

TIME-DEPENDENT DEFORMATION AND PROPERTIES OF QUEENSTON SHALE Xiaoyu Yang and Julia Bond **Civil Engineering at McGill University**

BACKGROUND INFORMATION

- Queenston shale is the cap rock located above a limestone layer in Queenston, Ontario.
- Overlays a potential long-term low and intermediate level radioactive waste depository.
- Site is geologically stable and has simple geometry.
- Important attention is provided to the time-dependent deformation (swelling) of Queenston shale.
- This shale undergoes anisotropic swelling strain: it does not have the same swelling potential in all directions (Le and Lo 1990).
- According to research by Le and Lo, swelling will occur if:
- The initial stresses are relieved: initiating mechanism
- > Shale comes in contact with water
- \succ There is a concentration gradient between the pore and ambient fluid

Gibbsite sheet Water Molecule

Figure 1: Schematic drawing of Montmorillonite

OBJECTIVES

Material Characterization of Queenston Shale

Physical

- Density
- Porosity
- Thermal Expansion
- Swelling
- Thermal Conductivity

- Elasticity Parameters
- Compressive Strength
- Indirect Tensile Strength

Chemical

- Chemical Composition
- Distribution of Minerals

METHODOLOGY - UCS

1) Strain Gauge Installation

2) Connect sample to MTS machine and external computer DAQ system

3) Set up data collection on MTS and external computer

Figure 2: Schematic representation of UCS set-up

Figure 3: Set up for brazilian

Mechanical

METHODOLOGY CONT.

Figure 4: Schematic drawing of experiment setup for swelling test in the oedometer

RESULTS - SWELLING

Figure 6: Swelling strain (%) versus time (days) of Queenston shale in oedometer test for 10 days (radial constrained)

Figure 7: Free-swelling test fully submerged, partially submerged, saline solution and 100% moisture

Figure 8: Disintegration of Queenston Shale in distilled water

RESULTS - BET

GAS ADSORPTION THEORY

- Consequence of surface energy.
- Atoms on the surface of a solid are not fully bound to surrounding atoms.
- They will attract other atoms to balance their charge. • Determine surface area, porosity, pore sizes and pore distributions.

he BJH calculation can be u ameter, volume and distribu

Figure 10: TriStar II analyzer

Figure 11: Container of Nitroaen

Figure 9: Gas adsorption theory

METHODOLOGY

- Place sample inside tube
- temperature cool (-200°C)
- Helium

Porosity

 $\left| \left(BJH Adsorption Cumulative Volume of Pores \left(\frac{ml}{\sigma} \right) \right) (Sample Weight (g)) \right|$

RESULTS - CHARACTERIZATION

Table 1: Summary of Basic Properties from Literature and Tests

Properties	Values from Literature	Values from Tests			
Porosity	6.60% ±0.5	BET	8.21%		
		Water	6.53%		
		saturation			
Water Content	2.60%	1.69%			
Unit Weight	26.70KN/m ³	26.72 KN/m^3			
Specific Gravity	2.82	2.71			
Modulus of Elasticity	15GPa	21GPa			
Compressive Strength	44MPa	66MPa			
Poisson's Ratio	0.1-0.5	0.2			
Splitting Tensile Strength	10 MPa	4.2MPa			

Table 2: Mineral Composition of Oursenation Chale from VDD to

Queension Shale from XRD test				
Compound	Percentage			
Name	(%)	Calcite	2.5	
Quartz	41.7	Muscovite	27.7	
Albite	8.6	Hematite	1.6	
Microcline	3.2	Dolomite	0.4	
Clinochlore				
(Chlorite)	14.4	Total	100.1	

RESULTS – UCS & BRAZILIAN

Figure 12: The loading of Queenston shale used to determine modulus of elasticity (E) and poisson's ratio (v), Test #1

Figure 13: Post-failure Test #1

Figure 14: Post-failure Brazilian

Figure 15: The loading and unloading of Queenston shale used to determine modulus of elasticity (E) and poisson's ratio (v), Test #2

Figure 16: Post-failure sample

CONCLUSION

SWELLING

- Problem with oedometer test: moisture not accessible in radial direction
- Salt water test has same initial swelling rate as fully submerged test
- The ambient fluid greatly affects the swelling potential
- Increase in pH of ambient fluid demonstrates increase in cations Concentration gradient between pore and ambient fluid should be monitored at the project site

STRENGTH

- Loading and unloading method increases the strength of the material • Since swelling causes crack formation, contact with water greatly
- reduces the strength of Queenston shale
- The shale has a much weaker tensile strength than compressive

FUTURE DIRECTIONS

- Many variables that affect the swelling behavior of Queenston shale.
- Ambient fluid and loads from different orientations.
- Leads to measurement of swelling pressure. \bullet
- Also three-dimensional time-dependent deformations and volumetric strain
- Set up a standard experiment to investigate these relationships.

REFERENCES

- 1. P.Vilks and N.H. Miller. (2007). "Evaluation of Experimental Protocols for Characterizing Diffusion in Sedimentary Rocks." NWMO TR-2007-11.
- 2. Lo, K. Y. and Y. N. Lee (1990). "Time-dependent deformation behaviour of Queenston shale." Canadian Geotechnical Journal 27(4): 461-471.
- 3. R. H. Caswell and B. Trak, "Some geotechnical characteristics of fragmented Queenston Shale," Canadian Geotechnical Journal, vol. 22, pp. 403-408, 1985/08/01 1985.