Faculty of Engineering, including Schools of Architecture and Urban Planning

Programs, Courses and University Regulations

2016-2017
This PDF excerpt of Programs, Courses and University Regulations is an archived snapshot of the web content on the date that appears in the footer of the PDF. Archival copies are available at www.mcgill.ca/study.

This publication provides guidance to prospects, applicants, students, faculty and staff.

1. McGill University reserves the right to make changes to the information contained in this online publication - including correcting errors, altering fees, schedules of admission, and credit requirements, and revising or cancelling particular courses or programs - without prior notice.

2. In the interpretation of academic regulations, the Senate is the final authority.

3. Students are responsible for informing themselves of the University's procedures, policies and regulations, and the specific requirements associated with the degree, diploma, or certificate sought.

4. All students registered at McGill University are considered to have agreed to act in accordance with the University procedures, policies and regulations.

5. Although advice is readily available on request, the responsibility of selecting the appropriate courses for graduation must ultimately rest with the student.

6. Not all courses are offered every year and changes can be made after publication. Always check the Minerva Class Schedule link at https://horizon.mcgill.ca/pban1/bwckschd.p_disp_dyn_sched for the most up-to-date information on whether a course is offered.

7. The academic publication year begins at the start of the Fall semester and extends through to the end of the Winter semester of any given year. Students who begin study at any point within this period are governed by the regulations in the publication which came into effect at the start of the Fall semester.

8. Notwithstanding any other provision of the publication, it is expressly understood by all students that McGill University accepts no responsibility to provide any course of instruction, program or class, residential or other services including the normal range of academic, residential and/or other services in circumstances of utility interruptions, fire, flood, strikes, work stoppages, labour disputes, war, insurrection, the operation of law or acts of God or any other cause (whether similar or dissimilar to those enumerated) which reasonably prevent their provision.

Note: Throughout this publication, "you" refers to students newly admitted, readmitted or returning to McGill.
Publication Information

Published by

Enrolment Services
McGill University
3415 McTavish Street
Montreal, Quebec, H3A 0C8
Canada

All contents copyright © 2016 by McGill University. All rights reserved, including the right to reproduce this publication, or portions thereof, in any form.

McGill University reserves the right to make changes to the information contained in this publication - including correcting errors, altering fees, schedules of admission and credit requirements, and revising or cancelling particular courses or programs - without prior notification.

Not all courses are offered every year and changes can be made after publication. Always check the Minerva Class Schedule link at https://horizon.mcgill.ca/pban1/bwckschd.p_disp_dyn_sched for the most up-to-date information on whether a course is offered.
12.4.6.1 More about the B.Eng. Degree in Chemical Engineering, page 33

12.5 Department of Civil Engineering and Applied Mechanics, page 33
 12.5.1 Location, page 33
 12.5.2 About the Department of Civil Engineering and Applied Mechanics, page 34
 12.5.3 Academic Programs, page 34
 12.5.4 Civil Engineering and Applied Mechanics Faculty, page 34
 12.5.5 Bachelor of Engineering (B.Eng.) - Civil Engineering (139 credits), page 35

12.6 Department of Electrical and Computer Engineering, page 39
 12.6.1 Location, page 39
 12.6.2 About the Department of Electrical and Computer Engineering, page 39
 12.6.3 Electrical and Computer Engineering Faculty, page 39
 12.6.4 Bachelor of Engineering (B.Eng.) - Electrical Engineering (134 credits), page 41
 12.6.5 Bachelor of Engineering (B.Eng.) - Honours Electrical Engineering (138 credits), page 46
 12.6.6 Bachelor of Engineering (B.Eng.) - Computer Engineering (133 credits), page 50
 12.6.7 Bachelor of Software Engineering (B.S.E.) - Software Engineering (137 credits), page 54

12.7 Department of Mechanical Engineering, page 57
 12.7.1 Location, page 57
 12.7.2 About the Department of Mechanical Engineering, page 58
 12.7.3 Mechanical Engineering Faculty, page 58
 12.7.4 Bachelor of Engineering (B.Eng.) - Mechanical Engineering (142 credits), page 60
 12.7.5 Bachelor of Engineering (B.Eng.) - Honours Mechanical Engineering (142 credits), page 64
 12.7.6 Bachelor of Engineering (B.Eng.) - Mechanical Engineering - Aeronautical Engineering (15 credits), page 68
 12.7.7 Bachelor of Engineering (B.Eng.) - Honours Mechanical Engineering - Aeronautical Engineering (15 credits), page 69
 12.7.8 Bachelor of Engineering (B.Eng.) - Mechanical Engineering - Design (15 credits), page 69
 12.7.9 Bachelor of Engineering (B.Eng.) - Honours Mechanical Engineering - Design (15 credits), page 70
 12.7.10 Bachelor of Engineering (B.Eng.) - Mechanical Engineering - Mechatronics (18 credits), page 70
 12.7.11 Bachelor of Engineering (B.Eng.) - Honours Mechanical Engineering - Mechatronics (18 credits), page 71

12.8 Department of Mining and Materials Engineering, page 71
 12.8.1 Location, page 71
 12.8.2 About the Department of Mining and Materials Engineering, page 72
 12.8.2.1 Scholarships, page 72
 12.8.3 Mining and Materials Engineering Faculty, page 72
 12.8.4 About Materials Engineering, page 73
 12.8.4.1 Materials Engineering (Co-op), page 73
 12.8.4.2 Student Advising, page 74
 12.8.4.3 Bachelor of Engineering (B.Eng.) - Materials Engineering CO-OP (148 credits), page 74
 12.8.5 About Mining Engineering, page 77
 12.8.5.1 Mining Engineering (Co-op), page 77
 12.8.5.2 Student Advising, page 78
12.8.5.3 Bachelor of Engineering (B.Eng.) - Mining Engineering CO-OP (150 credits), page 78

12.9 School of Urban Planning, page 82
12.9.1 Location, page 82
12.9.2 About the School of Urban Planning, page 82
12.9.3 Undergraduate Courses in Urban Planning, page 83
12.9.4 Urban Planning Faculty, page 83

12.10 Other Engineering Related Programs, page 84
12.10.1 Bioresource Engineering, page 84
12.10.2 Biomedical Engineering, page 84

12.11 Minor Programs, page 84
12.11.1 Bachelor of Engineering (B.Eng.) - Minor Arts (24 credits), page 85
12.11.2 Bachelor of Engineering (B.Eng.) - Minor Biomedical Engineering (21 credits), page 85
12.11.3 Bachelor of Engineering (B.Eng.) - Minor Biotechnology (for Engineering Students) (24 credits), page 88
12.11.4 Bachelor of Engineering (B.Eng.) - Minor Chemistry (25 credits), page 90
12.11.5 Computer Science Courses and Minor Program, page 91
 12.11.5.1 Computer Science Courses in Engineering Programs, page 91
 12.11.5.2 Bachelor of Engineering (B.Eng.) - Minor Computer Science (24 credits), page 91
12.11.6 Bachelor of Engineering (B.Eng.) - Minor Construction Engineering and Management (24 credits), page 92
12.11.7 Bachelor of Engineering (B.Eng.) - Minor Economics (18 credits), page 94
12.11.8 Minor in Environment, page 95
12.11.9 Bachelor of Engineering (B.Eng.) - Minor Environmental Engineering (21 credits), page 95
12.11.10 Minor Programs in Finance, Management, Marketing, and Operations Management, page 98
12.11.11 Bachelor of Engineering (B.Eng.) - Minor Materials Engineering (24 credits), page 99
12.11.12 Bachelor of Engineering (B.Eng.) - Minor Mathematics (24 credits), page 99
12.11.13 Bachelor of Engineering (B.Eng.) - Minor Mining Engineering (23 credits), page 100
12.11.14 Minor in Musical Science and Technology, page 101
12.11.15 Bachelor of Engineering (B.Eng.) - Minor Nanotechnology (21 credits), page 102
12.11.16 Bachelor of Engineering (B.Eng.) - Minor Physics (18 credits), page 104
12.11.17 Bachelor of Engineering (B.Eng.) - Minor Software Engineering (24 credits), page 104
12.11.18 Bachelor of Engineering (B.Eng.) - Minor Technological Entrepreneurship (18 credits), page 105
1 About the Faculty of Engineering

The Faculty currently includes six engineering departments and two schools, and houses three institutes:

Departments
- Bioengineering
- Chemical Engineering
- Civil Engineering and Applied Mechanics
- Electrical and Computer Engineering
- Mechanical Engineering
- Mining and Materials Engineering

Schools
- Architecture
- Urban Planning

Institutes
- Trottier Institute for Sustainability in Engineering and Design (TISED) (Website: www.mcgill.ca/tised)
- McGill Institute for Advanced Materials (MIAM) (Website: www.mcgill.ca/miam) (established by the Faculties of Engineering and Science)
- McGill Institute for Aerospace Engineering (MIAE) (Website: www.mcgill.ca/miae)

The Faculty serves approximately 3,300 undergraduate students and 1,170 graduate students in a wide variety of academic programs.

Undergraduate programs leading to professional bachelor's degrees are offered in all Engineering departments. These programs are designed to qualify graduates for immediate employment in a wide range of industries and for membership in the appropriate professional bodies. Additionally, a non-professional undergraduate degree is offered in the School of Architecture for those who plan to work in related fields not requiring professional qualification.

The curricula are structured to provide suitable preparation for those who plan to continue their education in postgraduate studies either at McGill or elsewhere. The professional degrees in Architecture and Urban Planning are offered at the master's level and are described at [Faculty of Engineering > Graduate](#).

The academic programs are divided into required and complementary sections. The required courses emphasize basic principles which permit graduates to keep abreast of progress in technology throughout their careers. Exposure to current technology is provided by the wide variety of complementary courses which allow students to pursue a particular interest in depth. For program details and requirements, refer to [section 12: Browse Academic Units & Programs](#).

The [Engineering Internship Program](#) provides engineering students with the opportunity to participate in four-, eight-, twelve-, or sixteen-month paid work experiences. Details can be found at www.mcgill.ca/careers4engineers/engineering-internship-program/students. In addition, co-op programs are offered in Mining Engineering and in Materials Engineering.

Graduate and postgraduate programs leading to master's and doctoral degrees are offered in all sectors of the Faculty. Numerous areas of specialization are available in each of the departments and schools. All postgraduate programs, including the professional degree programs in Architecture and in Urban Planning, are described at [Faculty of Engineering > Graduate](#).

2 History of the Faculty

The Faculty of Engineering began in 1871 as the Department of Practical and Applied Science in the Faculty of Arts with degree programs in Civil Engineering and Surveying; Mining Engineering and Assaying; and Practical Chemistry. Diploma courses had been offered from 1859, and by 1871 the staff and enrolments had increased sufficiently to justify the creation of the Department. Continued growth led to the formation of the Faculty of Applied Science in 1878. By 1910 there were ten degree programs offered, including Architecture and Railroad Engineering. Subsequent changes in the overall pattern of the University led to the creation of the Faculty of Engineering in 1931 with a departmental structure very similar to that which exists at present.

For a detailed history of the Faculty from 1811 to 2003, see www.mcgill.ca/engineering/about/history.
3 **Engineering Microcomputing Facility**

In addition to the services provided by McGill's Information Technology Services, the Faculty, in conjunction with its departments and schools, maintains specialized computing and information resources in support of teaching and research. These vary from desktop computers distributed throughout the Engineering complex to very high-performance scientific workstations found in the research laboratories. Each unit organizes and maintains facilities that are designed around specific roles, e.g., CAD/CAM, microelectronic design, software engineering, circuit simulation, process control, polymers, structural mechanics, metal processing, etc., in addition to systems dedicated to administrative support.

The role of the Faculty is to provide access to computing resources on a 24-hour basis and to provide services that are not covered by individual units. Further information is available at www.mcgill.ca/emf.

4 **Schulich Library of Science and Engineering**

Schulich Library of Science and Engineering
Macdonald-Stewart Library Building
809 Sherbrooke Street West
Montreal QC H3A 0C1
Telephone: 514-398-4769
Email: schulich.library@mcgill.ca
Website: www.mcgill.ca/library/branches/schulich

The Schulich Library of Science and Engineering provides resources and services to support research and teaching programs in engineering, physical and natural sciences, medicine, and dentistry. The Library holds more than 300,000 books, journals, and other materials and provides access to an extensive collection of online resources, with thousands of electronic journals, e-books, and databases.

The Schulich Library has over 100 networked computer workstations, and the entire building is a McGill wireless zone. Within the library’s six floors are many options for both quiet and group study, and numerous uPrint machines on site for copying, printing, and scanning. The Library provides support for users with disabilities, including wheelchair access and an adaptive workstation. Schulich Library staff includes ten subject-specialized liaison librarians who offer one-on-one research consultations, as well as a range of tours and workshops designed to help users effectively find, assess, and use information.

The following other branch libraries will be of interest to students in the Faculty of Engineering:

- Blackader-Lauterman Library of Architecture and Art
- Macdonald Campus Library

Contact us by phone or email or visit the website to learn more about the Library’s services, collections and facilities. We look forward to seeing you in the Library.

5 **About Engineering (Undergraduate)**

5.1 **Location**

Faculty of Engineering

Macdonald Engineering Building
817 Sherbrooke Street West
Montreal QC H3A 0C3
Canada
Telephone: 514-398-7250
Faculty website: www.mcgill.ca/engineering

The McGill Engineering Student Centre (Student Affairs Office, Career Centre, Peer Tutoring Services) and the Office of the Associate Dean (Student Affairs) are located at the following address:

3450 University Street
5.2 About the Faculty of Engineering

The mission of the Faculty of Engineering is to contribute to the advancement of learning and to the socio-economic development of Quebec and Canada, through teaching and research activities at the highest international standards of quality.

Goals:

• To prepare graduates for productive professional careers through the provision of accredited bachelor's programs
• To train students through focused professional programs to attain the forefront of their fields
• To perform research and other scholarly activities which achieve international recognition
• To ensure that technological innovations developed through research are transferred to industry
• To provide a stimulating environment for teaching, learning, and research

In this section, you will find up-to-date information about the Faculty and about the undergraduate programs and courses it offers. For information about graduate studies in the Faculty of Engineering, see Faculty of Engineering > Graduate.

You will find information on the following topics (and others):

• section 1: About the Faculty of Engineering
• section 2: History of the Faculty
• section 3: Engineering Microcomputing Facility
• section 4: Schultich Library of Science and Engineering
• section 6: Degrees and Requirements for Professional Registration
• section 9: Student Activities
• section 11: Engineering Internship Program (EIP)
• Undergraduate Programs and Courses
• section 12.11: Minor Programs for students in the Faculty of Engineering

For regulations that are specific to undergraduate studies in the Faculty of Engineering, see University Regulations and Resources (Undergraduate) and watch for sections and notes that are specific to the Faculty of Engineering.

5.3 Administrative Officers

Dean
James Nicell; B.A.Sc., M.A.Sc., Ph.D.(Windsor), P.Eng. (James McGill Professor)

Associate Deans
Benoit Boulet; B.Sc.(Laval), M.Eng.(McG.), Ph.D.(Tor.) (William Dawson Scholar) (Research and Innovation)

Fabrice Labear; M.S., Ph.D.(Louvain) (Faculty Affairs)

Mohamed A. Meguid; B.Sc.(Azhar, Cairo), M.Sc., Ph.D.(W. Ont.), P.Eng. (Student Affairs)

Laurent Mydlarski; B.A.Sc.(Wat.), Ph.D.(Cornell), ing. (Academic Programs)

Department Chairs
Sylvain Coloumbe; B.Sc., M.Sc.A.(Sher.), Ph.D.(McG.), ing. (Chemical Engineering)

George P. Demopoulos; Dipl.Eng.(Nat. Tech., Athens), M.Sc., Ph.D.(McG.), ing. (Mining and Materials Engineering)

Andrew Kirk; B.Sc.(Brist.), Ph.D.(Lond.) (William Dawson Scholar) (Electrical and Computer Engineering)

Van Thanh Van Nguyen; B.M.E.(Vietnam), M.C. Eng.(A.I.T.), D.A.Sc.(Montr.), Eng. (Civil Engineering and Applied Mechanics)

Dan V. Nicolau; B.Eng., M.Eng.(Polytechnic Univ. of Bucharest), M.S.(Acad. of Economic Studies at Bucharest), Ph.D.(Polytechnic Univ. of Bucharest) (Bioengineering)
6 Degrees and Requirements for Professional Registration

Non-Professional

Bachelor of Science (Architecture)

The first professional degree in architecture is the Master of Architecture (Professional). Further information can be found in Faculty of Engineering > Graduate.

Professional

Bachelor of Engineering

Bachelor of Software Engineering

The B.Eng. and B.S.E. programs are accredited by the Canadian Engineering Accreditation Board (CEAB) of Engineers Canada and fulfill the academic requirements for admission to the provincial engineering professional organizations. Engineers Canada has also negotiated agreements with engineering organizations in other countries to grant Canadian licensed engineers the same privileges accorded to professional engineers in those countries. For more information, visit the Engineers Canada website at www.engineerscanada.ca. All students are expected to seek professional registration after graduation.

To become a professional engineer in Canada, a graduate must pass an examination on legal aspects and on the principles of professional practice, and acquire two to four years of engineering experience, depending on the province. Only persons duly registered may use the title “engineer” and perform the professional activities reserved for engineers by provincial laws and regulations.

In Quebec, the professional engineering body is the Ordre des ingénieurs du Québec (OIQ). In order to better prepare new graduates for the practice of their profession, McGill organizes seminars in cooperation with the OIQ on various aspects of the profession. The OIQ also has a student section. As soon as you have accumulated 60 credits in a B.Eng. or B.S.E. program, you can join the student section of the OIQ. Registration is free. For more information, visit the OIQ website at www.oiq.qc.ca.

7 Admission Requirements

The Faculty of Engineering offers programs leading to the degrees of B.Eng., B.S.E., and B.Sc.(Arch.). Enrolment in Engineering programs is limited. For detailed information on admissions requirements, see the Undergraduate Admissions Guide at www.mcgill.ca/applying.
The length of the B.Eng., B.S.E., and B.Sc.(Arch.) programs varies depending on the program and basis of admission. You can find the curriculum for your program on the website of your department/school. See www.mcgill.ca/engineering/about/departments-schools-institutes for links to department/school websites.

You must successfully complete the B.Eng., B.S.E., or B.Sc.(Arch.) program within six years of entry. Candidates admitted to a lengthened program, or to a shortened program because of advanced standing, or who are participating in a work term or in the Engineering Internship Program (EIP), will have a correspondingly greater or lesser period in which to complete their program.

Extensions may be granted by the Committee on Standing in cases of serious medical problems or where other similarly uncontrollable factors have affected your progress.

The campus offers a wide variety of extracurricular activities for students. All are encouraged to participate. Many of these are organized within the Faculty under the auspices of the Engineering Undergraduate Society (EUS). EUS publishes a handbook describing their operations and the activities of various Faculty clubs and societies; you can also find these on their website (see below). All undergraduate students automatically become members of the EUS. Each department and school also has a student association.

- For more information about [EUS and links to department/school student association websites](http://www.mcgilleus.ca), visit the EUS website at www.mcgilleus.ca.

Internship Program

Engineering Internship Program

Co-op Programs

Materials Engineering (B.Eng.)

Mining Engineering (B.Eng.)

General Engineering Program

General Engineering – Undeclared major (Freshman year)

Major Programs

Architecture (B.Sc.(Arch.))

Chemical Engineering (B.Eng.)

Civil Engineering (B.Eng.)

Computer Engineering (B.Eng.)

Electrical Engineering (B.Eng.)

Mechanical Engineering (B.Eng.)

Software Engineering (B.S.E.)

