SQL queries over Python objects using an embedded column-based relational database

Student: Weiming Guo Supervisors:Prof. Bettina Kemme, Dr. Joseph D’silva

McGill University

Modern data science workflows require support for linear algebra, in
addition to relational algebra provided by traditional database engines.
AIDA (An Agile Abstraction for Advanced In-database Analytics) 1s an in-
database data science framework that allows data scientists to perform
linear algebra operations using NumPy. The fundamental differences in the
data storage and processing needs of NumPy and traditional databases
mean that they do not seamlessly integrate well with each other, requiring
data format conversions between the systems.

This summer, my research focused on exploring how to avoid the cost of

such data conversions, thus improving the efficiency of data processing.

Introduction

Existing research has shown that using columnar (each column is stored as

a separate array of its own) databases reduces the need for data
conversions between NumPy data and RDBMS as the internal data
structures are very similar to that of the statistical systems.

In this summer, I spent most time on exploring how these benefits offered
by column-based databases could be leveraged for AIDA’s
implementations on row-based databases such as PostgreSQL where all the
data for a record is stored continuously as a separate array and is therefore

different from the storage format employed by the statistical systems.

My first approach was to embed a columnar database to AIDA framework.
The high-level 1dea was to use this embedded database for queries on data
that has been materialized in the statistical system, as this would reduce the
need for data conversion costs associated with passing it to the host
database. However, the embedded columnar database did not integrate well
with PostgreSQL when I initialized it inside AIDA framework. As such, I
switched to a second approach, which was to create two AIDA servers for
both MonetDB and PostgreSQL and use MonetDB AIDA for queries over
materialized data. In the next few sections, I will explain the second
approach in detail and show you the performance of the second approach

when processing large data sets.

Background

Client System RDBMS
Jupyter Notebook Embedded Python Interpreter

Python Interpreter &= NumPy

2l 11|l TabularData l
User“,t\%/ ﬁVisualization
 —
gode il:nt E n—% AIDA SaL
pace o~ W | — 114 - % Engine
1 L--—-}-|| TabularData DB Tables
/Stub? l
—

The above picture depicts a high-level conceptual layout of the client-
server architecture of AIDA. “AIDA’s server i1s embedded within the

Python interpreter embedded in the RDBMS, thus sharing the same

address space as the RDBMS. Users can connect to AIDA’s server using a

regular Python interpreter or more popular data science IDEs like Jupyter

Notebook that works with Python, as long as they are equipped with
AIDA’s client API library. ” ®When using AIDA, data scientists
implement programming logic on the client side, but any data
transformations and computations are executed on the server side. More
precisely, AIDA’s client API sends them transparently to the server and
receives a remote reference which represents the result that is stored in
AIDA’s server. This client-server interaction is implemented by using
Remote Method Invocation (RMI), a well-established communication
mechanism, and known to work in practice. This will also allow us to
easily extend AIDA to be part of a fully distributed computing

environment where data might be distributed across many RDBMSes.

Embedded Python Interpreteri RDBMS
NumPy TabularData

4 s) ((column 'em mm mm |

NumPyArray — datal-

iali ' DB Table /Resultset
Materialize Matrix) L /Resu t/

Linear q‘ ?/ virtual columns Relational

Algebra ! v Operators

Operators- : Table UDF Mobd ..
l

+*@ .. |

As discussed before, modern data science applications require a
holistic framework that supports both relational and linear algebra
operations. AIDA accomplishes this through a unified abstraction of
data called TabularData.TabularData object can process data stored in
the database and the data stored in host language objects such as
NumPy. Internally, AIDA uses RDBMS’s SQL engine to execute
relational operations and utilizes NumPy to execute linear algebra
operations. When needed, AIDA allows data transformations to be

performed transparently and seamlessly between the two systems.

There are two internal representations for TabularData. One of the
representations is a matrix format (a two-dimensional array
representation where the entire data set 1s located in single contiguous
memory space) used to execute linear algebra operations and the other
is a dictionary-columnar format (a python dictionary with column
names as keys and the values being the column’s data in NumPy array
format) used to execute relational operators. Users can access the
dictionary internal representations by using the special variable cdata.
Similarly, the matrix representation can be accessed by using the

special variable matrix.

