relatively stable phase shift
(i.e. phase difference) existed between F and the
meteorological signals for the same Julian day year-
to-year. This was the case for the Rideau River.

11. Construction of forecasting models: The best con-
structed wavelet forecasting models for each lead-
time are shown in Table 11. An assumption that was
made in the construction of the wavelet based models
was that, in an operational context, one would have
access to data for the flow F(t) up to and including
the F(t) day. The actual forecasting models were con-



Table 5 Average amplitude for each wavelet component

Average amplitude (m3/s)

Waveband 5–7 10–15 22–28 32–38 44–52 180–183
Component 5 12 25 35 48 182
Flow (F) 7.401 15.223 23.601 25.312 31.943 52.082
Tmin (TI) 3.054 3.283 3.353 3.253 3.492 11.452
Tmax (TA) 2.817 3.117 3.231 3.070 3.364 12.642
Precipitation (P) 3.039 2.277 1.641 1.258 1.049 0.657

Table 6 Average wavelength for each wavelet component

Average wavelength (days)

Waveband 5–7 10–15 22–28 32–38 44–52 180–183
Component 5 12 25 35 48 182
Flow (F) 6.402 13.460 26.012 33.422 49.263 182.0
Tmin (TI) 5.988 12.567 25.343 32.774 48.592 182.0
Tmax (TA) 6.067 12.432 25.151 32.911 48.746 182.0
Precipitation (P) 5.756 11.992 24.404 32.648 47.095 182.0

Table 7 Phase difference for F(t) at t = 1 January 1st, 1970

Phase difference

Waveband 5–7 10–15 22–28 32–38 44–52 180–183
Component 5 12 25 35 48 182
Tmin (TI) 1.82 1.61 �0.87 0.97 2.88 0.85
Tmax (TA) 2.21 1.44 �1.24 1.08 2.9 0.93
Precipitation (P) 1.82 0.85 2.88 �1.93 �1.47 �1.43

Table 9 Average edge effect correction for each wavelet
component

Component Edge effect correction
for long meteorological cycles

Flow (F) 1.00
Tmin (TI) 1.38
Tmax (TA) 1.30
Precipitation (P) 1.57

Table 8 Phase for each wavelet component at t = 1 January 1st, 1970

Phase

Waveband 5–7 10–15 22–28 32–38 44–52 180–183
Component 5 12 25 35 48 182
Flow (F) 1.00 �1.06 3.12 �0.91 1.06 �2.62
Tmin (TI) 3.10 3.00 1.72 2.53 �1.56 2.88
Tmax (TA) 1.30 2.74 1.74 2.45 �1.58 2.79
Precipitation (P) 1.30 1.90 0.24 1.02 2.54 �1.19

Table 10 Average calibration constants for wavelet
components

Unit (days) Calibration/attenuation constant

Precipitation
(m3/s/mm)

Tmax

(m3/s/�C)
Tmin

(m3/s/�C)

182 70.1 6.3 6.9
45 70.3 19.6 22.8
32 85.7 20.1 25.2
22 30.2 20.3 20.3
10 5.1 3.3 2.8
5 2.3 2.6 2.2
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Table 11 Constituent components for best wavelet models for each lead-time

Model Lead-time
(day)

Constituent components

Model (1)-M12 1 F(t � 1) + TI182(t) � TI182(t � 1) + F48(t) � F48(t � 1) + TA12(t) � TA12(t � 1) + P5(t) � P5(t � 1) +
F25(t) � F25(t � 1)

Model (2)-M12 2 F(t � 3) + TI182(t) � TI182(t � 3) + F48(t) � F48(t � 3) + TA12(t) � TA12(t � 3) + P5(t) � P5(t � 3) +
F25(t) � F25(t � 3)