Honours Programs

Electrical Engineering (B.Eng.)

Mechanical Engineering (B.Eng.)
11 **Engineering Internship Program**

Employers value experience. Internships (four, eight, twelve, or sixteen months) allow you to gain professional work experience during the course of your undergraduate studies while earning a salary within the average range for entry-level professional positions. Other benefits include the following:

- Improved employment prospects upon graduation, often at a higher starting salary
- The opportunity to explore career options prior to graduation
- The opportunity to develop communication skills and to acquire a business perspective that cannot be learned in school

An internship may begin in January, May, or September. Employers choose the most suitable students for their organization through an application and interview process. While employed by the participating companies, you work on assignments related to your field of study. Internships will be recognized on your transcript as one or more non-credit courses entitled “Industrial Practicum.” Successful completion of an internship of eight months or more qualifies you to graduate with the Internship Program designation on your transcript.

11.1 Student Eligibility

To participate in the Engineering Internship Program, you must:

- have a CGPA of 2.00 or higher;
- be in good financial standing with the University;
- obtain approval from the Engineering Career Centre before registering for or starting your internship;
- be registered full-time in your program before and after your internship;
- remain a degree candidate while on internship;
- return to complete your undergraduate degree at McGill, with a minimum of 15 credits remaining in your program after your internship (i.e., you are not allowed to complete your degree during your internship).

Internship students will receive an automatic extension for the completion of their studies.

International students are eligible (a few restrictions may apply).

For more information, see www.mcgill.ca/careers4engineers or send an email to careers4engineers@mcgill.ca.
Important Information:

- While on internship, you are expected to complete any deferrals you may have been granted, regardless of the location of the internship. If you do not write a deferred exam as scheduled, you will receive a final grade of J. The J grade will calculate as a failure in both the TGPA and CGPA.
- International students must ensure that their health coverage remains in force during their internship.
- During your time as an intern, you are not considered to be in full-time status. Your government loans will become due and payable within the prescribed grace period (usually six months).

12 Browse Academic Units & Programs

The programs and courses in the following sections have been approved for the 2016–2017 session as listed, but the Faculty reserves the right to introduce changes as may be deemed necessary or desirable.

12.1 General Engineering Program

The General Engineering Program (GEP) is offered in addition to the Faculty of Engineering’s majors (Chemical, Civil, Computer, Electrical, Materials, Mechanical, Mining, and Software Engineering). The GEP permits students with strong mathematics, physics, and chemistry results in high school to pursue a common first-year curriculum without declaring a particular major program at the time of application. The GEP spans one academic year only (Year 0). Students then apply for placement and continue in an Engineering major program.

The GEP is not open to students with more than 6 transfer credits toward their engineering major (e.g., transfer credits from Advanced Placement (AP) exams or from courses taken at other universities).

Applicants who already know which major(s) they wish to study should apply directly for the major(s) rather than select the General Engineering Program option.

For more information about the General Engineering Program, see www.mcgill.ca/engineering/future-students/undergraduate-programs.

12.1.1 Bachelor of Engineering (B.Eng.) - General Engineering - Undeclared (30 credits)

The General Engineering Program (GEP) is a 30-credit course of study for the first year of a Bachelor of Engineering degree for students who have not completed a Quebec CEGEP diploma. Upon successful completion of these requirements, students must apply for placement and continue in a B.Eng. or B.S.E. program.

The GEP is not open to students with more than 6 transfer credits toward their engineering major (e.g., transfer credits from Advanced Placement (AP) exams or from courses taken at other universities).

Year 0 (Freshman) Courses

(30 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 110</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>4</td>
</tr>
<tr>
<td>FACC 100</td>
<td>1</td>
</tr>
<tr>
<td>MATH 133</td>
<td>3</td>
</tr>
<tr>
<td>MATH 140</td>
<td>3</td>
</tr>
<tr>
<td>MATH 141</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 131</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 142</td>
<td>4</td>
</tr>
</tbody>
</table>

General Chemistry 1
General Chemistry 2
Introduction to the Engineering Profession
Linear Algebra and Geometry
Calculus 1
Calculus 2
Mechanics and Waves
Electromagnetism and Optics

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments:

- Anthropology (ANTH)
- Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)
History (HIST)
Philosophy (excluding PHIL 210 and PHIL 310)
Political Science (POLI)
Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)
Religious Studies (RELG)
School of Social Work (SWRK)
Sociology (excluding SOCI 350)
OR one of the following:

- ARCH 528 (3) History of Housing
- BUSA 465* (3) Technological Entrepreneurship
- ENVR 203 (3) Knowledge, Ethics and Environment
- ENVR 400 (3) Environmental Thought
- FACC 220 (3) Law for Architects and Engineers
- FACC 500 (3) Technology Business Plan Design
- FACC 501 (3) Technology Business Plan Project
- INDR 294* (3) Introduction to Labour-Management Relations
- MATH 338 (3) History and Philosophy of Mathematics
- MGCR 222* (3) Introduction to Organizational Behaviour
- MGCR 352* (3) Principles of Marketing
- ORGB 321* (3) Leadership
- ORGB 423* (3) Human Resources Management

* Note: Management courses have limited enrolment and registration dates. See Important Dates at: http://www.mcgill.ca/importantdates/.

Students who successfully complete one or more Science Placement Exams will obtain credit(s) for the equivalent(s), i.e., CHEM 110, CHEM 120, MATH 140, MATH 141, MATH 133, PHYS 131, PHYS 142. Please see http://www.mcgill.ca/students/exams/science for information on Science Placement Exams.

Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the B.Eng./B.S.E. Complementary Studies requirement. However, 3 credits may be given for any language course at the 200 level or higher that has a sufficient cultural component. This course must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

12.2 School of Architecture

12.2.1 Location

Macdonald-Harrington Building, Room 201
815 Sherbrooke Street West
Montreal QC H3A 0C2
Telephone: 514-398-6700
Fax: 514-398-7372
Website: www.mcgill.ca/architecture

12.2.2 About the School of Architecture

Founded in 1896, the School of Architecture at McGill University offers professional programs, including B.Sc. (Arch.) and M.Arch. (Professional), and post-professional research programs, including M.Arch. (Post-professional) and Ph.D.

Vision
To advance professional architectural education that flourishes through research, critical practice, and community engagement.

Mission

The School of Architecture educates professionals who contribute to the global community through the design, construction, and interpretation of the built environment. The School:

- encourages a diverse environment for teaching, learning, and research, supported by both traditional and state-of-the-art digital resources;
- develops professional and post-professional research-based Masters and Ph.D. programs that enable graduates to contribute responsibly to the profession, to research, and to careers in related fields;
- enriches multidisciplinary teaching and research within the University and in connection with other local and international universities;
- engages citizens' groups, local, provincial, and national governments, the private sector, and the profession toward the improvement of the built environment.

12.2.3 Architectural Certification in Canada

In Canada, all provincial/territorial associations/institutes/orders recommend a degree from an accredited professional degree program as a prerequisite for licensure. The Canadian Architectural Certification Board (CACB), which is the sole agency authorized to accredit Canadian professional degree programs in architecture, recognizes two types of accredited degrees: the Master of Architecture (M.Arch.), and the Bachelor of Architecture (B.Arch.). A program may be granted a two-year, three-year, or six-year term of accreditation, depending on its degree of conformance with established educational standards. Master's degree programs may consist of a preprofessional undergraduate degree and a professional graduate degree, which, when earned sequentially, comprise an accredited professional education. However, the preprofessional degree is not, by itself, recognized as an accredited degree.

The M.Arch. (Professional) degree is accredited by the Canadian Architectural Certification Board (CACB), and is recognized as accredited by the National Council of Architectural Registration Boards (NCARB) in the United States.

12.2.4 Programs of Study

Programs of Study

Students in the B.Sc.(Arch.) program who intend to proceed to the professional degree must satisfy certain minimum requirements. Students must:

- complete the B.Sc.(Arch.) degree, including the series of required and complementary courses stipulated for professional studies, with a minimum CGPA of 3.00;
- submit a portfolio of work executed in the sequence of six design studios, as well as samples of professional and personal work;
- complete the minimum period of relevant work experience according to the current Work Experience Guidelines (see www.mcgill.ca/architecture/bboard/bscmai/workexperience).

Further information on the M.Arch. (Professional) program and application procedures is available at www.mcgill.ca/architecture.

12.2.4.1 Student Exchanges

A limited number of qualified students may participate in an exchange with schools of architecture at other universities that have agreements with the McGill School of Architecture, for a maximum of one term in the second year of the B.Sc.(Arch.) program. These include the following:

- Università Iuav di Venezia (Venice, Italy);
- Fakultät für Raumplanung und Architektur, Technische Universität Wien (Vienna, Austria);
- Université Catholique de Louvain (Brussels, Belgium);
- École Nationale Supérieure d'architecture de Grenoble (Grenoble, France);
- Scuola di Architettura Civile Politecnico di Milano (Boviso) (Milan, Italy);
- The Royal Danish Academy of Fine Arts, School of Architecture (Copenhagen, Denmark).

12.2.5 Ancillary Academic Facilities

Laboratories and Workshops

Facility for Architectural Research in Media Mediation (FARMM) – Professor Michael Jemtrud
Laboratory for Integrated Prototyping and Hybrid Environments (LIPHE) – Professor Aaron Sprecher
Media Centre – Juan Osorio, Media Technician
Workshop Facilities – David Speller, Technician

Library

Collections

Architecture Slide Library – Professor Annmarie Adams
The John Bland Canadian Architecture Collection, housed in the Blackader-Lauterman Library – Ann Marie Holland, Liaison Librarian
Orson Wheeler Architectural Model Collection – Professor Pieter Sijpkes

12.2.6 Architecture Faculty

Director
Martin Bressani

Graduate Program Directors
Robert Mellin (Post-professional program)
David Covo (Professional program)

Emeritus Professors
Bruce Anderson; B.Arch.(McG.), M.Arch.(Harv.), F.R.A.I.C., O.A.Q.
Derek Drummond; B.Arch.(McG.), F.R.A.I.C., O.A.Q., O.A.A. (William C. Macdonald Emeritus Professor of Architecture)
Adrian Sheppard; B.Arch.(McG.), M.Arch.(Yale), A.A.P.P.Q., F.R.A.I.C., O.A.Q.
Radoslav Zuk; B.Arch.(McG.), M.Arch.(MIT), D.Sc.(U.A.A.), F.R.A.I.C., O.A.Q., O.A.A.

Professors
Martin Bressani; B.Sc.(Arch.), B.Arch.(McG.), M.Sc.(Arch.)(MIT), D.E.A., Docteur(Paris IV), O.A.Q.
Avi Friedman; B.Arch.(Technion), M.Arch.(McG.), Ph.D.(Montr.), O.A.Q., I.A.A.

Associate Professors
Ricardo L. Castro; B.Arch.(Los Andes, Col.), M.Arch., M.A.(Ore.), F.R.A.I.C.
David Covo; B.Sc.(Arch.), B.Arch.(McG.), F.R.A.I.C., O.A.Q.
Nik Luka; B.A.A.(Ryerson), M.Arch.(Laval), Ph.D.(Tor.), M.C.I.P.
Robert Mellin; B.Arch., M.Sc.(Arch.)(Penn.), M.Arch.(McG.), M.Sc., Ph.D.(Penn.), F.R.A.I.C., N.A.A.
Aaron Sprecher; B.Arch.(Bezalel), M.Arch.(Calif.-LA).

Assistant Professors
David Theodore; B.A., B.Sc.(Arch.), B.Arch., M.Arch.(McG.), Ph.D.(Harv.)
Ipek Türel; B.Arch.(Istanbul), A.A.Dipl.(A.A.), Ph.D.(Calif., Berk.)

Adjunct Professors
Howard Davies, Julia Gersovitz, Andrew King, Conor Sampson

Course Lecturers
Vedanta Balbahadur, Erika Brandl-Mouton, Clothilde Caillé-Levesque, Yves de Fontenay, Nancy Dunton, Fabrizio Gallanti, Eric Gauthier, Marc Hallé, Edward Houle, Laurent Laframboise, Hubert Pelletier, Marc-André Plourde, Pierina Saia, Pieter Sijpkes, Angela Silver
Visiting Critics and Guest Lecturers

Each year, visitors are involved in the teaching of certain courses as critics and lecturers. These visitors change from year to year. The following were visitors in 2015:

12.2.7 Bachelor of Science (B.Sc.) (Architecture) - Architecture (126 credits)

Program credit weight: 126 credits
Program credit weight for CEGEP students: 100 credits

McGill's professional program in Architecture is divided into two parts. The first part is an eight-term design-based program (six-term program for students entering with the Quebec Diploma of Collegial Studies in Pure and Applied Science or the equivalent) leading to a non-professional degree, Bachelor of Science (Architecture). Applicants whose background includes a university degree in an area not related to architecture should apply to the B.Sc.(Arch.) program. For detailed information about admission procedures and requirements, please see the Undergraduate Admissions Guide at http://www.mcgill.ca/applying.

The second part, for students with the McGill B.Sc.(Arch.) degree or equivalent non-professional undergraduate architecture degree, is either a three-term or a two-year program leading to the Master of Architecture (Professional) degree. There are two options for the completion of the M.Arch. (Professional) program: Design Studio (45 credits) and Design Studio-Directed Research (60 credits). The M.Arch. (Professional) degree is accredited by the Canadian Architectural Certification Board (CACB), and is recognized as accredited by the National Council of Architectural Registration Boards (NCARB) in the U.S.

For more information on program structure and courses, visit the School of Architecture website at http://www.mcgill.ca/architecture.

Required Year 0 (Freshman) Courses

26 credits

Generally, students admitted to the Architecture program from Quebec CEGEPs are granted transfer credit for the Year 0 (Freshman) courses and enter a 100-credit (six-term) program.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 110</td>
<td>4</td>
<td>General Chemistry 1</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>4</td>
<td>General Chemistry 2</td>
</tr>
<tr>
<td>MATH 133</td>
<td>3</td>
<td>Linear Algebra and Geometry</td>
</tr>
<tr>
<td>MATH 140</td>
<td>3</td>
<td>Calculus 1</td>
</tr>
<tr>
<td>MATH 141</td>
<td>4</td>
<td>Calculus 2</td>
</tr>
<tr>
<td>PHYS 131</td>
<td>4</td>
<td>Mechanics and Waves</td>
</tr>
<tr>
<td>PHYS 142</td>
<td>4</td>
<td>Electromagnetism and Optics</td>
</tr>
</tbody>
</table>

Required Non-Departmental Courses

15 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 284</td>
<td>4</td>
<td>Structural Engineering Basics</td>
</tr>
<tr>
<td>CIVE 385</td>
<td>3</td>
<td>Structural Steel and Timber Design</td>
</tr>
<tr>
<td>CIVE 388</td>
<td>3</td>
<td>Foundation and Concrete Design</td>
</tr>
<tr>
<td>CIVE 492</td>
<td>2</td>
<td>Structures</td>
</tr>
<tr>
<td>FACC 220</td>
<td>3</td>
<td>Law for Architects and Engineers</td>
</tr>
</tbody>
</table>
Required Architectural Courses

73 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 201</td>
<td>(6)</td>
<td>Communication, Behaviour and Architecture</td>
</tr>
<tr>
<td>ARCH 202</td>
<td>(6)</td>
<td>Architectural Graphics and Elements of Design</td>
</tr>
<tr>
<td>ARCH 221</td>
<td>(2)</td>
<td>Architectural Drawing</td>
</tr>
<tr>
<td>ARCH 240</td>
<td>(3)</td>
<td>Organization of Materials in Buildings</td>
</tr>
<tr>
<td>ARCH 241</td>
<td>(3)</td>
<td>Architectural Structures</td>
</tr>
<tr>
<td>ARCH 250</td>
<td>(3)</td>
<td>Architectural History 1</td>
</tr>
<tr>
<td>ARCH 251</td>
<td>(3)</td>
<td>Architectural History 2</td>
</tr>
<tr>
<td>ARCH 303</td>
<td>(6)</td>
<td>Design and Construction 1</td>
</tr>
<tr>
<td>ARCH 304</td>
<td>(6)</td>
<td>Design and Construction 2</td>
</tr>
<tr>
<td>ARCH 325</td>
<td>(2)</td>
<td>Architectural Sketching</td>
</tr>
<tr>
<td>ARCH 342</td>
<td>(3)</td>
<td>Digital Representation</td>
</tr>
<tr>
<td>ARCH 354</td>
<td>(3)</td>
<td>Architectural History 3</td>
</tr>
<tr>
<td>ARCH 355</td>
<td>(3)</td>
<td>Architectural History 4</td>
</tr>
<tr>
<td>ARCH 375</td>
<td>(2)</td>
<td>Landscape</td>
</tr>
<tr>
<td>ARCH 377</td>
<td>(3)</td>
<td>Energy, Environment and Buildings</td>
</tr>
<tr>
<td>ARCH 405</td>
<td>(6)</td>
<td>Design and Construction 3</td>
</tr>
<tr>
<td>ARCH 406</td>
<td>(6)</td>
<td>Design and Construction 4</td>
</tr>
<tr>
<td>ARCH 447</td>
<td>(2)</td>
<td>Lighting</td>
</tr>
<tr>
<td>ARCH 451</td>
<td>(2)</td>
<td>Building Regulations and Safety</td>
</tr>
<tr>
<td>ARCH 512</td>
<td>(3)</td>
<td>Architectural Modelling</td>
</tr>
</tbody>
</table>

Complementary Courses

6 credits from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 378</td>
<td>(3)</td>
<td>Site Usage</td>
</tr>
<tr>
<td>ARCH 379</td>
<td>(3)</td>
<td>Summer Course Abroad</td>
</tr>
<tr>
<td>ARCH 383</td>
<td>(3)</td>
<td>Geometry and Architecture</td>
</tr>
<tr>
<td>ARCH 461</td>
<td>(1)</td>
<td>Freehand Drawing and Sketching</td>
</tr>
<tr>
<td>ARCH 490</td>
<td>(2)</td>
<td>Selected Topics in Design</td>
</tr>
<tr>
<td>ARCH 514</td>
<td>(4)</td>
<td>Community Design Workshop</td>
</tr>
<tr>
<td>ARCH 515</td>
<td>(3)</td>
<td>Sustainable Design</td>
</tr>
<tr>
<td>ARCH 517</td>
<td>(3)</td>
<td>Sustainable Residential Development</td>
</tr>
<tr>
<td>ARCH 520</td>
<td>(3)</td>
<td>Montreal: Urban Morphology</td>
</tr>
<tr>
<td>ARCH 521</td>
<td>(3)</td>
<td>Structure of Cities</td>
</tr>
<tr>
<td>ARCH 523</td>
<td>(3)</td>
<td>Significant Texts and Buildings</td>
</tr>
<tr>
<td>ARCH 525</td>
<td>(3)</td>
<td>Seminar on Analysis and Theory</td>
</tr>
<tr>
<td>ARCH 526</td>
<td>(3)</td>
<td>Philosophy of Structure</td>
</tr>
<tr>
<td>ARCH 527</td>
<td>(3)</td>
<td>Civic Design</td>
</tr>
<tr>
<td>ARCH 528</td>
<td>(3)</td>
<td>History of Housing</td>
</tr>
<tr>
<td>ARCH 529</td>
<td>(3)</td>
<td>Housing Theory</td>
</tr>
<tr>
<td>ARCH 531</td>
<td>(3)</td>
<td>Architectural Intentions Vitruvius - Renaissance</td>
</tr>
</tbody>
</table>
ARCH 532 (3) Origins of Modern Architecture
ARCH 533 (3) New Approaches to Architectural History
ARCH 535 (3) History of Architecture in Canada
ARCH 536 (3) Heritage Conservation
ARCH 540 (3) Selected Topics in Architecture 1
ARCH 541 (3) Selected Topics in Architecture 2
ARCH 564 (3) Design for Development
ARCH 566 (3) Cultural Landscapes Seminar
OCC1 442 (2) Environments for the Disabled

Electives
6 credits of elective courses outside the School of Architecture must be completed, subject to approval by the Student Adviser.