AIDA performs relational operations on TabularData lazily, ie. the
TabularData object’s internal representation 1s only materialized when

the user explicitly requests it through the special variables mentioned

in the previous section. “This means that, before materialized, the new
TabularData contains only the reference to its source - which can be a
database Table, one TabularData object, or two TabularData objects in
case of a join - and the information about the relational transformation
it needs to perform on the source.” @ If a TabularData object is
requested to be materialized, AIDA would recursively request its
sources and build SQL logic on top of it. The resulting combined SQL
logic would then be executed in the host RDBMS. Once materialized,
the internal representation will exist for the lifetime of that

TabularData object, reused for any further operations as required.

While this method 1s optimized to work with column-based RDBMS
implementations such as MonetDB that requires no data transfer costs
associated with passing materialized TabularData to it, it’s not optimal
for row-based databases such as PostgreSQL. As a result of the
fundamental difference in data storage format between row-based
RDBMS and statistical system, materialized TabularData that is in a
dictionary-columnar format needs to be transformed before being
executed to accommodate row-based RDBMS, thus resulting in the

overhead of data format conversion.

AIDA allows data scientists to perform data analysis across multiple
database implementations that host their own AIDA servers by using
_ L operator. In such scenarios, we can connect first to a first AIDA
server from our client, perform appropriate transformations, and then
pass the TabularData objects generated there to a second AIDA server.
We can then continue the analysis on this TabularData object at the
second AIDA server. In the next section, I will discuss how this

functionality can be applied to the approach of reducing the overhead

of data format conversion.

TabularData Materialization(original)

]
™
Client Executing SQL
" | ey | oy .
g s 1] 3 Wlth.'
| : | s l. non-materialized
sources

PostgreSQL AIDA

Executing SQL - T : ./
with only le— i - I -

materialized . 2 | e | 1 o
sources

MonetDB AIDA

The above picture depicts the high-level architecture of the approach
of leveraging the benefits offered by columnar RDBMS MonetDB
for AIDA’s implementations on row-based RDBMS PostgreSQL.
When performing data analysis, the user will connect to PostgreSQL

AIDA from client, and internally, the PostgreSQL AIDA’s adapter

will open a connection to MonetDB AIDA during initialization.

When a user requests the materialization of a TabularData object
from client, PostgreSQL AIDA will first build up SQL for it and
then recursively check if the TabularData object has only NumPy
sources, 1€ if its sources are materialized in the statistical system
NumPy. If the TabularData object has only NumPy sources, AIDA
would send all materialized sources to MonetDB AIDA server by
using L operator as discussed before and generate necessary table
UDFs there. Then the SQL would be executed in MonetDB that
offers zero-copy data transfer of NumPy sources from statistical

system to database memory space, thus reducing the overhead of

data format conversions.

test 1 test 2 test 3 test 4 test 5 AVG
casel (None NumPy Data) 0.02471 0.02127 0.02514 0.02597 0.02355 0.024128

case2 (One NumPy Data) 0.07509 0.07695 0.07556 0.07039 0.06877 0.073352

case3 (All NumPy Data) 0.30762 1.39039 0.31849 0.28243 0.30166 0.520118
test 1 test 2 test 3 test4 test 5 AVG

casel (None NumPy Data) 0.02495 0.02127 0.02456 0.02462 0.02496 0.024072

case2 (One NumPy Data) 0.07977 0.07343 0.07583 0.08481 0.07793 0.078354

case3 (All NumPy Data) 0.09154 0.09154 0.08312 0.08604 0.07978 0.086404

I used three cases to test the modified version of TabularData
Materialization. In test case 1, the TabularData object that needs to
materialize has no NumPy sources. In test case 2, the TabularData
object has one NumPy source. In test case 3, the TabularData object
has only NumPy sources. MonetDB AIDA is only required in case3
when the TabularData object has only materialized sources.

To compare the efficiency of materialization with and without
MonetDB AIDA, I imported a powerful python package time to
measure the execution time of each case.

From the pictures above, we can see that it’s slightly better to perform

case2 with AIDAM. However, it takes a longer time to perform case3

with AIDAM, which is not very efficient as we expected before.

Ideally, sending NumPy data to MonetDB AIDA would reduce the
cost of data conversions between statistical systems and the RDBMS
query engine since they both store data in the columnar storage
format. However, the test results show that this method has no
advantage over the previous one 1n terms of efficiency. In the future,

we would try to find out the part that contributes to the extra time and

improve this method.

References

[1] De Moor F. Kemme B. D’silva, J. V., editor. AIDA - An Agile
Abstraction for Advanced In-database Analytics. Proceedings of

the VLDB Endowment, 2018.