Model (6)-M12 6 F(t � 7) + TI182(t) � TI182(t � 7) + F48(t) � F48(t � 7) + TA12(t) � TA12(t � 7) + F25(t) �
F25(t � 7) + P5(t) � P5(t � 7)
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structed from the flow data of the previous day (or 3
days ago or 7 days ago) plus the difference between
the current day output from a constitutive series-y
and theprevious day (or 3 days ago or 7 days ago) output
from the same constitutive series-y (or more cycles).In
order to obtain the best possible overall wavelet
model, stepwise correlationwas used for optimization.
The best wavelet model was constructed by assessing
the correlation (R2) of each component with the train-
ing F(t), and taking the best correlating components as
the basis and adding the other components succes-
sively to the model depending on whether the forecast
improved or not.For 1 day lead-time, the best overall
wavelet model, WT(1)-M12 (M = mixed),
Fðt� 1Þ þ ½TI182ðtÞ � TI182ðt� 1Þ�
þ ½F48ðtÞ � F48ðt� 1Þ� þ ½TA12ðtÞ � TA12ðt� 1Þ�
þ ½P5ðtÞ � P5ðt� 1Þ� þ ½F25ðtÞ � F25ðt� 1Þ�

where F = flow, TI = minimum temperature, TA = max-
imum temperature, and P = precipitation. This model
was developed based on the flow from the day before
and the difference between the current day output
from each constitutive cycle of a variety of compo-
nents, and the previous day output from each consti-
tutive cycle of a variety of components.For 2 days
lead-time, the best overall wavelet model, WT (2)-
M12, can be written as

Fðt� 3Þ þ ½TI182ðtÞ � TI182ðt� 3Þ�
þ ½F48ðtÞ � F48ðt� 3Þ� þ ½TA12ðtÞ � TA12ðt� 3Þ�
þ ½P5ðtÞ � P5ðt� 3Þ� þ ½F25ðtÞ � F25ðt� 3Þ�

This model was developed based on the flow from
three days before and the difference between the
current day output from each constitutive cycle of
a variety of components, and the output from three
days before of each constitutive cycle of a variety
of components.For 6 days lead-time, the best
overall wavelet model, WT (6)-M12, can be written
as

Fðt� 7Þ þ ½TI182ðtÞ � TI182ðt� 7Þ�
þ ½F48ðtÞ � F48ðt� 7Þ� þ ½TA12ðtÞ � TA12ðt� 7Þ�
þ ½P5ðtÞ � P5ðt� 7Þ� þ ½F25ðtÞ � F25ðt� 7Þ�

This model was developed based on the flow from se-
ven days before and the difference between the cur-
rent day output from each constitutive cycle of a
variety of components, and the output from seven
days before of each constitutive cycle of a variety
of components.In an operational context, the above
models would be used with the component parameter
values from the specific day to be forecasted and
component parameter values from the current day
needed to forecast the flow for that specific day. As
well, the flow value for the current day would be
used. For example, in the case of 1 day lead-time,
model WT (1)-M12 would be used as follows in an
operational context

Fðtþ 1Þ ¼ FðtÞ þ ½TI182ðtþ 1Þ � TI182ðtÞ�
þ ½F48ðtþ 1Þ � F48ðtÞ� þ ½TA12ðtþ 1Þ
� TA12ðtÞ� þ ½P5ðtþ 1Þ � P5ðtÞ�
þ ½F25ðtþ 1Þ � F25ðtÞ�

where the only ‘external’ value needed is the
F(t) value which would be obtained from the flow sta-
tion for that current day, and with all other values
having already been calculated for that specific day
in the development of the forecasting models.
12. Testing of constructed forecasting models: As with
the MLR, ARIMA, and ANN models, the wavelet (WT)
models were tested on data from 1998 to 2001 by
comparing the original F(t) or observed flow with
the forecasted output of the models. Models were
compared using the coefficient of determination
(R2), the efficiency index (EI), and the root mean
square error (RMSE). As well, a simple perseverance
model for flow was tested for comparative purposes.

Results

Overview wavelet analysis

The shortest recognizable signals occurred in the 5–6 day
spectrum and the longest in the 180–183 day spectrum.
No significant multiyear signals were found. In total, six ma-
jor wavebands were identified, and were later confirmed
through the use of histograms and power spectra: a domi-
nant and stationary 182 day cycle (i.e. annual cycle for
these data), and weaker, non-stationary cycles of approxi-
mately 5, 12, 25, 35, and 48 days.

Overview wavelet scalograms and phase spectrum
figures

From the overview wavelet scalogram of the F data in Fig. 2
one can see the strength of the six major wavebands (i.e.