12.3 Department of Bioengineering

12.3.1 Location

Macdonald Engineering Building, Room 270
817 Sherbrooke Street West
Montreal QC H3A 0C3
Telephone: 514-398-7138
Fax: 514-398-7379
Email: info.bioeng@mcgill.ca
Website: www.mcgill.ca/bioengineering

12.3.2 About the Department of Bioengineering

The Department of Bioengineering, established in 2012, is the newest department to join McGill University’s renowned Faculty of Engineering. McGill researchers from nearly all faculty units, including seven Canada Research Chairs and many colleagues in the Faculties of Medicine, Science, and Agricultural and Environmental Sciences, are actively involved in various areas of bioengineering. Within our Department, the faculty are focusing on three major directions:

- Biological materials and mechanics
- Biomolecular and cellular engineering
- Biomedical, diagnostics, and high throughput screening

12.3.3 Courses in Bioengineering

The following courses are offered by the Department of Bioengineering:

- BIEN 200
- BIEN 210
- BIEN 310
- BIEN 320
- BIEN 330
- BIEN 340
- BIEN 350
- BIEN 462
- BIEN 510
- BIEN 520
- BIEN 530
12.3.4 Bioengineering Faculty

Chair
Dan V. Nicolau

Professors
Amine Kamen; Ph.D.(Mines ParisTech), Ph.D.(École Poly., Montr.)

Associate Professor
Yu (Brandon) Xia; B.Sc.(Peking), Ph.D.(Stan.)

Assistant Professors
Allen Ehrlicher; B.Sc., B.A.(Texas-Austin), M.Sc., Ph.D.(Leipzig)
Adam Hendricks; B.S., M.S.(Virg. Poly. Inst. & State Univ.), Ph.D.(Mich.)
J. Matt Kinsella; B.Sc. (SXU, Chicago), M.S., Ph.D.(Purd.)
Georgios Mitsis; Dipl.(Nat. Tech., Athens), M.S.(Elect. Eng.), M.S.(Biomed. Eng.), Ph.D.(USC)

12.3.5 Bachelor of Engineering (B.Eng.) - Bioengineering (141 credits)

*** NEW PROGRAM ***
Program credit weight: 141-151 credits
Program credit weight for Quebec CEGEP students: 121-122 credits
Program credit weight for out-of-province students: 141-142 credits

The B.Eng.; Major in Bioengineering will 1) provide students with the ability to apply systematic knowledge of biology, physical sciences and mathematics; and sound engineering foundations in order to solve problems of a biological nature; and 2) prepare students for the broad area of bioengineering, incorporating both biology-focused biological engineering and medicine-focused biomedical engineering.

Students will acquire fundamental knowledge in bioengineering-related natural sciences and mathematics, as well as in the foundations of general engineering and bioengineering. Students will also acquire knowledge in one area of specialization of bioengineering: 1) biological materials and biomechanics; 2) biomolecular and cellular engineering; or 3) biomedical, diagnostic and high throughout screening engineering.

Required Year 0 (Freshman) Courses
29 credits
Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credits for Year 0 (Freshman) courses, except BIOL 112, and enter a 121-122-credit program. Students from Quebec CEGEPs who have successfully completed a course at CEGEP that is equivalent to BIOL 112 may obtain transfer credits for this course by passing the McGill Science Placement Exam for BIOL 112. For information on transfer credit for French Baccalaureate, International Baccalaureate exams, Advanced Placement exams, Advanced Levels and Science Placement Exams, see http://www.mcgill.ca/engineering/student/sao/newstudents and select your term of admission.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 112</td>
<td>3</td>
<td>Cell and Molecular Biology</td>
</tr>
<tr>
<td>CHEM 110</td>
<td>4</td>
<td>General Chemistry 1</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>4</td>
<td>General Chemistry 2</td>
</tr>
<tr>
<td>MATH 133</td>
<td>3</td>
<td>Linear Algebra and Geometry</td>
</tr>
<tr>
<td>MATH 140</td>
<td>3</td>
<td>Calculus 1</td>
</tr>
<tr>
<td>MATH 141</td>
<td>4</td>
<td>Calculus 2</td>
</tr>
<tr>
<td>PHYS 131</td>
<td>4</td>
<td>Mechanics and Waves</td>
</tr>
<tr>
<td>PHYS 142</td>
<td>4</td>
<td>Electromagnetism and Optics</td>
</tr>
</tbody>
</table>

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.
Required Non-Departmental Courses
44 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 212</td>
<td>3</td>
<td>Molecular Mechanisms of Cell Function</td>
</tr>
<tr>
<td>BIOL 200</td>
<td>3</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>BREE 301</td>
<td>3</td>
<td>Biothermodynamics</td>
</tr>
<tr>
<td>CCOM 206</td>
<td>3</td>
<td>Communication in Engineering</td>
</tr>
<tr>
<td>CHEE 310</td>
<td>3</td>
<td>Physical Chemistry for Engineers</td>
</tr>
<tr>
<td>CHEM 212</td>
<td>4</td>
<td>Introductory Organic Chemistry 1</td>
</tr>
<tr>
<td>CIVE 281</td>
<td>3</td>
<td>Analytical Mechanics</td>
</tr>
<tr>
<td>COMP 208</td>
<td>3</td>
<td>Computers in Engineering</td>
</tr>
<tr>
<td>FACC 100*</td>
<td>1</td>
<td>Introduction to the Engineering Profession</td>
</tr>
<tr>
<td>FACC 300</td>
<td>3</td>
<td>Engineering Economy</td>
</tr>
<tr>
<td>FACC 400</td>
<td>1</td>
<td>Engineering Professional Practice</td>
</tr>
<tr>
<td>MATH 262</td>
<td>3</td>
<td>Intermediate Calculus</td>
</tr>
<tr>
<td>MATH 263</td>
<td>3</td>
<td>Ordinary Differential Equations for Engineers</td>
</tr>
<tr>
<td>MATH 264</td>
<td>3</td>
<td>Advanced Calculus for Engineers</td>
</tr>
<tr>
<td>MECH 210</td>
<td>2</td>
<td>Mechanics 1</td>
</tr>
<tr>
<td>PHYS 319</td>
<td>3</td>
<td>Introduction to Biophysics</td>
</tr>
</tbody>
</table>

* Note FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Bioengineering Courses
23 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIEN 200</td>
<td>2</td>
<td>Introduction to Bioengineering</td>
</tr>
<tr>
<td>BIEN 210</td>
<td>3</td>
<td>Electrical and Optical Properties of Biological Systems</td>
</tr>
<tr>
<td>BIEN 290</td>
<td>4</td>
<td>Bioengineering Measurement Laboratory</td>
</tr>
<tr>
<td>BIEN 340</td>
<td>3</td>
<td>Transport Processes in Biological Systems</td>
</tr>
<tr>
<td>BIEN 390</td>
<td>3</td>
<td>Bioengineering Laboratory</td>
</tr>
<tr>
<td>BIEN 470D1</td>
<td>3</td>
<td>Bioengineering Design Project</td>
</tr>
<tr>
<td>BIEN 470D2</td>
<td>3</td>
<td>Bioengineering Design Project</td>
</tr>
<tr>
<td>BIEN 471</td>
<td>2</td>
<td>Bioengineering Research Project</td>
</tr>
</tbody>
</table>

Bioengineering Complementary Courses
36-37 credits

Starting in the third year (second year for CEGEP students) (Year 2), students will need to take 36 credits of courses to upgrade their general knowledge of Bioengineering. While it is not mandatory, it is highly recommended that the students choose all courses in one of the three streams of bioengineering knowledge and practice: 1) Biological Materials and Mechanics (37 credits); 2) Biomolecular and Cellular Engineering (36 credits); or 3) Biomedical, Diagnostics and High Throughput Screening Engineering (36 credits). However, students may satisfy the Bioengineering Complementary Courses requirement by taking a minimum of 30 credits from the Engineering Science and Design Complementaries course list and 6 credits of any other courses in the course lists below.

Engineering Science and Design Complementaries
30-37 credits from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIEN 310</td>
<td>3</td>
<td>Introduction to Biomolecular Engineering</td>
</tr>
<tr>
<td>BIEN 320</td>
<td>3</td>
<td>Molecular, Cellular and Tissue Biomechanics</td>
</tr>
<tr>
<td>BIEN 330</td>
<td>3</td>
<td>Introduction to Tissue Engineering</td>
</tr>
<tr>
<td>Course Code</td>
<td>Credits</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>BIEN 350</td>
<td>3</td>
<td>Biosystems and Control</td>
</tr>
<tr>
<td>BIEN 462</td>
<td>3</td>
<td>Engineering Principles in Physiological Systems</td>
</tr>
<tr>
<td>BIEN 510</td>
<td>3</td>
<td>Nanoparticles in the Medical Sciences</td>
</tr>
<tr>
<td>BIEN 520</td>
<td>3</td>
<td>High Throughput Bioanalytical Devices</td>
</tr>
<tr>
<td>BIEN 530</td>
<td>3</td>
<td>Imaging and Bioanalytical Instrumentation</td>
</tr>
<tr>
<td>BIEN 550</td>
<td>3</td>
<td>Biomolecular Devices</td>
</tr>
<tr>
<td>BIEN 560</td>
<td>3</td>
<td>Biosensors</td>
</tr>
<tr>
<td>BIEN 570</td>
<td>3</td>
<td>Active Mechanics in Biology</td>
</tr>
<tr>
<td>BMDE 504</td>
<td>3</td>
<td>Biomaterials and Bioperformance</td>
</tr>
<tr>
<td>BMDE 505</td>
<td>3</td>
<td>Cell and Tissue Engineering</td>
</tr>
<tr>
<td>BMDE 509</td>
<td>3</td>
<td>Quantitative Analysis and Modelling of Cellular Processes</td>
</tr>
<tr>
<td>CHEE 314</td>
<td>3</td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td>CHEE 370</td>
<td>3</td>
<td>Elements of Biotechnology</td>
</tr>
<tr>
<td>CHEE 390</td>
<td>3</td>
<td>Computational Methods in Chemical Engineering</td>
</tr>
<tr>
<td>CHEE 563**</td>
<td>3</td>
<td>Biofluids and Cardiovascular Mechanics</td>
</tr>
<tr>
<td>CIVE 207</td>
<td>4</td>
<td>Solid Mechanics</td>
</tr>
<tr>
<td>CIVE 557</td>
<td>3</td>
<td>Microbiology for Environmental Engineering</td>
</tr>
<tr>
<td>CIVE 558</td>
<td>3</td>
<td>Biomolecular Techniques for Environmental Engineering</td>
</tr>
<tr>
<td>ECSE 529</td>
<td>3</td>
<td>Computer and Biological Vision</td>
</tr>
<tr>
<td>MECH 502*</td>
<td>3</td>
<td>Topics in Mechanical Engineering</td>
</tr>
<tr>
<td>MECH 547</td>
<td>3</td>
<td>Mechanics of Biological Materials</td>
</tr>
<tr>
<td>MECH 553</td>
<td>3</td>
<td>Design and Manufacture of Microdevices</td>
</tr>
<tr>
<td>MECH 563**</td>
<td>3</td>
<td>Biofluids and Cardiovascular Mechanics</td>
</tr>
</tbody>
</table>

* When topic is appropriate, as: Microfluidics and bioMEMs
** Note: Students may choose only one of CHEE 563 and MECH 563 Biofluids and Cardiovascular Mechanics

0-6 credits from other courses listed in the streams below:

Stream 1: Biological Materials and Mechanics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIEN 320</td>
<td>3</td>
<td>Molecular, Cellular and Tissue Biomechanics</td>
</tr>
<tr>
<td>BIEN 462</td>
<td>3</td>
<td>Engineering Principles in Physiological Systems</td>
</tr>
<tr>
<td>BIEN 510</td>
<td>3</td>
<td>Nanoparticles in the Medical Sciences</td>
</tr>
<tr>
<td>BIEN 570</td>
<td>3</td>
<td>Active Mechanics in Biology</td>
</tr>
<tr>
<td>BMDE 504</td>
<td>3</td>
<td>Biomaterials and Bioperformance</td>
</tr>
<tr>
<td>BMDE 505</td>
<td>3</td>
<td>Cell and Tissue Engineering</td>
</tr>
<tr>
<td>CHEE 314</td>
<td>3</td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td>CHEE 563*</td>
<td>3</td>
<td>Biofluids and Cardiovascular Mechanics</td>
</tr>
<tr>
<td>CIVE 207</td>
<td>4</td>
<td>Solid Mechanics</td>
</tr>
<tr>
<td>MECH 547</td>
<td>3</td>
<td>Mechanics of Biological Materials</td>
</tr>
<tr>
<td>MIME 261</td>
<td>3</td>
<td>Structure of Materials</td>
</tr>
<tr>
<td>MIME 470</td>
<td>3</td>
<td>Engineering Biomaterials</td>
</tr>
</tbody>
</table>

* Note: Students may choose only one of CHEE 563 and MECH 563 Biofluids and Cardiovascular Mechanics
Stream 2: Biomolecular and Cellular Engineering

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIEN 310</td>
<td>3</td>
<td>Introduction to Biomolecular Engineering</td>
</tr>
<tr>
<td>BIEN 320</td>
<td>3</td>
<td>Molecular, Cellular and Tissue Biomechanics</td>
</tr>
<tr>
<td>BIEN 330</td>
<td>3</td>
<td>Introduction to Tissue Engineering</td>
</tr>
<tr>
<td>BIEN 550</td>
<td>3</td>
<td>Biomolecular Devices</td>
</tr>
<tr>
<td>BIEN 570</td>
<td>3</td>
<td>Active Mechanics in Biology</td>
</tr>
<tr>
<td>BIOC 311</td>
<td>3</td>
<td>Metabolic Biochemistry</td>
</tr>
<tr>
<td>BMDE 509</td>
<td>3</td>
<td>Quantitative Analysis and Modelling of Cellular Processes</td>
</tr>
<tr>
<td>CHEE 370</td>
<td>3</td>
<td>Elements of Biotechnology</td>
</tr>
<tr>
<td>CHEE 390</td>
<td>3</td>
<td>Computational Methods in Chemical Engineering</td>
</tr>
<tr>
<td>CIVE 557</td>
<td>3</td>
<td>Microbiology for Environmental Engineering</td>
</tr>
<tr>
<td>CIVE 558</td>
<td>3</td>
<td>Biomolecular Techniques for Environmental Engineering</td>
</tr>
<tr>
<td>PHYS 534</td>
<td>3</td>
<td>Nanoscience and Nanotechnology</td>
</tr>
</tbody>
</table>

Stream 3: Biomedical, Diagnostics and High Throughput Screening Engineering

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIEN 350</td>
<td>3</td>
<td>Biosystems and Control</td>
</tr>
<tr>
<td>BIEN 520</td>
<td>3</td>
<td>High Throughput Bioanalytical Devices</td>
</tr>
<tr>
<td>BIEN 530</td>
<td>3</td>
<td>Imaging and Bioanalytical Instrumentation</td>
</tr>
<tr>
<td>BIEN 560</td>
<td>3</td>
<td>Biosensors</td>
</tr>
<tr>
<td>CHEE 314</td>
<td>3</td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td>CHEM 287</td>
<td>2</td>
<td>Introductory Analytical Chemistry</td>
</tr>
<tr>
<td>CHEM 297</td>
<td>1</td>
<td>Introductory Analytical Chemistry Laboratory</td>
</tr>
<tr>
<td>CHEM 367</td>
<td>3</td>
<td>Instrumental Analysis 1</td>
</tr>
<tr>
<td>CIVE 558</td>
<td>3</td>
<td>Biomolecular Techniques for Environmental Engineering</td>
</tr>
<tr>
<td>ECSE 529</td>
<td>3</td>
<td>Computer and Biological Vision</td>
</tr>
<tr>
<td>MECH 502*</td>
<td>3</td>
<td>Topics in Mechanical Engineering</td>
</tr>
<tr>
<td>MECH 553</td>
<td>3</td>
<td>Design and Manufacture of Microdevices</td>
</tr>
<tr>
<td>PHYS 534</td>
<td>3</td>
<td>Nanoscience and Nanotechnology</td>
</tr>
</tbody>
</table>

* When topic is appropriate, as: Microfluids and bioMEMs

Complementary Studies

9 credits

Group A - Impact of Technology on Society

3 credits from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 212</td>
<td>3</td>
<td>Anthropology of Development</td>
</tr>
<tr>
<td>CIVE 469</td>
<td>3</td>
<td>Infrastructure and Society</td>
</tr>
<tr>
<td>ECON 225</td>
<td>3</td>
<td>Economics of the Environment</td>
</tr>
<tr>
<td>ECON 347</td>
<td>3</td>
<td>Economics of Climate Change</td>
</tr>
<tr>
<td>ENVR 201</td>
<td>3</td>
<td>Society, Environment and Sustainability</td>
</tr>
<tr>
<td>GEOG 200</td>
<td>3</td>
<td>Geographical Perspectives: World Environmental Problems</td>
</tr>
<tr>
<td>GEOG 203</td>
<td>3</td>
<td>Environmental Systems</td>
</tr>
<tr>
<td>GEOG 205</td>
<td>3</td>
<td>Global Change: Past, Present and Future</td>
</tr>
</tbody>
</table>
GEOG 302 (3) Environmental Management 1
MECH 526 (3) Manufacturing and the Environment
MGPO 440* (3) Strategies for Sustainability
PHIL 343 (3) Biomedical Ethics
RELG 270 (3) Religious Ethics and the Environment
SOCI 235 (3) Technology and Society
SOCI 312 (3) Sociology of Work and Industry
URBP 201 (3) Planning the 21st Century City

* Note: Management courses have limited enrolment and registration dates. See Important Dates at www.mcgill.ca/importantdates.

Group B - Humanities and Social Science, Management Studies and Law

Generally, students admitted to Engineering from Quebec CEGEP’s are granted transfer credits for 3 credits (one course) from the Complementary Studies Group B list.

6 credits of courses at the 200-level or higher from the following departments:

Anthropology (ANTH)
Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)
History (HIST)
Philosophy (excluding PHIL 210 and PHIL 310)
Political Science (POLI)
Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)
Religious Studies (RELG)
School of Social Work (SWRK)
Sociology (excluding SOCI 350)

OR from the following courses:

ARCH 528 (3) History of Housing
BUSA 465* (3) Technological Entrepreneurship
ENVR 203 (3) Knowledge, Ethics and Environment
ENVR 400 (3) Environmental Thought
FACC 220 (3) Law for Architects and Engineers
FACC 500 (3) Technology Business Plan Design
FACC 501 (3) Technology Business Plan Project
INDR 294* (3) Introduction to Labour-Management Relations
MATH 338 (3) History and Philosophy of Mathematics
MGCR 222* (3) Introduction to Organizational Behaviour
MGCR 352* (3) Principles of Marketing
ORGB 321* (3) Leadership
ORGB 423* (3) Human Resources Management

* Note: Management courses have limited enrolment and registration dates. See Important Dates: www.mcgill.ca/importantdates.

Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100-level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement.

However, 3-6 credits may be given for language courses at the 200-level or higher that have a sufficient cultural component. These courses must be approved by the Engineering Student Centre (Frank Dawson Adams Building, Room 22).

Elective Courses
Students from Quebec CEGEPs must take 9 credits of elective courses. These can be chosen from any course at the 200-level or higher offered by the University, subject to permission of the offering department.

12.4 Department of Chemical Engineering

12.4.1 Location

M.H. Wong Building, Room 3060
3610 University Street
Montreal QC H3A 0C5
Telephone: 514-398-4494
Fax: 514-398-6678
Email: info.chemeng@mcgill.ca
Website: www.mcgill.ca/chemeng

12.4.2 About the Department of Chemical Engineering

The central purpose of engineering is to pursue solutions to technological problems in order to satisfy the needs and desires of society. Chemical engineers are trained to solve the kinds of problems that are typically found in the “chemical process industries,” which include:

- chemical manufacturing;
- plastics;
- water treatment;
- pulp and paper;
- petroleum refining;
- ceramics; and
- paint industries;

as well as substantial portions of the:

- food processing;
- textile;
- nuclear energy;
- alternative energy;
- biochemical;
- biomedical; and
- pharmaceutical industries.

The technological problems and opportunities in these industries are often closely linked to social, economic, and environmental concerns. For this reason, chemical engineers often deal with these questions while working in management, pollution abatement, product development, marketing, and equipment design.

By means of complementary courses, students can also obtain further depth in technical areas and breadth in non-technical subjects. Some students elect to complete a minor in biotechnology, management, materials engineering, computer science, environmental engineering, chemistry, or another minor (see section 12.11: Minor Programs for minors available to engineering students).

The solution to many environmental problems requires an understanding of technological principles; a Chemical Engineering degree provides an ideal background. In addition to relevant material learned in the core program, a selection of environmental complementary courses and minor programs is available. The involvement of many Chemical Engineering faculty members in environmental research provides the opportunity for undergraduate students to carry out research projects in this area.

The B.Eng. curriculum also provides the preparation necessary to undertake postgraduate studies leading to the M.Eng. or Ph.D. degrees in Chemical Engineering. Students completing this curriculum acquire a broad, balanced education in the natural sciences with the accent on application. Thus, for those who do not continue in Chemical Engineering, it provides an exceptionally balanced education in applied science. For others, it will form the basis of an educational program that may continue with a variety of studies such as business administration, medicine, or law. Versatility is, therefore, one of the most valuable characteristics of Chemical Engineering program graduates.
12.4.3 Academic Programs

The Chemical Engineering program comprises 142 credits (116 credits for those who completed the Quebec CEGEP program in Pure and Applied Sciences). Certain students who take advantage of Summer session courses can complete the program in three calendar years.

In some cases, students from university science disciplines have sufficient credits to complete the requirements for the B.Eng. (Chemical) program in two and a half years. Those concerned should discuss this with their adviser.

Students must obtain a grade of C or better in all core courses. For the Department of Chemical Engineering, core courses include all required courses (departmental and non-departmental) as well as technical complementary courses.

12.4.4 Canadian Society for Chemical Engineering

The Chemical Engineering Student Society has for many years been affiliated with both the CSChE (Canadian Society for Chemical Engineering) and with the AIChE (American Institute of Chemical Engineers). For a nominal fee, students receive Canadian Chemical News, a monthly publication, and the AIChE Student Members Bulletin, as well as other privileges of student membership in the two societies. The student chapter also organizes a series of local social, educational, and sporting events. Recent events have included student-professor banquets and Christmas parties, dances, speakers, broomball games, and joint meetings with the Montreal Section of the CSChE which gives students a chance to mix with practising chemical engineers.

12.4.5 Chemical Engineering Faculty

<table>
<thead>
<tr>
<th>Chair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sylvain Coulombe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emeritus Professors</th>
</tr>
</thead>
<tbody>
<tr>
<td>John M. Dealy; B.S.(Kansas), M.S.E., Ph.D.(Mich.), Eng.</td>
</tr>
<tr>
<td>Musa R. Kamal; B.S.(Ill.), M.S., Ph.D.(Carn. Mell), Eng.</td>
</tr>
<tr>
<td>Richard J. Munz; B.A.Sc.(Wat.), Ph.D.(McG.), Eng.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Professors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sylvain Coulombe; B.Sc., M.Sc.A.(Sher.), Ph.D.(McG.), Eng. (Gerald Hatch Faculty Fellow)</td>
</tr>
<tr>
<td>Sasha Omanovic; Dipl.Ing., Ph.D.(Zagreb), P.Eng. (Hydro-Quebec Nano-Engineering Scholar)</td>
</tr>
<tr>
<td>Alejandro D. Rey; B.Ch.E.(CCNY), Ph.D.(Calif.), F.R.S.C. (James McGill Professor)</td>
</tr>
<tr>
<td>Nathalie Tufenkji; B.Eng.(McG.), M.Sc., Ph.D.(Yale), ing. (CRC-Tier II)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Associate Professors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimitrios Berk; B.Sc.(Bosphorus), M.E.Sc.(W. Ont.), Ph.D.(Calg.), P.Eng.</td>
</tr>
<tr>
<td>Jeff Gostick; B.Eng.(Ryerson), M.A.Sc., Ph.D.(Wat.)</td>
</tr>
<tr>
<td>Reghan James Hill; B.E.(Auck.), Ph.D.(Cornell)</td>
</tr>
<tr>
<td>Anne-Marie Kietzig; Dipl.Ing.(TU Berlin), Ph.D.(Br. Col.)</td>
</tr>
<tr>
<td>Richard L. Leask; B.A.Sc., M.A.Sc.(Wat.), Ph.D.(Tor.), P.Eng. (William Dawson Scholar)</td>
</tr>
<tr>
<td>Phillip Servio; B.A.Sc., Ph.D.(Br. Col.)</td>
</tr>
<tr>
<td>Viviane Yargeau; B.Ch.E., M.Sc.A., Ph.D.(Sher.), Eng.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assistant Professors</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.-Luc Girard-Lauriault; B.Sc.(Montr.), Ph.D.(École Poly., Montr.)</td>
</tr>
<tr>
<td>Corinne Hoslitt; B.Sc., B.A.Sc.(Ott.), Ph.D.(Br. Col.), ing. jr.</td>
</tr>
<tr>
<td>Jan Kopyscinski; Dipl.Ing.(BTU Cottbus), Dr.Sc.(ETH Zurich)</td>
</tr>
<tr>
<td>Christopher Moraes; B.A.Sc., Ph.D.(Tor.)</td>
</tr>
</tbody>
</table>
Post-Retirement

W.J. Murray Douglas; B.Sc.(Qu.), M.S.E., Ph.D.(Mich.)

12.4.6 Bachelor of Engineering (B.Eng.) - Chemical Engineering (142 credits)

Program credit weight: 142-145 credits
Program credit weight for Quebec CEGEP students: 116 credits
Program credit weight for out-of-province students: 142 credits

The discipline of chemical engineering is distinctive in being based equally on physics, mathematics, and chemistry. Application of these three fundamental sciences is basic to a quantitative understanding of the process industries. Those with an interest in the fourth fundamental science, biology, will find several courses in the chemical engineering curriculum that integrate aspects of the biological sciences relevant to process industries such as food processing, fermentation, biomedical, and water pollution control. Courses on the technical operations and economics of the process industries are added to this foundation. The core curriculum concludes with process design courses taught by practising design engineers. Problem-solving, experimenting, planning, and communication skills are emphasized in courses throughout the core curriculum.

Certain students who take advantage of Summer session courses can complete the departmental program in three calendar years.

In some cases, students from university science disciplines have sufficient credits to complete the requirements for the B.Eng. (Chemical) program in two and a half years. Those concerned should discuss this with their adviser.

Students must obtain a grade of C or better in all core courses. For the Department of Chemical Engineering, core courses include all required courses (departmental and non-departmental) as well as technical complementary courses.

Note to CEGEP students

If you have successfully completed a course at CEGEP that is equivalent to CHEM 212 or CHEM 234, you may obtain transfer credits for either or both courses by passing the McGill Science Placement Exam for the course(s). You must complete an application form available on the Science Placement Exam website and an application fee will be charged to your student account. Science placement exams take place in August and September before classes begin. If you pass the exam(s), transfer credits for the course(s) will be reflected on your transcript and your program credit requirements will be decreased to reflect these transfer credits. For information on Science Placement Exams, including application deadlines, the application form, application fee, dates, times, and location of the exams, see http://www.mcgill.ca/students/exams/science. If you do not pass the placement exams, you must register for CHEM 212 and CHEM 234 during your studies at McGill as outlined in your program requirements.

Required Year 0 (Freshman) Courses

29 credits
Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 116-credit program.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 110</td>
<td>(4)</td>
<td>General Chemistry 1</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>(4)</td>
<td>General Chemistry 2</td>
</tr>
<tr>
<td>MATH 133</td>
<td>(3)</td>
<td>Linear Algebra and Geometry</td>
</tr>
<tr>
<td>MATH 140</td>
<td>(3)</td>
<td>Calculus 1</td>
</tr>
<tr>
<td>MATH 141</td>
<td>(4)</td>
<td>Calculus 2</td>
</tr>
<tr>
<td>PHYS 131</td>
<td>(4)</td>
<td>Mechanics and Waves</td>
</tr>
<tr>
<td>PHYS 142</td>
<td>(4)</td>
<td>Electromagnetism and Optics</td>
</tr>
</tbody>
</table>

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses

24 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 212</td>
<td>(4)</td>
<td>Introductory Organic Chemistry 1</td>
</tr>
<tr>
<td>CHEM 234</td>
<td>(3)</td>
<td>Topics in Organic Chemistry</td>
</tr>
<tr>
<td>COMP 208</td>
<td>(3)</td>
<td>Computers in Engineering</td>
</tr>
</tbody>
</table>
Required Chemical Engineering Courses

74 credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEE 200</td>
<td>3</td>
<td>Chemical Engineering Principles 1</td>
</tr>
<tr>
<td>CHEE 204</td>
<td>3</td>
<td>Chemical Engineering Principles 2</td>
</tr>
<tr>
<td>CHEE 220</td>
<td>3</td>
<td>Chemical Engineering Thermodynamics</td>
</tr>
<tr>
<td>CHEE 231</td>
<td>3</td>
<td>Data Analysis and Design of Experiments</td>
</tr>
<tr>
<td>CHEE 291</td>
<td>4</td>
<td>Instrumentation and Measurement 1</td>
</tr>
<tr>
<td>CHEE 310</td>
<td>3</td>
<td>Physical Chemistry for Engineers</td>
</tr>
<tr>
<td>CHEE 314</td>
<td>3</td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td>CHEE 315</td>
<td>3</td>
<td>Heat and Mass Transfer</td>
</tr>
<tr>
<td>CHEE 351</td>
<td>3</td>
<td>Separation Processes</td>
</tr>
<tr>
<td>CHEE 360</td>
<td>1</td>
<td>Technical Paper</td>
</tr>
<tr>
<td>CHEE 370</td>
<td>3</td>
<td>Elements of Biotechnology</td>
</tr>
<tr>
<td>CHEE 380</td>
<td>3</td>
<td>Materials Science</td>
</tr>
<tr>
<td>CHEE 390</td>
<td>3</td>
<td>Computational Methods in Chemical Engineering</td>
</tr>
<tr>
<td>CHEE 400</td>
<td>3</td>
<td>Principles of Energy Conversion</td>
</tr>
<tr>
<td>CHEE 401</td>
<td>3</td>
<td>Energy Systems Engineering</td>
</tr>
<tr>
<td>CHEE 423</td>
<td>3</td>
<td>Chemical Reaction Engineering</td>
</tr>
<tr>
<td>CHEE 440</td>
<td>3</td>
<td>Process Modelling</td>
</tr>
<tr>
<td>CHEE 453</td>
<td>4</td>
<td>Process Design</td>
</tr>
<tr>
<td>CHEE 455</td>
<td>3</td>
<td>Process Control</td>
</tr>
<tr>
<td>CHEE 456</td>
<td>2</td>
<td>Design Project 1</td>
</tr>
<tr>
<td>CHEE 457</td>
<td>5</td>
<td>Design Project 2</td>
</tr>
<tr>
<td>CHEE 474</td>
<td>3</td>
<td>Biochemical Engineering</td>
</tr>
<tr>
<td>CHEE 484</td>
<td>3</td>
<td>Materials Engineering</td>
</tr>
<tr>
<td>CHEE 491</td>
<td>4</td>
<td>Instrumentation and Measurement 2</td>
</tr>
</tbody>
</table>

Technical Complementaries

9 credits

The purpose of this requirement is to provide students with an area of specialization within the broad field of chemical engineering. Alternatively, students use the technical complementsaries to increase the breadth of their chemical engineering training.

List A

3-9 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEE 301</td>
<td>3</td>
<td>Resource Recovery from Waste</td>
</tr>
<tr>
<td>CHEE 452</td>
<td>3</td>
<td>Particulate Systems</td>
</tr>
<tr>
<td>Course Code</td>
<td>Credits</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>CHEE 510</td>
<td>3</td>
<td>Advanced Separation Processes</td>
</tr>
<tr>
<td>CHEE 515+</td>
<td>3</td>
<td>Material Surfaces: A Biomimetic Approach</td>
</tr>
<tr>
<td>CHEE 521+</td>
<td>3</td>
<td>Nanomaterials and the Aquatic Environment</td>
</tr>
<tr>
<td>CHEE 541</td>
<td>3</td>
<td>Electrochemical Engineering</td>
</tr>
<tr>
<td>CHEE 543</td>
<td>3</td>
<td>Plasma Engineering</td>
</tr>
<tr>
<td>CHEE 561</td>
<td>3</td>
<td>Introduction to Soft Tissue Biophysics</td>
</tr>
<tr>
<td>CHEE 563+</td>
<td>3</td>
<td>Biofluids and Cardiovascular Mechanics</td>
</tr>
<tr>
<td>CHEE 571</td>
<td>3</td>
<td>Small Computer Applications: Chemical Engineering</td>
</tr>
<tr>
<td>CHEE 582</td>
<td>3</td>
<td>Polymer Science & Engineering</td>
</tr>
<tr>
<td>CHEE 584</td>
<td>3</td>
<td>Polymer Processing</td>
</tr>
<tr>
<td>CHEE 585</td>
<td>3</td>
<td>Foundations of Soft Matter</td>
</tr>
<tr>
<td>CHEE 587</td>
<td>3</td>
<td>Chemical Processing: Electronics Industry</td>
</tr>
<tr>
<td>CHEE 591</td>
<td>3</td>
<td>Environmental Bioremediation</td>
</tr>
<tr>
<td>CHEE 593+</td>
<td>3</td>
<td>Industrial Water Pollution Control</td>
</tr>
<tr>
<td>CIVE 430+</td>
<td>3</td>
<td>Water Treatment and Pollution Control</td>
</tr>
<tr>
<td>CIVE 521+</td>
<td>3</td>
<td>Nanomaterials and the Aquatic Environment</td>
</tr>
<tr>
<td>MECH 534+</td>
<td>3</td>
<td>Air Pollution Engineering</td>
</tr>
<tr>
<td>MECH 563+</td>
<td>3</td>
<td>Biofluids and Cardiovascular Mechanics</td>
</tr>
<tr>
<td>MIME 515+</td>
<td>3</td>
<td>Material Surfaces: A Biomimetic Approach</td>
</tr>
</tbody>
</table>

+ Students may choose only one course in each of the following sets:
- CHEE 515 or MIME 515
- CHEE 521 or CIVE 521
- CHEE 563 or MECH 563
- CHEE 593 or CIVE 430

List B
0-6 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIEN 320</td>
<td>3</td>
<td>Molecular, Cellular and Tissue Biomechanics</td>
</tr>
<tr>
<td>BIEN 330</td>
<td>3</td>
<td>Introduction to Tissue Engineering</td>
</tr>
<tr>
<td>BIEN 340</td>
<td>3</td>
<td>Transport Processes in Biological Systems</td>
</tr>
<tr>
<td>BIEN 350</td>
<td>3</td>
<td>Biosystems and Control</td>
</tr>
<tr>
<td>BIEN 462</td>
<td>3</td>
<td>Engineering Principles in Physiological Systems</td>
</tr>
<tr>
<td>BIEN 510</td>
<td>3</td>
<td>Nanoparticles in the Medical Sciences</td>
</tr>
<tr>
<td>BIEN 520</td>
<td>3</td>
<td>High Throughput Bioanalytical Devices</td>
</tr>
<tr>
<td>BIEN 550</td>
<td>3</td>
<td>Biomolecular Devices</td>
</tr>
<tr>
<td>BIEN 570</td>
<td>3</td>
<td>Active Mechanics in Biology</td>
</tr>
<tr>
<td>BIOT 505*</td>
<td>3</td>
<td>Selected Topics in Biotechnology</td>
</tr>
<tr>
<td>BREE 325</td>
<td>3</td>
<td>Food Process Engineering</td>
</tr>
<tr>
<td>BREE 522</td>
<td>3</td>
<td>Bio-Based Polymers</td>
</tr>
<tr>
<td>CHEE 363**</td>
<td>2</td>
<td>Projects Chemical Engineering 1</td>
</tr>
<tr>
<td>CHEE 494**</td>
<td>3</td>
<td>Research Project and Seminar 1</td>
</tr>
<tr>
<td>CHEE 495**</td>
<td>4</td>
<td>Research Project and Seminar 2</td>
</tr>
<tr>
<td>CHEE 496**</td>
<td>3</td>
<td>Environmental Research Project</td>
</tr>
</tbody>
</table>
CIVE 557 (3) Microbiology for Environmental Engineering
MIME 470 (3) Engineering Biomaterials
MIME 558 (3) Engineering Nanomaterials

* BIOT 505 can only be chosen by students taking the Minor in Biotechnology.
** Students may choose only one project course: CHEE 363, CHEE 494, CHEE 495, or CHEE 496.

List C
0-3 credits
The remaining credits, up to a maximum of 3 credits, may be taken from other suitable undergraduate courses in the Faculty of Engineering, with departmental permission.

Complementary Studies
6 credits (9 credits for students from Quebec CEGEPs)

Group A - Impact of Technology on Society
3 credits from the following:
ANTH 212 (3) Anthropology of Development
BTEC 502 (3) Biotechnology Ethics and Society
CIVE 469 (3) Infrastructure and Society
ECON 225 (3) Economics of the Environment
ECON 347 (3) Economics of Climate Change
ENVR 201 (3) Society, Environment and Sustainability
GEOG 200 (3) Geographical Perspectives: World Environmental Problems
GEOG 203 (3) Environmental Systems
GEOG 205 (3) Global Change: Past, Present and Future
GEOG 302 (3) Environmental Management 1
MECH 526 (3) Manufacturing and the Environment
MGPO 440* (3) Strategies for Sustainability
MIME 308 (3) Social Impact of Technology
PHIL 343 (3) Biomedical Ethics
RELG 270 (3) Religious Ethics and the Environment
SOCI 235 (3) Technology and Society
SOCI 312 (3) Sociology of Work and Industry
URBP 201 (3) Planning the 21st Century City

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Group B - Humanities and Social Sciences, Management Studies and Law
3 credits (6 credits for students from Quebec CEGEPs) at the 200 level or higher from the following departments:
Anthropology (ANTH)
Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)
History (HIST)
Philosophy (excluding PHIL 210 and PHIL 310)
Political Science (POLI)
Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)
Religious Studies (RELG)
School of Social Work (SWRK)
Sociology (excluding SOCI 350)
OR 3 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 528</td>
<td>History of Housing</td>
</tr>
<tr>
<td>BUSA 465*</td>
<td>Technological Entrepreneurship</td>
</tr>
<tr>
<td>ENVR 203</td>
<td>Knowledge, Ethics and Environment</td>
</tr>
<tr>
<td>ENVR 400</td>
<td>Environmental Thought</td>
</tr>
<tr>
<td>FACC 220</td>
<td>Law for Architects and Engineers</td>
</tr>
<tr>
<td>FACC 500</td>
<td>Technology Business Plan Design</td>
</tr>
<tr>
<td>FACC 501</td>
<td>Technology Business Plan Project</td>
</tr>
<tr>
<td>INDR 294*</td>
<td>Introduction to Labour-Management Relations</td>
</tr>
<tr>
<td>MATH 338</td>
<td>History and Philosophy of Mathematics</td>
</tr>
<tr>
<td>MGCR 222*</td>
<td>Introduction to Organizational Behaviour</td>
</tr>
<tr>
<td>MGCR 352*</td>
<td>Principles of Marketing</td>
</tr>
<tr>
<td>ORGB 321*</td>
<td>Leadership</td>
</tr>
<tr>
<td>ORGB 423*</td>
<td>Human Resources Management</td>
</tr>
</tbody>
</table>

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

12.4.6.1 More about the B.Eng. Degree in Chemical Engineering

Courses CHEE 582 and CHEE 584 comprise a Polymeric Materials sequence, while courses CHEE 380 and CHEE 484 present fundamental aspects of materials science and engineering, respectively. Additional courses in the polymer materials area are available in the Chemistry Department (e.g., CHEM 574) or at the graduate level (CHEE 681). The Department has considerable expertise in the polymer area.