Figure 2 Overview and narrowband wavelet analysis of Rideau River flow-training data top = overview analysis and
bottom = narrowband analysis.

1 For interpretation of color in Fig. 4, the reader is referred to the
web version of this article.
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�6 days, �12 days, �25 days, �35 days, �45 days, and
�180 days). Horizontal lines indicate stationarity while
‘speckled’ data indicate non-stationarity. The long horizon-
tal yellow/orange line around the 180 day scale in the sca-
logram indicates that the annual signal is stationary.

From the overview wavelet scalogram of the TI and TA
data in Fig. 3, one can see the presence of the six major
wavebands (i.e. �6 days, �12 days, �25 days, �35 days,
�45 days, and �180 days). As with the flow data, the long
horizontal yellow/orange line around the 180 day scale in
the scalogram indicates that the annual TI and TA signals
are stationary.

From the overview wavelet scalogram of the P data in
Fig. 3, one can see that the precipitation pattern is domi-
nated to a much larger extent by non-stationary short
wavelengths (high frequencies) than the flow data. Non-
stationarity can be observed here as the fluctuation
between dark and light blue. The lighter blue vertical lines
indicate the June–January discontinuities.

Cross-wavelet analysis

Cross-wavelet analysis was used to determine the specific
phase difference values between flow and meteorological
variables. The phase difference values at t = 1 (i.e. January
1st, 1970) can be found in Table 7.

Cross-wavelet scalogram and phase difference
spectrum figures

From the cross-wavelet scalograms (the top figures) of the
logarithmically spaced flow data with the precipitation,
minimum temperature, and maximum temperature data
shown in Fig. 4, one can see the dominance of the stationary
182 day cycle (the horizontal yellow/orange1 band). Yel-
low/orange indicates maximum cross-amplitude and a hori-
zontal line indicates stationarity. As such, the horizontal
yellow/orange band of the 182 day cycle visually demon-
strates the dominant and stationary 182 day cycle.

Histograms

The histograms of the frequency of signal occurrences from
the wavelet analysis of the flow data indicated that strong
peaks occur at approximately 180 days, 48 days, 33 days,
20–28 days, 10–14 days, and approximately 5 days. For
the meteorological data, it was found that strong peaks oc-
cur at �180 days (TI, TA, P), �48 days (TI, TA), 33 days (TI,
TA), 20–28 days (TI, P), 10–14 days (P), and �5 days (P).

Power spectra

Power spectra via Fourier analysis was used to confirm the re-
sults of the overviewwavelet analysis and histograms in terms
of the choice ofmajor signals to be used in the reconstruction
and forecasting models. The power spectra confirmed the re-
sults of the overviewwavelet analysis and histograms in terms
of the choice of the six major wavebands (i.e. approximately
5, 12, 25, 35, 48 and 182 day cycles).



Figure 3 Overview wavelet analysis of Rideau River meteorological-training data.
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Narrowband wavelet analysis

Narrowband wavelet decomposition analysis was used to
decompose the six most important wavebands (i.e. 5–7
days, 10–15 days, 22–28 days, 30–35 days, 44–52 days,
and 180–183 days) into their exact wavelengths with their
amplitudes and phase. This step was done on the six wave-
bands (i.e. 5–7 days to 180–183 days) for all variables (i.e.
F, P, TI, and TA). The averaged results of narrowband wave-
let analysis in terms of the average amplitude and wave-
length for each Julian day of each year of the training
data for each waveband/signal can be found in Tables 5
and 6, respectively. The phase for each component at
t = 1 can be found in Table 8.

Narrowband wavelet scalograms and phase
spectrum figures

From the narrowband wavelet scalogram of the F data in
Fig. 2, one can see the strength of the six chosen wavebands
(i.e. �6 days, �12 days, �25 days, �35 days, �45 days, and
�180 days). Horizontal lines indicate stationarity while
‘speckled’ data indicate non-stationarity. The long horizon-
tal yellow/orange line around the 180 day scale in the sca-
logram indicates that the annual signal is stationary.

Comparative analysis of the four forecasting
methods for 1 day lead-time

Table 12 shows the results of the best model of each method
for 1 day lead-time forecasting. For comparative purposes,
the ‘perseverance model’ (PM (1)) result is also shown in Ta-
ble 12. The results show that highly accurate forecast values
can be obtained from all four different methods with a lead-
time of one day.