Courses CHEE 370 and CHEE 474 make up a sequence in Biochemical Engineering and Biotechnology. Students interested in this area may take additional courses, particularly those offered by the section 12.3: Department of Bioengineering (Faculty of Engineering); by the : Department of Food Science and Agricultural Chemistry (Faculty of Agricultural and Environmental Sciences); and courses in biochemistry and microbiology. The food, beverage, and pharmaceutical industries are large industries in the Montreal area, and these courses are relevant to these industries and to the new high-technology applications of biotechnology.

The third area in which there is a sequence of courses is Pollution Control. The Department offers three courses in this area: CHEE 521, CHEE 591, and CHEE 593. As some water pollution control problems are solved by microbial processes, course CHEE 474 is also relevant to the pollution control area. Additional courses in this area are listed in the section 12.11.9: Bachelor of Engineering (B.Eng.) - Minor Environmental Engineering (21 credits).

A Minor in Biotechnology is also offered by the Faculties of Engineering and Science with emphasis on molecular biology and chemical engineering processes. A full description of the program appears in the section 12.11.3: Bachelor of Engineering (B.Eng.) - Minor Biotechnology (for Engineering Students) (24 credits).

Note: Many of the technical complementaries are offered only in alternate years. Students should, therefore, plan their complementaries as far ahead as possible. With the approval of the instructor and Academic Adviser, students may take graduate (600-level) CHEE courses as technical complementaries.

12.5 Department of Civil Engineering and Applied Mechanics

12.5.1 Location

Macdonald Engineering Building, Room 492
817 Sherbrooke Street West
Montreal QC H3A 0C3
12.5.2 About the Department of Civil Engineering and Applied Mechanics

Civil engineers have traditionally applied scientific and engineering knowledge to the task of providing the built environment, from its conception and planning to its design, construction, maintenance, rehabilitation, and sustainability. Examples include buildings; bridges; roads; railways; dams; facilities for water supply and treatment; waste disposal; and transportation system.

With the aging and deterioration of an already vast infrastructure, its maintenance and rehabilitation has become an increasingly important role of the civil engineering profession. Also, with worldwide concern about the detrimental impact of human activities on the environment, civil engineers are now in the forefront of developing and providing the means for both prevention and remediation of many aspects of environmental pollution.

Students who wish to extend their knowledge in certain areas beyond the range that the program complementary courses allow can also take a minor. Minors are available in fields such as:

- Arts;
- Economics;
- Management;
- Environmental Engineering;
- Construction Engineering and Management;
- and others.

These require additional credits to be taken from a specified list of topics relating to the chosen field. Further information on the various minors may be found in section 12.11: Minor Programs. Details on how minors can be accommodated within the Civil Engineering program will be made available during preregistration counselling.

12.5.3 Academic Programs

Considerable freedom exists for students to influence the nature of the program of study which they follow in the Department of Civil Engineering and Applied Mechanics. A variety of advanced complementary courses is offered in five main groupings:

- Environmental Engineering;
- Geotechnical and Geoenvironmental Engineering;
- Water Resources and Hydraulic Engineering;
- Structural Engineering;
- Transportation Engineering.

Guidance on the sequence in which required core courses should be taken is provided for students in the form of a sample program which covers the entire period of study. The technical complementary courses selected, usually in the last two terms of the program, will depend upon the student's interests. All students must meet with their adviser each term to confirm the courses for which they are registered.

Courses taken in Term 3 or later will depend on a student's interests and ability. Information and advice concerning different possibilities are made available in the Department prior to registration. All programs require the approval of a staff adviser. Programs for students transferring into the Department with advanced standing will be dependent upon the academic credit previously achieved, and such a program will be established only after consultation with a staff adviser.

12.5.4 Civil Engineering and Applied Mechanics Faculty

Chair
Van-Thanh-Van Nguyen

Associate Chair
Yixin Shao

Emeritus Professors
Stuart B. Savage; B.Eng.(McG.), M.S.Eng.(Cal. Tech.), Ph.D.(McG.), F.R.S.C.
Professors

- Vincent H. Chu; B.S.Eng.(Taiwan), M.A.Sc.(Tor.), Ph.D.(MIT), Eng.
- Denis Mitchell; B.A.Sc., M.A.Sc., Ph.D.(Tor.), F.A.C.I., Eng. (James McGill Professor)
- James Nicell; B.A.Sc., M.A.Sc., Ph.D.(Windsor), P.Eng.; Dean, Faculty of Engineering
- Suresh C. Shrivastava; B.Sc.(Eng.)(Vikram), M.C.E.(Del.), Sc.D.(Col.), Eng.

Associate Professors

- Andrew J. Boyd; B.Sc.Eng.(New Br.), M.A.Sc.(Tor.), Ph.D.(Br. Col.), P.Eng., F.A.C.I.
- Dominic Frigon; B.Sc., M.Sc.(McG.), Ph.D.(Ill.-Urbana-Champaign), L.L.E.
- Susan J. Gaskin; B.Sc.(Eng.)(Qu.), Ph.D.(Cant.), Eng.
- Ronald Gehr; B.Sc.(Eng.) (Witw.), M.A.Sc., Ph.D.(Tor.), P.Eng., F.C.S.C.E.
- Subhasis Ghoshal; B.C.E.(Jadavpur), M.S.(Missouri), Ph.D.(Carn. Mell), P.Eng.
- Mohamed A. Meguid; B.Sc.(Cairo), M.Sc., Ph.D.(W. Ont.), P.Eng; Associate Dean, Undergraduate Education
- Luis Miranda-Moreno; B.Sc., M.Eng.(Mexico), Ph.D.(Wat.)
- Colin Rogers; B.A.Sc., M.A.Sc.(Wat.), Ph.D.(Syd.), P.Eng.
- Yixin Shao; B.Sc., M.S.(Tongji), Ph.D.(Maryland), P.Eng., F.A.C.I.

Assistant Professors

- Jinxia Liu; BE/ME(Tianjin), ME(Rensselaer Poly.), Ph.D.(Purd.)
- Omid M. Rouhani; B.Sc., M.Sc.(Sharif Univ. of Technology), M.Sc., Ph.D.(Calif., Davis)

Adjunct Professors

- Sofia Babarutsi, Paul Rodrigue, William Taylor

12.5.5 Bachelor of Engineering (B.Eng.) - Civil Engineering (139 credits)

Program credit weight: 139 credits

Program credit weight for Quebec CEGEP students: 110 credits

The Civil Engineering program is comprehensive in providing the fundamentals in mechanics and engineering associated with the diverse fields of the profession, in offering choices of specialization, and in fully reflecting the advances in science, mathematics, engineering, and computing that have transformed all fields of engineering in recent years. The resulting knowledge and training enables graduates to not only enter the profession thoroughly well prepared, but also to adapt to further change.

The required courses ensure a sound scientific and analytical basis for professional studies through courses in solid mechanics, fluid mechanics, soil mechanics, environmental engineering, water resources management, structural analysis, systems analysis, and mathematics. Fundamental concepts are applied to various fields of practice in both required and complementary courses.

By a suitable choice of complementary courses, students can attain advanced levels of technical knowledge in the specialized areas mentioned above. Alternatively, students may choose to develop their interests in a more general way by combining complementary courses within the Department with several from other departments or faculties.

Required Year 0 (Freshman) Courses

29 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 110-credit program.

CHEM 110 (4) General Chemistry 1
CHEM 120 (4) General Chemistry 2
MATH 133 (3) Linear Algebra and Geometry
MATH 140 (3) Calculus 1
MATH 141 (4) Calculus 2
PHYS 131 (4) Mechanics and Waves
PHYS 142 (4) Electromagnetism and Optics

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses
28 credits
CCOM 206 (3) Communication in Engineering
COMP 208 (3) Computers in Engineering
EPSC 221 (3) General Geology
FACC 100* (1) Introduction to the Engineering Profession
FACC 300 (3) Engineering Economy
FACC 400 (1) Engineering Professional Practice
MATH 262 (3) Intermediate Calculus
MATH 263 (3) Ordinary Differential Equations for Engineers
MATH 264 (3) Advanced Calculus for Engineers
MECH 261 (2) Measurement Laboratory
MECH 289 (3) Design Graphics

* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Civil Engineering Courses
61 credits
CIVE 202 (4) Construction Materials
CIVE 205 (3) Statics
CIVE 206 (3) Dynamics
CIVE 207 (4) Solid Mechanics
CIVE 208 (3) Civil Engineering System Analysis
CIVE 210 (2) Surveying
CIVE 225 (4) Environmental Engineering
CIVE 290 (3) Thermodynamics and Heat Transfer
CIVE 302 (3) Probabilistic Systems
CIVE 311 (4) Geotechnical Mechanics
CIVE 317 (3) Structural Engineering 1
CIVE 318 (3) Structural Engineering 2
CIVE 319 (3) Transportation Engineering
CIVE 320 (4) Numerical Methods
CIVE 323 (3) Hydrology and Water Resources
Complementary Courses

21 credits

List A - Design Technical Complementaries

6-15 credits from the following:

- CIVE 416 (3) Geotechnical Engineering
- CIVE 421 (3) Municipal Systems
- CIVE 428 (3) Water Resources and Hydraulic Engineering
- CIVE 430 (3) Water Treatment and Pollution Control
- CIVE 440 (3) Traffic Engineering and Simulation
- CIVE 462 (3) Design of Steel Structures
- CIVE 463 (3) Design of Concrete Structures

List B - General Technical Complementaries

0-9 credits from the following, or from other suitable undergraduate or 500-level courses:

- CHEE 521* (3) Nanomaterials and the Aquatic Environment
- CIVE 433 (3) Urban Planning
- CIVE 446 (3) Construction Engineering
- CIVE 451 (3) Geoenvironmental Engineering
- CIVE 460 (3) Matrix Structural Analysis
- CIVE 470 (3) Undergraduate Research Project
- CIVE 512 (3) Advanced Civil Engineering Materials
- CIVE 514 (3) Structural Mechanics
- CIVE 520 (3) Groundwater Hydrology
- CIVE 521* (3) Nanomaterials and the Aquatic Environment
- CIVE 527 (3) Renovation and Preservation: Infrastructure
- CIVE 540 (3) Urban Transportation Planning
- CIVE 542 (3) Transportation Network Analysis
- CIVE 546 (3) Selected Topics in Civil Engineering 1
- CIVE 550 (3) Water Resources Management
- CIVE 551 (3) Environmental Transport Processes
- CIVE 555 (3) Environmental Data Analysis
- CIVE 557 (3) Microbiology for Environmental Engineering
- CIVE 558 (3) Biomolecular Techniques for Environmental Engineering
- CIVE 560 (3) Transportation Safety and Design
- CIVE 561 (3) Urban Activity, Air Pollution, and Health
- CIVE 572 (3) Computational Hydraulics
- CIVE 573 (3) Hydraulic Structures
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 574</td>
<td>3</td>
<td>Fluid Mechanics of Water Pollution</td>
</tr>
<tr>
<td>CIVE 577</td>
<td>3</td>
<td>River Engineering</td>
</tr>
<tr>
<td>CIVE 584</td>
<td>3</td>
<td>Groundwater Engineering</td>
</tr>
</tbody>
</table>

* Students may choose only one of CHEE 521 or CIVE 521.

Complementary Studies

6 credits

Group A - Impact of Technology on Society

3 credits from the following:

- ANTH 212 (3) Anthropology of Development
- BTEC 502 (3) Biotechnology Ethics and Society
- CIVE 469 (3) Infrastructure and Society
- ECON 225 (3) Economics of the Environment
- ECON 347 (3) Economics of Climate Change
- ENVR 201 (3) Society, Environment and Sustainability
- GEOG 200 (3) Geographical Perspectives: World Environmental Problems
- GEOG 203 (3) Environmental Systems
- GEOG 205 (3) Global Change: Past, Present and Future
- GEOG 302 (3) Environmental Management 1
- MECH 526 (3) Manufacturing and the Environment
- MGPO 440* (3) Strategies for Sustainability
- MIME 308 (3) Social Impact of Technology
- PHIL 343 (3) Biomedical Ethics
- RELG 270 (3) Religious Ethics and the Environment
- SOCI 235 (3) Technology and Society
- SOCI 312 (3) Sociology of Work and Industry
- URBP 201 (3) Planning the 21st Century City

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Group B - Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments:

- Anthropology (ANTH)
- Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)
- History (HIST)
- Philosophy (excluding PHIL 210 and PHIL 310)
- Political Science (POLI)
- Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)
- Religious Studies (RELG)
- School of Social Work (SWRK)
- Sociology (excluding SOCI 350)

OR one of the following:

- ARCH 528 (3) History of Housing
- BUSA 465* (3) Technological Entrepreneurship
ENVR 203 (3) Knowledge, Ethics and Environment
ENVR 400 (3) Environmental Thought
FACC 220 (3) Law for Architects and Engineers
FACC 500 (3) Technology Business Plan Design
FACC 501 (3) Technology Business Plan Project
INDR 294* (3) Introduction to Labour-Management Relations
MATH 338 (3) History and Philosophy of Mathematics
MGCR 222* (3) Introduction to Organizational Behaviour
MGCR 352* (3) Principles of Marketing
ORGB 321* (3) Leadership
ORGB 423* (3) Human Resources Management

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Language Courses
If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

12.6 Department of Electrical and Computer Engineering

12.6.1 Location
Department of Electrical and Computer Engineering
Undergraduate Programs Office
Lorne Trottier Building, Room 2060
3630 University Street
Montreal QC H3A 0C6
Telephone: 514-398-3943
Email: undergrad.ece@mcgill.ca
Website: www.mcgill.ca/ece

12.6.2 About the Department of Electrical and Computer Engineering
The Department of Electrical and Computer Engineering offers undergraduate degree programs in:

- Electrical Engineering
- Electrical Engineering (Honours)
- Computer Engineering
- Software Engineering

All programs provide students with a strong background in mathematics, natural sciences, engineering science, engineering design, and complementary studies, in conformity with the requirements of the Canadian Engineering Accreditation Board (CEAB).

In addition to technical complementary courses, students in all three programs take general complementary courses in humanities and social sciences and/or management studies and law. These courses allow students to develop specific interests in areas such as psychology, economics, management, or political science.

12.6.3 Electrical and Computer Engineering Faculty

Chair
Andrew G. Kirk
Associate Chair, Academic
Roni Khazaka

Associate Chair, Undergraduate Studies
Jonathan P. Webb

Associate Chair, Graduate Programs
Milica Popovich

Emeritus Professors
Eric L. Adler; B.Sc.(Lond.), M.A.Sc.(Tor.), Ph.D.(McG.), F.I.E.E.E., Eng.
Clifford H. Champness; M.Sc.(Lond.), Ph.D.(McG.)
Peter Kabal; B.A.Sc., M.A.Sc., Ph.D.(Tor.)
Lorne Mason; M.Eng., Ph.D.(Sask.)
Boon-Teck Ooi; B.E.(Adel.), S.M.(MIT), Ph.D.(McG.), Eng.

Professors
Benoit Champagne; B.Eng., M.Eng.(Montr.), Ph.D.(Tor.)
Lawrence Chen; B.Eng.(McG.), M.A.Sc., Ph.D.(Tor.)
James Clark; B.Sc., Ph.D.(Br. Col.)
Frank Ferrie; B.Eng., Ph.D.(McG.)
Warren Gross; B.A.Sc.(Wat.), M.A.Sc., Ph.D.(Tor.) (on sabbatical 2016–2017)
Geza Joos; B.Sc.(C'dia), M.Eng., Ph.D.(McG.) (CRC Chair)
Andrew G. Kirk; B.Sc.(Brist.), Ph.D.(Lond.) (James McGill Professor)
Harry Leib; B.Sc.(Technion), Ph.D.(Tor.)
Thô Le-Ngoc; M.Eng.(McG.), Ph.D.(Ott.), F.I.E.E.E.
David A. Lowther; B.Sc.(Lond.), Ph.D.(C.N.A.A.), F.C.A.E., Eng. (James McGill Professor)
Gordon Roberts; B.A.Sc.(Wat.), M.A.Sc., Ph.D.(Tor.), F.I.E.E.E., Eng. (James McGill Professor)
Dániel Varró; M.Sc., Ph.D.(BME)
Jonathan P. Webb; B.A., Ph.D.(Camb.)

Associate Professors
Jan Bajcsy; B.Sc.(Harv.), M.Eng., Ph.D.(Princ.)
François Bouffard; B.Eng., Ph.D.(McG.)
Benoit Boulet; B.Sc.(Laval), M.Eng.(McG.), Ph.D.(Tor.) (William Dawson Scholar) (Associate Dean, Research & Innovation)
Mark Coates; B.Eng.(Adel.), Ph.D.(Camb.)
Jeremy R. Cooperstock; A.Sc.(Br. Col.), M.Sc., Ph.D.(Tor.)
Bachelor of Engineering (B.Eng.) - Electrical Engineering (134 credits)

Program credit weight: 134-139 credits

Program credit weight for Quebec CEGEP students: 109-114 credits

This program gives students a broad understanding of the key principles that are responsible for the extraordinary advances in the technology of computers, micro-electronics, automation and robotics, telecommunications, and power systems. These areas are critical to the development of our industries and, more
generally, to our economy. A graduate of this program is exposed to all basic elements of electrical engineering and can function in any of our client industries. This breadth is what distinguishes an engineer from, for example, a computer scientist or physicist.

In addition to technical complementary courses, students in the Electrical Engineering program take general complementary courses in social sciences, administrative studies, and humanities. These courses allow students to develop specific interests in areas such as psychology, economics, management, or political science.