The following are the best four models that were devel-
oped from the four methods to forecast the stream flow in
the Rideau River for 1 day lead-time:

(1) The best regression model is MLR (1)-1, which had the
lowest RMSE values of 17.9013 and 17.8034 in training
and testing respectively, the highest R2 values of
0.9476 and 0.9481 in training and testing respectively,
and the highest testing EI value of 0.9480.



Figure 4 Cross-wavelet analysis of Rideau River training data top halves = wavelet coefficients; bottom halves = phase shift;
x-axis = time in days, y-axis = wavelength in days; bottom of figure = F(t) of training data.
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Table 12 Performance statistics for best models for each method for 1 day lead-time

Model RMSE training RMSE testing R2 training R2 testing EI testing

PM (1) 17.6847 17.4168 0.9493 0.9504 0.9486
MLR (1)-1 17.9013 17.8034 0.9476 0.9481 0.9480
ARIMA (1)-(3,1,0) 13.4309 13.9503 0.9674 0.9648 0.9631
ANN (1)-1 16.1034 16.1233 0.9496 0.9495 0.9492
WT (1)-M12 13.3370 13.8229 0.9778 0.9753 0.9744
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Figure 5 Best Rideau River WT model for 1 day lead-time (WT(1)-M12).

0
50

100
150
200
250
300
350
400
450
500

0 100 200 300 400 500

Flow

M
o

d
el

Figure 6 Scatter plot of best WT model for 1 day lead-time
(WT(1)-M12).
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(2) The best ARIMA model is ARIMA (1)-(3,1,0), which had
the lowest RMSE values of 13.4309 and 13.9503 in
training and testing respectively, the highest R2 values
of 0.9674 and 0.9648 in training and testing respec-
tively, and the highest testing EI value of 0.9631.

(3) The best ANN model is ANN (1)-1, which had the low-
est RMSE values of 16.1034 and 16.1233 in training and
testing respectively, the highest R2 values of 0.9496
and 0.9495 in training and testing respectively, and
the highest testing EI value of 0.9492.

(4) The best wavelet model is WT (1)-M12 which had the
lowest RMSE values of 13.3370 and 13.8229 in training
and testing respectively, the highest R2 values of
0.9778 and 0.9753 for training and testing respec-
tively, and the highest testing EI value of 0.9744.

Overall, the best forecasting model for 1 day lead-time
was a wavelet analysis model. Model WT (1)-M12 had the
highest testing R2, the lowest testing RMSE, and the highest
testing EI of all models developed for 1 day lead-time fore-
casting. WT (1)-M12 had a testing RMSE that was 0.92% more
accurate than ARIMA (1)-(3,1,0) (the best non-WT model),
and a testing RMSE that was 26% more accurate than the 1
day perseverance model PM (1). WT (1)-M12 had a testing
R2 that was 1.1% more accurate than ARIMA (1)–(3,1,0),
and a testing R2 that was 2.55% more accurate than the 1
day perseverance model. And finally, WT (1)-M12 had a test-
ing EI that was 1.2% more accurate than ARIMA (1)-(3,1,0),
and a testing EI that was 2.65% more accurate than the 1
day perseverance model.

Fig. 5 compares the observed and forecasted flow from
model WT (1)-M12. Medium flows and high flows were very
accurately forecasted, with low flows being somewhat less
accurate. However, overall, it can be seen that the wavelet
model forecasts low, medium, and high Rideau River flows
very well for a lead-time of 1 day. Fig. 6 shows the scatter
plot of observed and forecasted flow from model WT (1)-
M12. It indicates a strong positive correlation.
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It can be seen that the proposed stand-alone wavelet
forecasting method is highly accurate for 1 day lead-time
flood forecasting, and performs better than the MLR, ARI-
MA, and ANN methods.

Comparative analysis of the four forecasting
methods for 2 days lead-time

As expected, when the lead-time increased from 1 day to 2
days, the performance of all the models decreased and less
accurate forecast values were obtained. Table 13 shows the
results of the best model of each method for 2 days lead-
time forecasting. For comparative purposes, the ‘persever-
ance model’ (PM (2)) result is also shown in Table 13. The
following are the best four models which were developed
from the four methods to forecast the stream flow in the Ri-
deau River for 2 days lead-time:

(1) The best regression model is MLR (2) - 1 which had the
lowest RMSE values of 36.8036 and 36.9167 in training
and testing respectively, the highest R2 values of
0.7859 and 0.7795 in training and testing respectively,
and the highest testing EI value of 0.7792.

(2) The best ARIMA model is ARIMA (2)-(3,1,0) which had
the lowest RMSE values of 60.0341 and 65.8156 in
training and testing respectively, the highest R2 values
of 0.7187 and 0.6576 in training and testing respec-
tively, and the highest testing EI value of 0.3067.
Table 13 Performance statistics for best models for each metho

Model RMSE training RMSE testing

PM (2) 41.2925 41.9870
MLR (2)-1 36.8036 36.9167
ARIMA (2)-(3,1,0) 60.0341 65.8156
ANN (2)-4 31.7062 31.9987
WT (2)-M12 31.0323 31.7985
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Figure 7 Best Rideau River WT mode
(3) The best ANN model is ANN (2)-4 which had the lowest
RMSE values of 31.7062 and 31.9987 in training and
testing respectively, the highest R2 values of 0.8285
and 0.8236 in training and testing respectively, and
the highest testing EI value of 0.8211.

(4) The best wavelet model is WT (2)-M12, which had the
lowest RMSE values of 31.0323 and 31.7985 in training
and testing respectively, the highest R2 values of
0.8477 and 0.8461 for training and testing respec-
tively, and the second highest testing EI value of
0.8410.

Overall, the best forecasting model for 2 days lead-time
was a wavelet model. Model WT (2)-M12 had the highest
testing EI, the lowest testing RMSE, and the highest testing
R2. WT (2)-M12 had a testing RMSE that was 0.63% more
accurate than ANN (2)-4 (the best non-WT model), and a
testing RMSE that was 32% more accurate than the 2 day
perseverance model PM (2). WT (2)-M12 had a testing R2

that was 2.66% more accurate than ANN (2)-4, and a testing
R2 that was 14.4% more accurate than the 2 day persever-
ance model. And finally, WT (2)-M12 had a testing EI that
was 2.36% more accurate than ANN (2)-4, and a testing EI
that was 13.7% more accurate than the 2 day perseverance
model.

Fig. 7 compares the observed and forecasted flow using
model WT (2)-M12. It can be seen that the stream flows
were very slightly overestimated during high flow periods
d for 2 days lead-time

R2 training R2 testing EI testing

0.7394 0.7298 0.7199
0.7859 0.7795 0.7792
0.7187 0.6576 0.3067
0.8285 0.8236 0.8211
0.8477 0.8461 0.8410
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ays) 1998-2001

Flow (t)

Model

l for 2 days lead-time (WT(2)-M12).
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and both slightly overestimated and underestimated at
different times during low flow periods. As well, a shift to
the right in the forecasted flow can be observed. Fig. 8
shows the scatter plot of observed and forecasted flow from
model WT (2)-M12. It indicates a relatively strong and posi-
tive correlation.

Overall, it can be seen that the proposed stand-alone
wavelet forecasting method is highly accurate for 2 days
lead-time flood forecasting, and performs better than the
MLR, ARIMA, and ANN methods.
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Figure 8 Scatter plot of best WT model for 2 days lead-time
(WT(2)-M12).

Table 14 Performance statistics for best models for each metho

Model RMSE training RMSE testing

PM (6) 68.4212 73.0954
MLR (6)-1 59.0125 62.1031
ARIMA (6)-(3,1,0) 90.1039 97.7038
ANN (6)-1 50.0116 52.9023
WT (6)-M12 54.1691 57.6917
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Figure 9 Best Rideau River WT mode
Comparative analysis of the four forecasting
methods for 6 days lead-time

The results show that as the lead-time increased the perfor-
mance of all the models decreased and less accurate fore-
cast values were obtained for each of the four different
methods. Table 14 shows the results of the best model of
each method for 6 days lead-time forecasting. For compar-
ative purposes, the ‘perseverance model’ (PM (6)) result is
also shown in Table 14. The following are the best four mod-
els which were developed from the four methods to forecast
the stream flow in the Rideau River for 6 days lead-time:

(1) The best regression model is MLR (6)-1 which had the
lowest RMSE values of 59.0125 and 62.1031 in training
and testing respectively, the highest R2 values of
0.4294 and 0.3792 in training and testing respectively,
and the highest testing EI value of 0.3781.