Required Year 0 (Freshman) Courses

25 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 109- to 114-credit program.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 120</td>
<td>4</td>
<td>General Chemistry 2</td>
</tr>
<tr>
<td>MATH 133</td>
<td>3</td>
<td>Linear Algebra and Geometry</td>
</tr>
<tr>
<td>MATH 140</td>
<td>3</td>
<td>Calculus 1</td>
</tr>
<tr>
<td>MATH 141</td>
<td>4</td>
<td>Calculus 2</td>
</tr>
<tr>
<td>PHYS 131</td>
<td>4</td>
<td>Mechanics and Waves</td>
</tr>
<tr>
<td>PHYS 142</td>
<td>4</td>
<td>Electromagnetism and Optics</td>
</tr>
</tbody>
</table>

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B)

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses

23 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCOM 206</td>
<td>3</td>
<td>Communication in Engineering</td>
</tr>
<tr>
<td>CIVE 281</td>
<td>3</td>
<td>Analytical Mechanics</td>
</tr>
<tr>
<td>COMP 250</td>
<td>3</td>
<td>Introduction to Computer Science</td>
</tr>
<tr>
<td>FACC 100*</td>
<td>1</td>
<td>Introduction to the Engineering Profession</td>
</tr>
<tr>
<td>FACC 300</td>
<td>3</td>
<td>Engineering Economy</td>
</tr>
<tr>
<td>FACC 400</td>
<td>1</td>
<td>Engineering Professional Practice</td>
</tr>
<tr>
<td>MATH 262</td>
<td>3</td>
<td>Intermediate Calculus</td>
</tr>
<tr>
<td>MATH 263</td>
<td>3</td>
<td>Ordinary Differential Equations for Engineers</td>
</tr>
<tr>
<td>MIME 262</td>
<td>3</td>
<td>Properties of Materials in Electrical Engineering</td>
</tr>
</tbody>
</table>

* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Electrical Engineering Courses

57 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE 200</td>
<td>3</td>
<td>Electric Circuits 1</td>
</tr>
<tr>
<td>ECSE 202</td>
<td>3</td>
<td>Introduction to Software Development</td>
</tr>
<tr>
<td>ECSE 205</td>
<td>3</td>
<td>Probability and Statistics for Engineers</td>
</tr>
<tr>
<td>ECSE 206</td>
<td>3</td>
<td>Introduction to Signals and Systems</td>
</tr>
<tr>
<td>ECSE 210</td>
<td>3</td>
<td>Electric Circuits 2</td>
</tr>
<tr>
<td>ECSE 211</td>
<td>3</td>
<td>Design Principles and Methods</td>
</tr>
<tr>
<td>ECSE 222</td>
<td>3</td>
<td>Digital Logic</td>
</tr>
<tr>
<td>ECSE 251</td>
<td>3</td>
<td>Electric and Magnetic Fields</td>
</tr>
<tr>
<td>ECSE 307</td>
<td>4</td>
<td>Linear Systems and Control</td>
</tr>
</tbody>
</table>
ECSE 308 (4) Introduction to Communication Systems and Networks
ECSE 324 (4) Computer Organization
ECSE 331 (4) Electronics
ECSE 354 (4) Electromagnetic Wave Propagation
ECSE 362 (4) Fundamentals of Power Engineering
ECSE 443 (3) Introduction to Numerical Methods in Electrical Engineering
ECSE 456 (3) ECSE Design Project 1
ECSE 457 (3) ECSE Design Project 2

Technical Complementaries

23-28 credits (7 courses) must be taken, chosen as follows:
8 credits (2 courses) from List A
15 credits (5 courses) from List A or List B

List A: Technical Complementaries with Laboratory Experience

8-28 credits
ECSE 335 (4) Microelectronics
ECSE 403 (4) Control
ECSE 408 (4) Communication Systems
ECSE 416 (4) Telecommunication Networks
ECSE 433 (4) Physical Basis of Transistor Devices
ECSE 444 (4) Microprocessors
ECSE 470 (4) Electromechanical Systems

List B: Technical Complementaries

0-15 credits
ECSE 310 (3) Thermodynamics of Computing
ECSE 325 (3) Digital Systems
ECSE 405 (3) Antennas
ECSE 412 (3) Discrete Time Signal Processing
ECSE 413 (3) Communications Systems 2
ECSE 415 (3) Intro to Computer Vision
ECSE 420 (3) Parallel Computing
ECSE 421 (3) Embedded Systems
ECSE 422 (3) Fault Tolerant Computing
ECSE 423 (3) Fundamentals of Photonics
ECSE 424 (3) Human-Computer Interaction
ECSE 425 (3) Computer Organization and Architecture
ECSE 427 (3) Operating Systems
ECSE 430 (3) Photonic Devices and Systems
ECSE 431 (3) Introduction to VLSI CAD
ECSE 435 (3) Mixed-Signal Test Techniques
ECSE 436 (3) Signal Processing Hardware
Electromagnetic Compatibility (ECSE 450)
EM Transmission and Radiation (ECSE 451)
Appareillage électrique (Electrical Power Equipment) (ECSE 460*)
Electric Power Generation (ECSE 463)
Power Systems Analysis (ECSE 464)
Power Electronic Systems (ECSE 465)
Réseaux de distribution (ECSE 466*)
Comportement des réseaux électriques (ECSE 467*)
Electricité industrielle (Industrial Power Systems) (ECSE 468*)
Protection des réseaux électriques (ECSE 469*)
Optics (PHYS 434)
Majors Quantum Physics (PHYS 446)

* Courses taught in French.

Complementary Studies

6 credits

Group A - Impact of Technology on Society

3 credits from the following:

ANTH 212 (3) Anthropology of Development
BTEC 502 (3) Biotechnology Ethics and Society
CIVE 469 (3) Infrastructure and Society
ECON 225 (3) Economics of the Environment
ECON 347 (3) Economics of Climate Change
ENVR 201 (3) Society, Environment and Sustainability
GEOG 200 (3) Geographical Perspectives: World Environmental Problems
GEOG 203 (3) Environmental Systems
GEOG 205 (3) Global Change: Past, Present and Future
GEOG 302 (3) Environmental Management 1
MECH 526 (3) Manufacturing and the Environment
MGPO 440* (3) Strategies for Sustainability
MIME 308 (3) Social Impact of Technology
PHIL 343 (3) Biomedical Ethics
RELG 270 (3) Religious Ethics and the Environment
SOCI 235 (3) Technology and Society
SOCI 312 (3) Sociology of Work and Industry
URBP 201 (3) Planning the 21st Century City

*Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Group B - Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments:

Anthropology (ANTH)
Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)
History (HIST)
Philosophy (excluding PHIL 210 and PHIL 310)
Political Science (POLI)
Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)
Religious Studies (RELG)
School of Social Work (SWRK)
Sociology (excluding SOCI 350)

OR 3 credits from the following:

- **ARCH 528** (3) History of Housing
- **BUSA 465** (3) Technological Entrepreneurship
- **ENVR 203** (3) Knowledge, Ethics and Environment
- **ENVR 400** (3) Environmental Thought
- **FACC 220** (3) Law for Architects and Engineers
- **FACC 500** (3) Technology Business Plan Design
- **FACC 501** (3) Technology Business Plan Project
- **INDR 294** (3) Introduction to Labour-Management Relations
- **MATH 338** (3) History and Philosophy of Mathematics
- **MGCR 222** (3) Introduction to Organizational Behaviour
- **MGCR 352** (3) Principles of Marketing
- **ORGB 321** (3) Leadership
- **ORGB 423** (3) Human Resources Management

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

Enhanced Power Concentration

Students following this program must complete 15 credits of technical complementary courses.

The Institute for Electrical Power Engineering was recently established as a province-wide centre for electrical power engineering education. It is funded by industry, mostly Hydro-Québec, and provides a comprehensive program, state-of-the-art laboratory facilities, and a point of contact between industry and universities involved in power engineering.

Note: This program is open to students in the regular Electrical Engineering program only.

Here are some benefits of the concentration:

A complete and up-to-date final-year program in electrical power engineering, with industry-sponsored and supported courses
Access to industry-sponsored projects, internships, and new employment opportunities

ELIGIBILITY CRITERIA

To be considered in September 2016, the applicant must:
- be registered in the B.Eng. program (regular Electrical Engineering);
- have a cumulative GPA of at least 2.5;
- have completed or be registered in ECSE 361 (Power Engineering);
- be able to complete the degree requirements by December 2017;
- agree to follow the curriculum requirements set out below.

SELECTION CRITERIA

The number of students selected, expected to be between five and ten, will be subject to a specific agreement between the University and the Institute. Selection criteria for admission to the Institute will be based on the CGPA and on the curriculum vitae. The selection process for the scholarship may involve an interview with the committee presided by Hydro-Québec and the industrial partners. There is a possibility of an internship with Hydro-Québec.
CURRICULUM REQUIREMENTS FOR SELECTED STUDENTS

Generally, unless the University has authorized specific substitutions, students must complete the degree requirements set out in this eCalendar with the following specifications:

Technical Complementaries and Laboratories (15 credits)

All students must take (or have taken) five courses from the following:

Required Courses
9 credits
ECSE 462 (3) Electromechanical Energy Conversion
ECSE 464 (3) Power Systems Analysis
ECSE 465 (3) Power Electronic Systems

Students must also complete ECSE 456 and 457 (Electrical Engineering Design Projects 1 and 2) on a practical project in power engineering, preferably at the Institute or with a company sponsoring the Institute.

Complementary Courses
6 credits from the following:
ECSE 404 (3) Control Systems
ECSE 460* (3) Appareillage électrique (Electrical Power Equipment)
ECSE 463 (3) Electric Power Generation
ECSE 466* (3) Réseaux de distribution
ECSE 467* (3) Comportement des réseaux électriques
ECSE 468* (3) Electricité industrielle (Industrial Power Systems)
ECSE 469* (3) Protection des réseaux électriques

* Courses taught in French.

Note: ECSE 460, ECSE 464 (Fall semester), ECSE 465, ECSE 467, ECSE 468, and ECSE 469 are courses sponsored by the Institute and taught at École Polytechnique de Montréal.

12.6.5 Bachelor of Engineering (B.Eng.) - Honours Electrical Engineering (138 credits)

Program credit weight: 138-140 credits

Program credit weight for Quebec CEGEP students: 113-115 credits

Entry into the Electrical Engineering Honours Program

The Honours program is a limited enrolment program and entry is highly competitive. There is no direct entry to the Honours program in the first year. Students may enter the Honours program in the following ways:

- Students from CEGEP will be admitted, on the basis of their grades, at the start of the third term.
- Students from outside Quebec will be admitted, on the basis of their grades, at the start of the fifth term.

To remain in the Honours program and to be awarded the Honours degree, a student must have completed at least 14 credits in each term since entering Electrical and Computer Engineering, except for the final two terms of their degree, and maintained a CGPA of at least 3.30 since entering Electrical and Computer Engineering. In either of their final two full terms (i.e., Fall and Winter, or Winter and Fall) students may drop below 14 credits, provided the combined load for the two terms is at least 16 credits. For more information, please contact the Departmental office at 514-398-3943.

Required Year 0 (Freshman) Courses (25 credits)

Note: Students in the Honours Electrical Engineering program complete the Year 0 (Freshman) courses before entering the Honours program, as explained above.

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 113- to 115-credit program.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 120</td>
<td>(4)</td>
<td>General Chemistry 2</td>
</tr>
<tr>
<td>MATH 133</td>
<td>(3)</td>
<td>Linear Algebra and Geometry</td>
</tr>
<tr>
<td>MATH 140</td>
<td>(3)</td>
<td>Calculus 1</td>
</tr>
<tr>
<td>MATH 141</td>
<td>(4)</td>
<td>Calculus 2</td>
</tr>
<tr>
<td>PHYS 131</td>
<td>(4)</td>
<td>Mechanics and Waves</td>
</tr>
<tr>
<td>PHYS 142</td>
<td>(4)</td>
<td>Electromagnetism and Optics</td>
</tr>
</tbody>
</table>

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses

23 credits

- CCOM 206 (3) Communication in Engineering
- CIVE 281 (3) Analytical Mechanics
- COMP 250 (3) Introduction to Computer Science
- FACC 100* (1) Introduction to the Engineering Profession
- FACC 300 (3) Engineering Economy
- FACC 400 (1) Engineering Professional Practice
- MATH 262 (3) Intermediate Calculus
- MATH 263 (3) Ordinary Differential Equations for Engineers
- MIME 262 (3) Properties of Materials in Electrical Engineering

* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Electrical Engineering Courses

61 credits

- ECSE 200 (3) Electric Circuits 1
- ECSE 202 (3) Introduction to Software Development
- ECSE 205 (3) Probability and Statistics for Engineers
- ECSE 206 (3) Introduction to Signals and Systems
- ECSE 210 (3) Electric Circuits 2
- ECSE 211 (3) Design Principles and Methods
- ECSE 222 (3) Digital Logic
- ECSE 251 (3) Electric and Magnetic Fields
- ECSE 307 (4) Linear Systems and Control
- ECSE 308 (4) Introduction to Communication Systems and Networks
- ECSE 324 (4) Computer Organization
- ECSE 331 (4) Electronics
- ECSE 354 (4) Electromagnetic Wave Propagation
- ECSE 362 (4) Fundamentals of Power Engineering
- ECSE 396 (1) Honours Research Laboratory Rotation 1
- ECSE 397 (1) Honours Research Laboratory Rotation 2
- ECSE 496 (1) Honours Research Laboratory Rotation 3
- ECSE 497 (1) Honours Research Laboratory Rotation 4
Technical Complementaries
23-25 credits (7 courses) must be taken, chosen as follows:
- 8 credits (2 courses) from List A
- 6 credits (2 courses) from 500-level ECSE courses
- 3-4 credits (1 course) from List A, List B, or from 500-level ECSE courses
- 6-7 credits (2 courses) from List C or from 500-level ECSE courses

List A: Technical Complementaries with Laboratory Experience
8-12 credits from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE 335</td>
<td>(4)</td>
<td>Microelectronics</td>
</tr>
<tr>
<td>ECSE 403*</td>
<td>(4)</td>
<td>Control</td>
</tr>
<tr>
<td>ECSE 408**</td>
<td>(4)</td>
<td>Communication Systems</td>
</tr>
<tr>
<td>ECSE 416</td>
<td>(4)</td>
<td>Telecommunication Networks</td>
</tr>
<tr>
<td>ECSE 433</td>
<td>(4)</td>
<td>Physical Basis of Transistor Devices</td>
</tr>
<tr>
<td>ECSE 444</td>
<td>(4)</td>
<td>Microprocessors</td>
</tr>
<tr>
<td>ECSE 470</td>
<td>(4)</td>
<td>Electromechanical Systems</td>
</tr>
</tbody>
</table>

* ECSE 403 and ECSE 501 cannot both be taken.
** ECSE 408 and ECSE 511 cannot both be taken.

List B: Technical Complementaries
0-3 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE 310</td>
<td>(3)</td>
<td>Thermodynamics of Computing</td>
</tr>
<tr>
<td>ECSE 325</td>
<td>(3)</td>
<td>Digital Systems</td>
</tr>
<tr>
<td>ECSE 420</td>
<td>(3)</td>
<td>Parallel Computing</td>
</tr>
<tr>
<td>ECSE 421</td>
<td>(3)</td>
<td>Embedded Systems</td>
</tr>
<tr>
<td>ECSE 422</td>
<td>(3)</td>
<td>Fault Tolerant Computing</td>
</tr>
<tr>
<td>ECSE 424</td>
<td>(3)</td>
<td>Human-Computer Interaction</td>
</tr>
<tr>
<td>ECSE 425</td>
<td>(3)</td>
<td>Computer Organization and Architecture</td>
</tr>
<tr>
<td>ECSE 427</td>
<td>(3)</td>
<td>Operating Systems</td>
</tr>
<tr>
<td>ECSE 431</td>
<td>(3)</td>
<td>Introduction to VLSI CAD</td>
</tr>
<tr>
<td>ECSE 435</td>
<td>(3)</td>
<td>Mixed-Signal Test Techniques</td>
</tr>
<tr>
<td>ECSE 436</td>
<td>(3)</td>
<td>Signal Processing Hardware</td>
</tr>
<tr>
<td>ECSE 451</td>
<td>(3)</td>
<td>EM Transmission and Radiation</td>
</tr>
<tr>
<td>ECSE 460*</td>
<td>(3)</td>
<td>Appareillage électrique (Electrical Power Equipment)</td>
</tr>
<tr>
<td>ECSE 464</td>
<td>(3)</td>
<td>Power Systems Analysis</td>
</tr>
<tr>
<td>ECSE 467*</td>
<td>(3)</td>
<td>Comportement des réseaux électriques</td>
</tr>
<tr>
<td>ECSE 468*</td>
<td>(3)</td>
<td>Electricité industrielle (Industrial Power Systems)</td>
</tr>
<tr>
<td>ECSE 469*</td>
<td>(3)</td>
<td>Protection des réseaux électriques</td>
</tr>
</tbody>
</table>

* Courses taught in French.
List C: Honours Math/Physics Complementary Courses

0-7 credits

- **MATH 247** (3) Honours Applied Linear Algebra
- **MATH 249** (3) Honours Complex Variables
- **MATH 547** (4) Stochastic Processes
- **MATH 560** (4) Optimization
- **PHYS 357** (3) Honours Quantum Physics 1
- **PHYS 434** (3) Optics
- **PHYS 457** (3) Honours Quantum Physics 2
- **PHYS 558** (3) Solid State Physics

Complementary Studies

6 credits

Group A - Impact of Technology on Society

3 credits from the following:

- **ANTH 212** (3) Anthropology of Development
- **BTEC 502** (3) Biotechnology Ethics and Society
- **CIVE 469** (3) Infrastructure and Society
- **ECON 225** (3) Economics of the Environment
- **ECON 347** (3) Economics of Climate Change
- **ENVR 201** (3) Society, Environment and Sustainability
- **GEOG 200** (3) Geographical Perspectives: World Environmental Problems
- **GEOG 203** (3) Environmental Systems
- **GEOG 205** (3) Global Change: Past, Present and Future
- **GEOG 302** (3) Environmental Management 1
- **MECH 526** (3) Manufacturing and the Environment
- **MGPO 440** (3) Strategies for Sustainability
- **MIME 308** (3) Social Impact of Technology
- **PHIL 343** (3) Biomedical Ethics
- **RELG 270** (3) Religious Ethics and the Environment
- **SOCI 235** (3) Technology and Society
- **SOCI 312** (3) Sociology of Work and Industry
- **URBP 201** (3) Planning the 21st Century City

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Group B - Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments:

- Anthropology (ANTH)
- Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)
- History (HIST)
- Philosophy (excluding PHIL 210 and PHIL 310)
- Political Science (POLI)
Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)
Religious Studies (RELG)
School of Social Work (SWRK)
Sociology (excluding SOCI 350)
OR 3 credits from the following:

- ARCH 528 (3) History of Housing
- BUSA 465* (3) Technological Entrepreneurship
- ENVR 203 (3) Knowledge, Ethics and Environment
- ENVR 400 (3) Environmental Thought
- FACC 220 (3) Law for Architects and Engineers
- FACC 500 (3) Technology Business Plan Design
- FACC 501 (3) Technology Business Plan Project
- INDR 294* (3) Introduction to Labour-Management Relations
- MATH 338 (3) History and Philosophy of Mathematics
- MGCR 222* (3) Introduction to Organizational Behaviour
- MGCR 352* (3) Principles of Marketing
- ORGB 321* (3) Leadership
- ORGB 423* (3) Human Resources Management

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirements.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

12.6.6 Bachelor of Engineering (B.Eng.) - Computer Engineering (133 credits)

Program credit weight: 133-140 credits

Program credit weight for Quebec CEGEP students: 111-115 credits

Program credit weight for out-of-province students: 133-137 credits

The Computer Engineering program provides students with greater depth and breadth of knowledge in the hardware and software aspects of computers. Students are exposed to both theoretical and practical issues of both hardware and software in well-equipped laboratories. Although the program is designed to meet the growing demands by industry for engineers with a strong background in modern computer technology, it also provides the underlying depth for graduate studies in all fields of Computer Engineering.

In addition to technical complementary courses, students in the program take general complementary courses in social sciences, management studies, and humanities. These courses allow students to develop specific interests in areas such as psychology, economics, management, or political science.

Required Year 0 (Freshman) Courses

25 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 111- to 115-credit program.