(2) The best ARIMA model is ARIMA (6)-(3,1,0) which had
the lowest RMSE values of 90.1039 and 97.7038 in
training and testing respectively, the highest R2 values
of 0.3487 and 0.2378 in training and testing, respec-
tively, and the highest testing EI value of �0.5405.

(3) The best ANN model is ANN (6)-1 which had the lowest
RMSE values of 50.0116 and 52.9023 in training and
testing respectively, the highest R2 values of 0.5891
and 0.5485 in training and testing respectively, and
the highest testing EI value of 0.5476.
d for 6 days lead-time

R2 training R2 testing EI testing

0.3789 0.3143 0.2314
0.4294 0.3792 0.3781
0.3487 0.2378 �0.5405
0.5891 0.5485 0.5476
0.5391 0.4835 0.4366
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ays) 1998-2001

Flow (t)

Model

l for 6 days lead-time (WT(6)-M12).
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Figure 10 Scatter plot of best WT model for 6 days lead-time
(WT(6)-M12).
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(4) The best wavelet model is WT (6)-M12 which had the
lowest RMSE values of 54.1691 and 57.6917 in training
and testing respectively, the highest R2 values of
0.5391 and 0.4835 for training and testing respectively,
and the second highest testing EI value of 0.4366.

Overall, the best forecasting model for 6 days lead-time
is an ANN model. Model ANN (6)-1 had the lowest testing
RMSE, the highest testing EI, and the highest testing R2. It
was found that the wavelet analysis method is not as suit-
able for longer lead-time flood forecasting such as 6 days,
and that the ANN method clearly provides more accurate re-
sults. ANN (6)-1 (the best overall model) had a testing RMSE
that was 9.1% more accurate than WT (6) - M12 (the best
wavelet model), although WT (6)-M12 still had a testing
RMSE that was 26.7% more accurate than the 6 day persever-
ance model PM (6). ANN (6)-1 had a testing R2 that was
11.8% more accurate than WT (6)-M12, although WT (6)-
M12 still had a testing R2 that was 35% more accurate than
the 6 day perseverance model. And finally, ANN (6)-1 had
a testing EI that was 20.3% more accurate than WT (6)-
M12, although WT (6)-M12 still had a testing EI that was
47% more accurate than the 6 day perseverance model.

Fig. 9 compares the observed and forecasted flow using
model WT (6)-M12. It can be seen that the stream flows
were underestimated during low flow periods, and overesti-
mated during medium and high flow periods. As well, a
noticeable shift to the right in the forecasted flow can be
observed. Fig. 10 shows the scatter plot of observed and
forecasted flow from model WT (6)-M12. It indicates a weak
positive correlation.

Overall, it can be seen that the proposed stand-alone
wavelet forecasting method is more accurate for 6 days
lead-time flood forecasting than the MLR and ARIMA meth-
ods, however, it is less accurate than the ANN method. As
such, the results of this study indicate that the ANN method
is more useful for ‘longer-term’ flood forecasting than the
proposed WT method.

Discussion

Best model

The best wavelet model for the Rideau River for 1, 2, and 6
days lead-time forecasting was ‘model M12’ which can be
described, for example in the case of 2 days lead-time fore-
casting, by

Fðt� 3Þ þ ½TI182ðtÞ � TI182ðt� 3Þ� þ ½F48ðtÞ � F48ðt� 3Þ�
þ ½TA12ðtÞ � TA12ðt� 3Þ� þ ½P5ðtÞ � P5ðt� 3Þ� þ ½F25ðtÞ
� F25ðt� 3Þ�

This model is a ‘mixed’ variable and signal model. It can be
seen that in the case of the Rideau River, the changes in
cyclical outputs of all four variables (i.e. F, P, TI, and TA)
with varying wavelengths (i.e. 182, 48, 25, 12, and 5 days)
provided the most accurate forecasting model. More specif-
ically, it was found that the �182 day minimum tempera-
ture cycles (TI182), the �48 day flow cycles (F48), the
�25 day flow cycles (F25), the �12 day maximum tempera-
ture cycles (TA12), and the �5 day precipitation cycles (P5),
provided the most accurate forecasting models for 1, 2, and
6 days flood forecasting. Apart from this, it is difficult to
provide any additional physical insight on the final form of
the wavelet models.