- CHEM 120 (4) General Chemistry 2
- MATH 133 (3) Linear Algebra and Geometry
- MATH 140 (3) Calculus 1
- MATH 141 (4) Calculus 2
PHYS 131 (4) Mechanics and Waves
PHYS 142 (4) Electromagnetism and Optics

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Administrative Studies, and Law, listed below under Complementary Studies (Group B).

* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses

23 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCOM 206</td>
<td>(3)</td>
<td>Communication in Engineering</td>
</tr>
<tr>
<td>COMP 250</td>
<td>(3)</td>
<td>Introduction to Computer Science</td>
</tr>
<tr>
<td>COMP 251</td>
<td>(3)</td>
<td>Algorithms and Data Structures</td>
</tr>
<tr>
<td>FACC 100*</td>
<td>(1)</td>
<td>Introduction to the Engineering Profession</td>
</tr>
<tr>
<td>FACC 300</td>
<td>(3)</td>
<td>Engineering Economy</td>
</tr>
<tr>
<td>FACC 400</td>
<td>(1)</td>
<td>Engineering Professional Practice</td>
</tr>
<tr>
<td>MATH 262</td>
<td>(3)</td>
<td>Intermediate Calculus</td>
</tr>
<tr>
<td>MATH 263</td>
<td>(3)</td>
<td>Ordinary Differential Equations for Engineers</td>
</tr>
<tr>
<td>MATH 363</td>
<td>(3)</td>
<td>Discrete Mathematics</td>
</tr>
</tbody>
</table>

* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Computer Engineering Courses

64 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE 200</td>
<td>(3)</td>
<td>Electric Circuits 1</td>
</tr>
<tr>
<td>ECSE 202</td>
<td>(3)</td>
<td>Introduction to Software Development</td>
</tr>
<tr>
<td>ECSE 205</td>
<td>(3)</td>
<td>Probability and Statistics for Engineers</td>
</tr>
<tr>
<td>ECSE 206</td>
<td>(3)</td>
<td>Introduction to Signals and Systems</td>
</tr>
<tr>
<td>ECSE 210</td>
<td>(3)</td>
<td>Electric Circuits 2</td>
</tr>
<tr>
<td>ECSE 211</td>
<td>(3)</td>
<td>Design Principles and Methods</td>
</tr>
<tr>
<td>ECSE 222</td>
<td>(3)</td>
<td>Digital Logic</td>
</tr>
<tr>
<td>ECSE 223</td>
<td>(3)</td>
<td>Model-Based Programming</td>
</tr>
<tr>
<td>ECSE 308</td>
<td>(4)</td>
<td>Introduction to Communication Systems and Networks</td>
</tr>
<tr>
<td>ECSE 310</td>
<td>(3)</td>
<td>Thermodynamics of Computing</td>
</tr>
<tr>
<td>ECSE 321</td>
<td>(3)</td>
<td>Introduction to Software Engineering</td>
</tr>
<tr>
<td>ECSE 324</td>
<td>(4)</td>
<td>Computer Organization</td>
</tr>
<tr>
<td>ECSE 325</td>
<td>(3)</td>
<td>Digital Systems</td>
</tr>
<tr>
<td>ECSE 331</td>
<td>(4)</td>
<td>Electronics</td>
</tr>
<tr>
<td>ECSE 353</td>
<td>(3)</td>
<td>Electromagnetic Fields and Waves</td>
</tr>
<tr>
<td>ECSE 425</td>
<td>(3)</td>
<td>Computer Organization and Architecture</td>
</tr>
<tr>
<td>ECSE 427</td>
<td>(3)</td>
<td>Operating Systems</td>
</tr>
<tr>
<td>ECSE 444</td>
<td>(4)</td>
<td>Microprocessors</td>
</tr>
<tr>
<td>ECSE 456</td>
<td>(3)</td>
<td>ECSE Design Project 1</td>
</tr>
<tr>
<td>ECSE 457</td>
<td>(3)</td>
<td>ECSE Design Project 2</td>
</tr>
</tbody>
</table>

Complementary Courses
21-28 credits
Technical Complementaries
15-19 credits (5 courses) must be taken, chosen as follows:
9-11 credits (3 courses) from List A
6-8 credits (2 courses) from List A or List B

List A
9-17 credits from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 424</td>
<td>3</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>ECSE 335</td>
<td>4</td>
<td>Microelectronics</td>
</tr>
<tr>
<td>ECSE 412</td>
<td>3</td>
<td>Discrete Time Signal Processing</td>
</tr>
<tr>
<td>ECSE 416</td>
<td>4</td>
<td>Telecommunication Networks</td>
</tr>
<tr>
<td>ECSE 420</td>
<td>3</td>
<td>Parallel Computing</td>
</tr>
<tr>
<td>ECSE 421</td>
<td>3</td>
<td>Embedded Systems</td>
</tr>
<tr>
<td>ECSE 422</td>
<td>3</td>
<td>Fault Tolerant Computing</td>
</tr>
<tr>
<td>ECSE 424</td>
<td>3</td>
<td>Human-Computer Interaction</td>
</tr>
<tr>
<td>ECSE 428</td>
<td>3</td>
<td>Software Engineering Practice</td>
</tr>
<tr>
<td>ECSE 429</td>
<td>3</td>
<td>Software Validation</td>
</tr>
</tbody>
</table>

List B
0-8 credits from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 557</td>
<td>3</td>
<td>Fundamentals of Computer Graphics</td>
</tr>
<tr>
<td>ECSE 307</td>
<td>4</td>
<td>Linear Systems and Control</td>
</tr>
<tr>
<td>ECSE 403</td>
<td>4</td>
<td>Control</td>
</tr>
<tr>
<td>ECSE 408</td>
<td>4</td>
<td>Communication Systems</td>
</tr>
<tr>
<td>ECSE 415</td>
<td>3</td>
<td>Intro to Computer Vision</td>
</tr>
<tr>
<td>ECSE 431</td>
<td>3</td>
<td>Introduction to VLSI CAD</td>
</tr>
<tr>
<td>ECSE 435</td>
<td>3</td>
<td>Mixed-Signal Test Techniques</td>
</tr>
<tr>
<td>ECSE 436</td>
<td>3</td>
<td>Signal Processing Hardware</td>
</tr>
<tr>
<td>ECSE 450</td>
<td>3</td>
<td>Electromagnetic Compatibility</td>
</tr>
</tbody>
</table>

Natural Science Complementary Courses (for CEGEP students only)
0-3 credits
Students from CEGEP are required to complete one 3-credit course at the 200 level or higher, chosen from the following science departments, approved by the Undergraduate Programs Office in the Department of Electrical and Computer Engineering:

Atmospheric and Oceanic Sciences (ATOC)
Biology (BIOL)
Chemistry (CHEM)
Earth and Planetary Sciences (EPSC)
Earth System Science (ESYS)
Physics (PHYS)

Complementary Studies
6 credits

Group A - Impact of Technology on Society
3 credits from the following:

- ANTH 212 (3) Anthropology of Development
- BTEC 502 (3) Biotechnology Ethics and Society
- CIVE 469 (3) Infrastructure and Society
- ECON 225 (3) Economics of the Environment
- ECON 347 (3) Economics of Climate Change
- ENVR 201 (3) Society, Environment and Sustainability
- GEOG 200 (3) Geographical Perspectives: World Environmental Problems
- GEOG 203 (3) Environmental Systems
- GEOG 205 (3) Global Change: Past, Present and Future
- GEOG 302 (3) Environmental Management 1
- MECH 526 (3) Manufacturing and the Environment
- MGPO 440* (3) Strategies for Sustainability
- MIME 308 (3) Social Impact of Technology
- PHIL 343 (3) Biomedical Ethics
- RELG 270 (3) Religious Ethics and the Environment
- SOCI 235 (3) Technology and Society
- SOCI 312 (3) Sociology of Work and Industry
- URPB 201 (3) Planning the 21st Century City

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Group B - Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments:

- Anthropology (ANTH)
- Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)
- History (HIST)
- Philosophy (excluding PHIL 210 and PHIL 310)
- Political Science (POLI)
- Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)
- Religious Studies (RELG)
- School of Social Work (SWRK)
- Sociology (excluding SOCI 350)

OR 3 credits from one the following:

- ARCH 528 (3) History of Housing
- BUSA 465* (3) Technological Entrepreneurship
- ENVR 203 (3) Knowledge, Ethics and Environment
- ENVR 400 (3) Environmental Thought
- FACC 220 (3) Law for Architects and Engineers
- FACC 500 (3) Technology Business Plan Design
- FACC 501 (3) Technology Business Plan Project
- INDR 294* (3) Introduction to Labour-Management Relations
- MATH 338 (3) History and Philosophy of Mathematics
- MGCR 222* (3) Introduction to Organizational Behaviour
- MGCR 352* (3) Principles of Marketing
* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement. However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

12.6.7 Bachelor of Software Engineering (B.S.E.) - Software Engineering (137 credits)

Program credit weight: 137-144 credits
Program credit weight for Quebec CEGEP students: 115-119 credits
Program credit weight for out-of-province students: 137-141 credits

This program offers students the opportunity to focus their studies on the skills needed to design and develop complex software systems. This emerging field of engineering is a major component of the growing Information Technology (IT) sector of the economy, in which the demand for qualified personnel continues to outstrip supply. Graduates of this program will have a solid foundation for careers in the software industry.

In addition to technical complementary courses, students take general complementary courses in social sciences, management studies, and humanities. These courses allow students to develop specific interests in areas such as psychology, economics, management, or political science.

Required Year 0 (Freshman) Courses

25 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 115- to 119-credit program.

CHEM 120 (4) General Chemistry 2
MATH 133 (3) Linear Algebra and Geometry
MATH 140 (3) Calculus 1
MATH 141 (4) Calculus 2
PHYS 131 (4) Mechanics and Waves
PHYS 142 (4) Electromagnetism and Optics

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B)

* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses

39 credits

CCOM 206 (3) Communication in Engineering
COMP 206 (3) Introduction to Software Systems
COMP 250 (3) Introduction to Computer Science
COMP 251 (3) Algorithms and Data Structures
COMP 302 (3) Programming Languages and Paradigms
COMP 360 (3) Algorithm Design
COMP 421 (3) Database Systems
COMP 529 (4) Software Architecture
FACC 100* (1) Introduction to the Engineering Profession
FACC 300 (3) Engineering Economy
FACC 400 (1) Engineering Professional Practice
MATH 262 (3) Intermediate Calculus
MATH 263 (3) Ordinary Differential Equations for Engineers
MATH 363 (3) Discrete Mathematics

* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Software Engineering Courses

52 credits

ECSE 200 (3) Electric Circuits 1
ECSE 202 (3) Introduction to Software Development
ECSE 205 (3) Probability and Statistics for Engineers
ECSE 211 (3) Design Principles and Methods
ECSE 222 (3) Digital Logic
ECSE 223 (3) Model-Based Programming
ECSE 310 (3) Thermodynamics of Computing
ECSE 316 (3) Signals and Networks
ECSE 321 (3) Introduction to Software Engineering
ECSE 324 (4) Computer Organization
ECSE 326 (3) Software Requirements Engineering
ECSE 420 (3) Parallel Computing
ECSE 427 (3) Operating Systems
ECSE 428 (3) Software Engineering Practice
ECSE 429 (3) Software Validation
ECSE 456 (3) ECSE Design Project 1
ECSE 457 (3) ECSE Design Project 2

Complementary Courses

21-28 credits

Technical Complementaries

12-16 credits (4 courses) from the following:

COMP 330 (3) Theory of Computation
COMP 350 (3) Numerical Computing
COMP 409 (3) Concurrent Programming
COMP 417 (3) Introduction Robotics and Intelligent Systems
COMP 424 (3) Artificial Intelligence
COMP 512 (4) Distributed Systems
COMP 520 (4) Compiler Design
COMP 521 (4) Modern Computer Games
COMP 525 (3) Formal Verification
COMP 533 (3) Model-Driven Software Development
COMP 557 (3) Fundamentals of Computer Graphics
COMP 566 (3) Discrete Optimization 1
COMP 575 (3) Fundamentals of Distributed Algorithms
ECSE 325 (3) Digital Systems
ECSE 415 (3) Intro to Computer Vision
ECSE 416 (4) Telecommunication Networks
ECSE 421 (3) Embedded Systems
ECSE 422 (3) Fault Tolerant Computing
ECSE 424 (3) Human-Computer Interaction
ECSE 425 (3) Computer Organization and Architecture
ECSE 444 (4) Microprocessors
ECSE 539* (3) Software Language Engineering

* 500-level ECSE courses are restricted to students with a minimum CGPA of 3.0 and B+ or better in prerequisite courses.

Natural Science Complementary Courses

3-6 credits

Students from CEGEP must complete 6 credits of Natural Science complementary courses; all other students must complete 3 credits of courses.

Natural Science complementary courses must be chosen from courses at the 200-level or higher from the following science departments, approved by the Undergraduate Programs Office in the Department of Electrical and Computer Engineering.

Atmospheric and Oceanic Sciences (ATOC)

Biology (BIOL)

Chemistry (CHEM)

Earth and Planetary Sciences (EPSC)

Earth System Science (ESYS)

Physics (PHYS)

Complementary Studies

6 credits

Group A - Impact of Technology on Society

3 credits from the following:

ANTH 212 (3) Anthropology of Development

BTEC 502 (3) Biotechnology Ethics and Society

CIVE 469 (3) Infrastructure and Society

ECON 225 (3) Economics of the Environment

ECON 347 (3) Economics of Climate Change

ENVR 201 (3) Society, Environment and Sustainability

GEOG 200 (3) Geographical Perspectives: World Environmental Problems

GEOG 203 (3) Environmental Systems

GEOG 205 (3) Global Change: Past, Present and Future

GEOG 302 (3) Environmental Management 1

MECH 526 (3) Manufacturing and the Environment

MGPO 440* (3) Strategies for Sustainability

MIME 308 (3) Social Impact of Technology

PHIL 343 (3) Biomedical Ethics

RELG 270 (3) Religious Ethics and the Environment
Group B - Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments:

- Anthropology (ANTH)
- Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)
- History (HIST)
- Philosophy (excluding PHIL 210 and PHIL 310)
- Political Science (POLI)
- Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)
- Religious Studies (RELG)
- School of Social Work (SWRK)
- Sociology (excluding SOCI 350)

OR 3 credits from the following:

- ARCH 528 (3) History of Housing
- BUSA 465* (3) Technological Entrepreneurship
- ENVR 203 (3) Knowledge, Ethics and Environment
- ENVR 400 (3) Environmental Thought
- FACC 220 (3) Law for Architects and Engineers
- FACC 500 (3) Technology Business Plan Design
- FACC 501 (3) Technology Business Plan Project
- INDR 294* (3) Introduction to Labour-Management Relations
- MATH 338 (3) History and Philosophy of Mathematics
- MGCR 222* (3) Introduction to Organizational Behaviour
- MGCR 352* (3) Principles of Marketing
- ORGB 321* (3) Leadership
- ORGB 423* (3) Human Resources Management

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

12.7 Department of Mechanical Engineering

12.7.1 Location

Macdonald Engineering Building, Room 270
817 Sherbrooke Street West
Montreal QC H3A 0C3
12.7.2 About the Department of Mechanical Engineering

Mechanical engineers are involved in the conception, design, implementation, and operation of mechanical systems. Typical application areas include aerospace, energy, manufacturing, machinery, and transportation. Because of the very broad nature of the discipline, there is a high demand for mechanical engineers.

Many mechanical engineers follow other career paths. Graduate studies are useful for the specialists working in research establishments, consulting firms, or in corporate research and development.

To prepare the mechanical engineer for a wide range of career possibilities, there is a heavy emphasis in our curriculum on the fundamental analytical disciplines. This is balanced by a sequence of experimental and design engineering courses, which include practice in design, manufacturing, and experimentation. In these courses, students learn how to apply their analytical groundwork to the solution of practical problems.

Concentrations in Aeronautical Engineering, Mechatronics*, and Design are available for students in either the regular or Honours program who wish to specialize in these areas.

While the program is demanding, there is time for many extracurricular activities. Students are active in such professional societies as CASI (Canadian Aeronautics and Space Institute), SAE (Society of Automotive Engineers), and ASME (American Society of Mechanical Engineers), and in various campus organizations.

Relations between faculty and students are extremely close. Social functions, at which students and professors meet to exchange views and get to know each other, are organized frequently.

* The Mechatronics Concentration will not be offered until further notice.

12.7.3 Mechanical Engineering Faculty

Chair
Luc Mongeau

Associate Chair (Curriculum Affairs)
David L. Frost

Associate Chair (Undergraduate Affairs)
Tim Lee

Associate Chair (Graduate Affairs)
Meyer Nahon

Director, M.Eng. Aerospace Program
Mathias Legrand

Emeritus Professors
Abdul M. Ahmed; B.Sc.(Dhaka), Ph.D.(McG.), ing. (Thomas Workman Emeritus Professor of Mechanical Engineering)
Romuald Knystautas; B.Eng., M.Eng., Ph.D.(McG.), ing.
Stuart J. Price; B.Sc., Ph.D.(Brist.), P.Eng.

Associate Professors (Post-Retirement)
Vince Thomson; B.Sc.(Windsor), Ph.D.(McM.)
Paul J. Zsombor-Murray; B.Eng., M.Eng., Ph.D.(McG.), ing., F.C.S.M.E.
Professors

Marco Amabili; M.Sc.(Ancona), Ph.D.(Bologna), F.A.S.M.E. (*Canada Research Chair*)

Bantwal R. Baliga; B.Tech.(I.I.T. Kanpur), M.Sc.(Case West.), Ph.D.(Minn.)

Wagdi G. Habashi; B.Eng., M.Eng.(McG.), Ph.D.(Cornell), ing., F.A.S.M.E., F.A.I.A.A., F.C.A.E., F.R.S.C. (*NSERC; Lockheed Martin; Bell Helicopter Industrial Research Chair*)

Pascal Hubert; B.Eng., M.A.Sc.(École Poly., Montr.), Ph.D.(Br. Col.), ing. (*Warner Graupe Professor*)

John H.S. Lee; B.Eng.(McG.), M.Sc.(MIT), Ph.D.(McG.), ing., F.R.S.C., F.C.A.E.

Larry B. Lessard; B.Eng.(McG.), M.Sc., Ph.D.(Stan.), ing.

Luc Mongeau; B.Sc., M.Sc.(École Poly., Montr.), Ph.D.(Penn St.), ing. (*Canada Research Chair*)

Meyer Nahon; B.Sc.(Qu.), M.Sc.(Tor.), Ph.D.(McG.), ing., A.F.A.I.A.A.

Damiano Pasini; M.Sc.(Pavia), Ph.D.(Brist.), ing.

Inna Sharf; B.A.Sc., Ph.D.(Tor.)

Associate Professors

Francois Barthelat; M.Sc.(Roch.), Ph.D.(N'western)

Andrew J. Higgins; B.Sc.(Ill.), M.S., Ph.D.(Wash.)

Michael Kokkolaras; Dipl.Ing.(TUM), Ph.D.(Rice)

Tim Lee; M.S.(Portland St.), Ph.D.(Idaho)

Rosaire Mongrain; B.Sc., M.Sc.(Montr.), Ph.D.(École Poly., Montr.), ing. (*William Dawson Scholar*)

Laurent Mydlarski; B.Sc.(Wat.), Ph.D.(Cornell)

Siva Nadarajah; B.Sc.(Kansas), M.S., Ph.D.(Stan.)

Evgeny V. Timofeev; M.Sc., Ph.D.(S.T.U. St. Petersburg), Eng., A.F.A.I.A.A.

Srikar T. Vengallatore; B.Tech.(B.H.U), Ph.D.(MIT) (*Canada Research Chair*)

Assistant Professors

James R. Forbes; Ph.D.(Tor), B.Eng.(Wat.)