Strength of the dominant annual signal

The dominant annual signal was found to be the most use-
ful constituent component in the forecasting models for
each of the three lead-times. The reason for this is that
the 182 day cycle was very well-defined, most likely be-
cause of the continental climate setting of Ottawa, and be-
cause the wavelength (or onset–offset in each year) was
very stable for the annual cycle. The dominant annual sig-
nal was the only signal that was found to be stationary. All
other signals were non-stationary. The occurrences of the
shorter cycles were less stable (for example the phases
were less stable). Nevertheless, the use of shorter cycles
in combination with the annual cycle proved to be
advantageous.
High accuracy of 1 and 2 days lead-time and low
accuracy of 6 days lead-time forecasting with
wavelet models

A possible reason for the excellent performance of the 1 and
2 days lead-time wavelet forecasting models could be the
relationship between one of the defining properties of the
short-term wavelet based forecasting procedure (i.e. local
daily non-stationarity of the forecast model) and the same
property of the real river flood flow process. Recent re-
search by Wang (2006) has shown that the shorter the
lead-time, the more likely a hydrological process is non-lin-
ear and non-stationary. More specifically, Wang states that
almost all yearly hydrological processes are linear and sta-
tionary while at the other end almost all daily river flood
flow processes are non-linear and non-stationary. As such,
it is likely that the property of local daily non-stationarity
that is a defining characteristic of the wavelet method is
very useful and allows for more precise forecasting.

It was found that the wavelet model for 6 days lead-time
forecasting was not particularly accurate, with the best ANN
model being more accurate. It was difficult to find any
‘technical’ or physical reason as to why the 6 days lead-time
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wavelet model was not very accurate. It is likely that the
averaging that is necessary for the wavelet model affects
the longer forecasts to a greater degree. It could also be
that the ANN method is simply better suited for longer fore-
casting lead-times.

Artificially splitting the training data

In order to obtain the best possible forecasting models,
one must carefully consider the following two issues: (a)
split the data artificially so that the constituent compo-
nents only deal with the period of interest for forecasting,
but have potentially significant edge effect problems and
possibly phase problems; or (b) not split the data artifi-
cially so that the constituent components deal with the en-
tire year and as such not have potentially significant edge
effect or phase problems, but have unwanted remains of
influences of cycles from the period of the year not being
forecasted.

It was found that it is very difficult to decide a priori (be-
fore analysis/modeling starts) if the artificial splitting of the
data would have a large or small effect on particular wave-
bands and variables. In order to determine whether it is
advisable to artificially split the data, it is necessary to ana-
lyze the split data in great detail. For example, if the causes
of floods are completely different at certain points of the
year (which was the case for the Rideau River), artificially
splitting the data for those specific periods should be con-
sidered. Wavelet based forecasting models can then be
developed specifically for those periods, as in the Rideau
River case.

In future studies, if it is decided to artificially split the
data, then an ‘edge effect correction for split data’ such
as the one developed in this study, should be applied. As
well, a value of l = 5 is recommended in the wavelet and
cross-wavelet decomposition stages for any future studies
since, during the experimental stages of this study, it was
found that such a value significantly ‘dampens’ the effect
of amplitude and phase jumps carried into the new analyz-
ing window each year when using artificially split data.
Without the use of the edge effect correction technique
developed in this study, along with the use of l = 5 for
‘dampening’, it might be difficult to effectively use artifi-
cially split data in the development of wavelet based con-
stituent components for flood forecasting.
Conclusion

There are a number of issues with respect to the use of
wavelet and cross-wavelet analysis for flood forecasting
snowmelt driven floods within the areas of water resources
engineering and hydrology that were explored in this study
that, to the best knowledge of the author, have not been
explored in any great detail in the literature. The main con-
clusions of this research are

1. The use of wavelet analysis in the development of a
stand-alone wavelet based short-term river flood fore-
casting method was shown to be useful for 1 and 2 day
lead-time forecasting, assuming that there are no signif-
icant trends in the amplitude for the same Julian day
year-to-year. The use of wavelet derived daily constitu-
ent components for flood forecasting that take into
account the day-to-day non-stationarity of flow and
meteorological time series allowed for the exploitation
of one of the strengths of wavelet analysis, which is its
ability to handle non-stationary data.

2. The use of cross-wavelet analysis in the development of
short-term river flood forecasting models was shown to
be useful, assuming there is a relatively stable phase
shift between the flow and meteorological time series.
Cross-wavelet analysis was used to find phase differences
between flow and meteorological data and to develop
cross-wavelet constituent components, both of which
improved the forecasting ability of the wavelet based
flood forecasting models.

3. The use of wavelet decomposed meteorological data, in
addition to wavelet decomposed flow data, was shown to
be useful in the development of models for short-term
river flood forecasting. In order to be able to use the
wavelet decomposed meteorological data for flood fore-
casting, a calibration constant was developed in this
study and its usefulness was demonstrated in linking spe-
cific wavelengths of flow and meteorological cycles.

4. The use of an edge effect correction technique devel-
oped from the continuous wavelet transform for artifi-
cially split flow and meteorological data, was shown to
be useful in applications where data are split artificially.
In order to account for significant edge effect discontinu-
ities resulting from artificial amplitude jumps due to
artificial splitting of data, an edge effect correction
technique was developed in this study, and its usefulness
was demonstrated.

5. The use of a modified version of the inverse Fourier
transform with a calibration constant and an edge effect
correction for short-term river flood forecasting was
shown to be useful for the reconstruction of wavelet
and cross wavelet derived constituent components. In
order to reconstruct wavelet decomposed signals, the
inverse Fourier transform can be used. However, in order
to allow for a more precise reconstruction, an edge
effect correction and a calibration constant for meteoro-
logical signals was applied to the inverse Fourier trans-
form in this study.

The development of a stand-alone data-based flood fore-
casting method based on wavelet and cross-wavelet analy-
sis, with the above mentioned original contributions not
found in the literature, was the main contribution of this
research.

There are several recommendations for future research
that can be made based on the results of this research:

1. It would be very useful to develop a new ‘flood mother
wavelet’ that is based partially on the Morlet mother
wavelet in order to assess its usefulness specifically for
flood forecasting applications. Two possible improve-
ments that could be made to the Morlet mother wavelet
for specific use in flood forecasting applications include:
(1) extending the Gaussian envelope of the Morlet
mother wavelet so that the peaks and troughs extend
further in the vertical direction and (2) modifying the
peaks and troughs of the Morlet wavelet so that they
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are more ‘spiky’. It is possible that this modified Morlet
wavelet or ‘flood mother wavelet’ could allow for more
precise wavelet decomposition, which would increase
the forecasting ability of the wavelet based constituent
components.

2. It would be very useful to explore the use of the pro-
posed wavelet based flood forecasting method devel-
oped in this study in applications where there is a
significant trend in the amplitude for the same Julian
day year-to-year. In such cases, the actual forecasting
component of the proposed method could be modified
to take into account any significant trend.

3. It would be useful to test the use of upstream streamflow
and meteorological inputs, and radar, radiosonde, and
satellite data, as well as real time updating mechanisms
such as error prediction, state updating, and parameter
updating in conjunction with the proposed wavelet based
forecasting method. Such ‘additions’ would most likely
improve the accuracy of the flood forecasts obtained
using the proposed wavelet based method.

To summarize, two main conclusions can be derived from
the results of this study:

1. It was found that the proposed wavelet based flood fore-
casting method can be successfully applied as a highly
accurate stand-alone method for short-term 1 and 2 days
lead-time flood forecasting.

2. In the case of 6 days lead-time flood forecasting, the
newly developed wavelet based forecasting method
was found to be less accurate than the ANN method. This
indicates that the proposed wavelet based flood fore-
casting method is less suitable for longer lead-times such
as 6 days.
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