Mathias Legrand; M.Sc., Ph.D.(École Centrale, Nantes)

Xinyu Liu; B.Eng., M.Eng.(Harbin), Ph.D.(Tor.)

Jovan Nedi; M.Eng., Ph.D.(Imperial Coll.)

Yaoyao Fiona Zhao; B.Eng.(B.I.T.), M.Eng., Ph.D.(Auck.)

Adjunct Professors

Farbod Aliji

Helmi Attia

Olivier Bertrand

Gilles Bourque

Luca Corteleggi

Farhang Daneshmand

Mouhab Meshreki
12.7.4 Bachelor of Engineering (B.Eng.) - Mechanical Engineering (142 credits)

Program credit weight: 142-148 credits
Program credit weight for Quebec CEGEP students: 119 credits
Program credit weight for out-of-province students: 142 credits

To prepare the mechanical engineer for a wide range of career possibilities, there is a heavy emphasis in our curriculum on the fundamental analytical disciplines. This is balanced by a sequence of experimental and design engineering courses which include practice in design, manufacturing, and experimentation. In these courses, students learn how to apply their analytical groundwork to the solution of practical problems.

Special interests are satisfied by selecting appropriate complementary courses from among those offered with a specific subject concentration, such as management, industrial engineering, computer science, controls and robotics, bio-engineering, aeronautics, combustion, systems engineering, etc.

Required Year 0 (Freshman) Courses

29 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 118-credit program.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 110</td>
<td>4</td>
<td>General Chemistry 1</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>4</td>
<td>General Chemistry 2</td>
</tr>
<tr>
<td>MATH 133</td>
<td>3</td>
<td>Linear Algebra and Geometry</td>
</tr>
<tr>
<td>MATH 140</td>
<td>3</td>
<td>Calculus 1</td>
</tr>
<tr>
<td>MATH 141</td>
<td>4</td>
<td>Calculus 2</td>
</tr>
<tr>
<td>PHYS 131</td>
<td>4</td>
<td>Mechanics and Waves</td>
</tr>
<tr>
<td>PHYS 142</td>
<td>4</td>
<td>Electromagnetism and Optics</td>
</tr>
</tbody>
</table>

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.
Required Non-Departmental Courses

33 credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCOM 206</td>
<td>3</td>
<td>Communication in Engineering</td>
</tr>
<tr>
<td>CIVE 207</td>
<td>4</td>
<td>Solid Mechanics</td>
</tr>
<tr>
<td>COMP 208</td>
<td>3</td>
<td>Computers in Engineering</td>
</tr>
<tr>
<td>ECSE 461</td>
<td>3</td>
<td>Electric Machinery</td>
</tr>
<tr>
<td>FACC 100</td>
<td>1</td>
<td>Introduction to the Engineering Profession</td>
</tr>
<tr>
<td>FACC 300</td>
<td>3</td>
<td>Engineering Economy</td>
</tr>
<tr>
<td>FACC 400</td>
<td>1</td>
<td>Engineering Professional Practice</td>
</tr>
<tr>
<td>MATH 262</td>
<td>3</td>
<td>Intermediate Calculus</td>
</tr>
<tr>
<td>MATH 263</td>
<td>3</td>
<td>Ordinary Differential Equations for Engineers</td>
</tr>
<tr>
<td>MATH 264</td>
<td>3</td>
<td>Advanced Calculus for Engineers</td>
</tr>
<tr>
<td>MATH 271</td>
<td>3</td>
<td>Linear Algebra and Partial Differential Equations</td>
</tr>
<tr>
<td>MIME 260</td>
<td>3</td>
<td>Materials Science and Engineering</td>
</tr>
</tbody>
</table>

* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Mechanical Engineering Courses

65 credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 201</td>
<td>2</td>
<td>Introduction to Mechanical Engineering</td>
</tr>
<tr>
<td>MECH 210</td>
<td>2</td>
<td>Mechanics 1</td>
</tr>
<tr>
<td>MECH 220</td>
<td>4</td>
<td>Mechanics 2</td>
</tr>
<tr>
<td>MECH 240</td>
<td>3</td>
<td>Thermodynamics 1</td>
</tr>
<tr>
<td>MECH 262</td>
<td>3</td>
<td>Statistics and Measurement Laboratory</td>
</tr>
<tr>
<td>MECH 290</td>
<td>3</td>
<td>Design Graphics for Mechanical Engineering</td>
</tr>
<tr>
<td>MECH 292</td>
<td>3</td>
<td>Design 1: Conceptual Design</td>
</tr>
<tr>
<td>MECH 309</td>
<td>3</td>
<td>Numerical Methods in Mechanical Engineering</td>
</tr>
<tr>
<td>MECH 314</td>
<td>3</td>
<td>Dynamics of Mechanisms</td>
</tr>
<tr>
<td>MECH 315</td>
<td>4</td>
<td>Mechanics 3</td>
</tr>
<tr>
<td>MECH 321</td>
<td>3</td>
<td>Mechanics of Deformable Solids</td>
</tr>
<tr>
<td>MECH 331</td>
<td>3</td>
<td>Fluid Mechanics 1</td>
</tr>
<tr>
<td>MECH 341</td>
<td>3</td>
<td>Thermodynamics 2</td>
</tr>
<tr>
<td>MECH 346</td>
<td>3</td>
<td>Heat Transfer</td>
</tr>
<tr>
<td>MECH 360</td>
<td>3</td>
<td>Principles of Manufacturing</td>
</tr>
<tr>
<td>MECH 362</td>
<td>2</td>
<td>Mechanical Laboratory 1</td>
</tr>
<tr>
<td>MECH 383</td>
<td>3</td>
<td>Applied Electronics and Instrumentation</td>
</tr>
<tr>
<td>MECH 393</td>
<td>3</td>
<td>Design 2: Machine Element Design</td>
</tr>
<tr>
<td>MECH 412</td>
<td>3</td>
<td>System Dynamics and Control</td>
</tr>
<tr>
<td>MECH 430</td>
<td>3</td>
<td>Fluid Mechanics 2</td>
</tr>
<tr>
<td>MECH 463D1</td>
<td>3</td>
<td>Design 3: Mechanical Engineering Project</td>
</tr>
<tr>
<td>MECH 463D2</td>
<td>3</td>
<td>Design 3: Mechanical Engineering Project</td>
</tr>
</tbody>
</table>

Technical Complementary Courses

McGill University, Faculty of Engineering, including Schools of Architecture and Urban Planning, 2016-2017
(Published August 18, 2016)
9 credits

6 credits at the 300 level or higher, chosen from Mechanical Engineering courses (subject code MECH). One of these two courses (3 credits) must be from the following list:

- CHEE 563* (3) Biofluids and Cardiovascular Mechanics
- MECH 497 (3) Value Engineering
- MECH 498 (3) Interdisciplinary Design Project 1
- MECH 499 (3) Interdisciplinary Design Project 2
- MECH 513 (3) Control Systems
- MECH 529 (3) Discrete Manufacturing Systems
- MECH 530 (3) Mechanics of Composite Materials
- MECH 532 (3) Aircraft Performance, Stability and Control
- MECH 535 (3) Turbomachinery and Propulsion
- MECH 536 (3) Aircraft Structures
- MECH 541 (3) Kinematic Synthesis
- MECH 543 (3) Design with Composite Materials
- MECH 544 (3) Processing of Composite Materials
- MECH 553 (3) Design and Manufacture of Microdevices
- MECH 557 (3) Mechatronic Design
- MECH 563* (3) Biofluids and Cardiovascular Mechanics
- MECH 565 (3) Fluid Flow and Heat Transfer Equipment
- MECH 573 (3) Mechanics of Robotic Systems
- MECH 577 (3) Optimum Design

* Students select either CHEE 563 or MECH 563.

3 credits chosen from courses at the 300 level or higher (approved by the Department) in the Faculty of Engineering (including MECH courses) or from courses in the Faculty of Science, including MATH courses.

Complementary Studies

6 credits

Group A - Impact of Technology on Society

3 credits from the following:

- ANTH 212 (3) Anthropology of Development
- BTEC 502 (3) Biotechnology Ethics and Society
- CIVE 469 (3) Infrastructure and Society
- ECON 225 (3) Economics of the Environment
- ECON 347 (3) Economics of Climate Change
- ENVR 201 (3) Society, Environment and Sustainability
- GEOG 200 (3) Geographical Perspectives: World Environmental Problems
- GEOG 203 (3) Environmental Systems
- GEOG 205 (3) Global Change: Past, Present and Future
- GEOG 302 (3) Environmental Management I
- MECH 526 (3) Manufacturing and the Environment
- MGPO 440* (3) Strategies for Sustainability
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIME 308</td>
<td>(3)</td>
<td>Social Impact of Technology</td>
</tr>
<tr>
<td>PHIL 343</td>
<td>(3)</td>
<td>Biomedical Ethics</td>
</tr>
<tr>
<td>RELG 270</td>
<td>(3)</td>
<td>Religious Ethics and the Environment</td>
</tr>
<tr>
<td>SOCI 235</td>
<td>(3)</td>
<td>Technology and Society</td>
</tr>
<tr>
<td>SOCI 312</td>
<td>(3)</td>
<td>Sociology of Work and Industry</td>
</tr>
<tr>
<td>URBP 201</td>
<td>(3)</td>
<td>Planning the 21st Century City</td>
</tr>
</tbody>
</table>

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Group B - Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments:

- Anthropology (ANTH)
- Economics (any 200- or 300-level course excluding ECON 227, and ECON 337)
- History (HIST)
- Philosophy (excluding PHIL 210 and PHIL 310)
- Political Science (POLI)
- Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)
- Religious Studies (RELG)
- School of Social Work (SWRK)
- Sociology (excluding SOCI 350)

OR one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 528</td>
<td>(3)</td>
<td>History of Housing</td>
</tr>
<tr>
<td>BUSA 465*</td>
<td>(3)</td>
<td>Technological Entrepreneurship</td>
</tr>
<tr>
<td>ENVR 203</td>
<td>(3)</td>
<td>Knowledge, Ethics and Environment</td>
</tr>
<tr>
<td>ENVR 400</td>
<td>(3)</td>
<td>Environmental Thought</td>
</tr>
<tr>
<td>FACC 220</td>
<td>(3)</td>
<td>Law for Architects and Engineers</td>
</tr>
<tr>
<td>FACC 500</td>
<td>(3)</td>
<td>Technology Business Plan Design</td>
</tr>
<tr>
<td>FACC 501</td>
<td>(3)</td>
<td>Technology Business Plan Project</td>
</tr>
<tr>
<td>INDR 294*</td>
<td>(3)</td>
<td>Introduction to Labour-Management Relations</td>
</tr>
<tr>
<td>MATH 338</td>
<td>(3)</td>
<td>History and Philosophy of Mathematics</td>
</tr>
<tr>
<td>MGCR 222*</td>
<td>(3)</td>
<td>Introduction to Organizational Behaviour</td>
</tr>
<tr>
<td>MGCR 352*</td>
<td>(3)</td>
<td>Principles of Marketing</td>
</tr>
<tr>
<td>ORGB 321*</td>
<td>(3)</td>
<td>Leadership</td>
</tr>
<tr>
<td>ORGB 423*</td>
<td>(3)</td>
<td>Human Resources Management</td>
</tr>
</tbody>
</table>

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

Elective Courses

0-6 credits

Students from Quebec CEGEPs must take 6 credits of courses at the 200 level or higher from the following faculties/schools:

- Desautels Faculty of Management
Typical Program of Study

Students entering the program from Quebec CEGEPs follow a different curriculum from those entering from outside the province. Students will be advised by the Department as to which courses they should select from the course lists above.

For a detailed curriculum, please see http://www.mcgill.ca/mecheng/undergrad/curriculum.

For all minors and concentrations, students should complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the minor or concentration.

12.7.5 Bachelor of Engineering (B.Eng.) - Honours Mechanical Engineering (142 credits)

Program credit weight: 142-148 credits
Program credit weight for Quebec CEGEP students: 119 credits
Program credit weight for out-of-province students: 142 credits

To prepare the mechanical engineer for a wide range of career possibilities, there is a heavy emphasis in our curriculum on the fundamental analytical disciplines. This is balanced by a sequence of experimental and design Engineering courses, which include practice in design, manufacturing, and experimentation. In these courses, students learn how to apply their analytical groundwork to the solution of practical problems.

The Honours program is particularly suitable for those with a high aptitude in mathematics and physics and gives a thorough grounding in the basic engineering sciences.

Special interests are satisfied by selecting appropriate complementary courses from among those offered with a specific subject concentration, such as management, industrial engineering, computer science, controls and robotics, bio-engineering, aeronautics, combustion, systems engineering, etc.

Required Year 0 (Freshman) Courses

29 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 119-credit program.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 110</td>
<td>4</td>
<td>General Chemistry 1</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>4</td>
<td>General Chemistry 2</td>
</tr>
<tr>
<td>MATH 133</td>
<td>3</td>
<td>Linear Algebra and Geometry</td>
</tr>
<tr>
<td>MATH 140</td>
<td>3</td>
<td>Calculus 1</td>
</tr>
<tr>
<td>MATH 141</td>
<td>4</td>
<td>Calculus 2</td>
</tr>
<tr>
<td>PHYS 131</td>
<td>4</td>
<td>Mechanics and Waves</td>
</tr>
<tr>
<td>PHYS 142</td>
<td>4</td>
<td>Electromagnetism and Optics</td>
</tr>
</tbody>
</table>

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses

27 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCOM 206</td>
<td>3</td>
<td>Communication in Engineering</td>
</tr>
<tr>
<td>CIVE 207</td>
<td>4</td>
<td>Solid Mechanics</td>
</tr>
<tr>
<td>COMP 208</td>
<td>3</td>
<td>Computers in Engineering</td>
</tr>
<tr>
<td>Course Code</td>
<td>Credits</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>FACC 100*</td>
<td>1</td>
<td>Introduction to the Engineering Profession</td>
</tr>
<tr>
<td>FACC 300</td>
<td>3</td>
<td>Engineering Economy</td>
</tr>
<tr>
<td>FACC 400</td>
<td>1</td>
<td>Engineering Professional Practice</td>
</tr>
<tr>
<td>MATH 262</td>
<td>3</td>
<td>Intermediate Calculus</td>
</tr>
<tr>
<td>MATH 263</td>
<td>3</td>
<td>Ordinary Differential Equations for Engineers</td>
</tr>
<tr>
<td>MATH 264</td>
<td>3</td>
<td>Advanced Calculus for Engineers</td>
</tr>
<tr>
<td>MATH 271</td>
<td>3</td>
<td>Linear Algebra and Partial Differential Equations</td>
</tr>
</tbody>
</table>

*Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Mechanical Engineering Courses

62 credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 201</td>
<td>2</td>
<td>Introduction to Mechanical Engineering</td>
</tr>
<tr>
<td>MECH 210</td>
<td>2</td>
<td>Mechanics 1</td>
</tr>
<tr>
<td>MECH 220</td>
<td>4</td>
<td>Mechanics 2</td>
</tr>
<tr>
<td>MECH 240</td>
<td>3</td>
<td>Thermodynamics 1</td>
</tr>
<tr>
<td>MECH 262</td>
<td>3</td>
<td>Statistics and Measurement Laboratory</td>
</tr>
<tr>
<td>MECH 290</td>
<td>3</td>
<td>Design Graphics for Mechanical Engineering</td>
</tr>
<tr>
<td>MECH 292</td>
<td>3</td>
<td>Design 1: Conceptual Design</td>
</tr>
<tr>
<td>MECH 309</td>
<td>3</td>
<td>Numerical Methods in Mechanical Engineering</td>
</tr>
<tr>
<td>MECH 321</td>
<td>3</td>
<td>Mechanics of Deformable Solids</td>
</tr>
<tr>
<td>MECH 331</td>
<td>3</td>
<td>Fluid Mechanics 1</td>
</tr>
<tr>
<td>MECH 341</td>
<td>3</td>
<td>Thermodynamics 2</td>
</tr>
<tr>
<td>MECH 346</td>
<td>3</td>
<td>Heat Transfer</td>
</tr>
<tr>
<td>MECH 360</td>
<td>3</td>
<td>Principles of Manufacturing</td>
</tr>
<tr>
<td>MECH 362</td>
<td>2</td>
<td>Mechanical Laboratory 1</td>
</tr>
<tr>
<td>MECH 383</td>
<td>3</td>
<td>Applied Electronics and Instrumentation</td>
</tr>
<tr>
<td>MECH 403D1</td>
<td>3</td>
<td>Thesis (Honours)</td>
</tr>
<tr>
<td>MECH 403D2</td>
<td>3</td>
<td>Thesis (Honours)</td>
</tr>
<tr>
<td>MECH 404</td>
<td>3</td>
<td>Honours Thesis 2</td>
</tr>
<tr>
<td>MECH 419</td>
<td>4</td>
<td>Advanced Mechanics of Systems</td>
</tr>
<tr>
<td>MECH 430</td>
<td>3</td>
<td>Fluid Mechanics 2</td>
</tr>
<tr>
<td>MECH 494</td>
<td>3</td>
<td>Honours Design Project</td>
</tr>
</tbody>
</table>

Technical Complementary Courses

18 credits

3 credits from the following, chosen with the approval of either the thesis supervisor or the coordinator of the Honours program, when a thesis supervisor has not yet been secured:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 323</td>
<td>3</td>
<td>Probability</td>
</tr>
<tr>
<td>MATH 326</td>
<td>3</td>
<td>Nonlinear Dynamics and Chaos</td>
</tr>
<tr>
<td>MATH 327</td>
<td>3</td>
<td>Matrix Numerical Analysis</td>
</tr>
<tr>
<td>MATH 363</td>
<td>3</td>
<td>Discrete Mathematics</td>
</tr>
<tr>
<td>MATH 381</td>
<td>3</td>
<td>Complex Variables and Transforms</td>
</tr>
<tr>
<td>MATH 407</td>
<td>3</td>
<td>Dynamic Programming</td>
</tr>
</tbody>
</table>
MATH 417 (3) Mathematical Programming

6 credits from the following:

- MECH 513 (3) Control Systems
- MECH 546 (3) Finite Element Methods in Solid Mechanics
- MECH 562 (3) Advanced Fluid Mechanics
- MECH 577 (3) Optimum Design
- MECH 578 (3) Advanced Thermodynamics
- MECH 579* (3) Multidisciplinary Design Optimization

* Note: Students select either MECH 577 or MECH 579

6 credits at the 300 level or higher, chosen from Mechanical Engineering courses (subject code MECH). One of these two courses (3 credits) must be from the following list:

- CHEE 563* (3) Biofluids and Cardiovascular Mechanics
- MECH 497 (3) Value Engineering
- MECH 498 (3) Interdisciplinary Design Project 1
- MECH 499 (3) Interdisciplinary Design Project 2
- MECH 513 (3) Control Systems
- MECH 529 (3) Discrete Manufacturing Systems
- MECH 530 (3) Mechanics of Composite Materials
- MECH 532 (3) Aircraft Performance, Stability and Control
- MECH 535 (3) Turbomachinery and Propulsion
- MECH 536 (3) Aircraft Structures
- MECH 541 (3) Kinematic Synthesis
- MECH 543 (3) Design with Composite Materials
- MECH 544 (3) Processing of Composite Materials
- MECH 553 (3) Design and Manufacture of Microdevices
- MECH 557 (3) Mechatronic Design
- MECH 563* (3) Biofluids and Cardiovascular Mechanics
- MECH 565 (3) Fluid Flow and Heat Transfer Equipment
- MECH 573 (3) Mechanics of Robotic Systems
- MECH 577 (3) Optimum Design

*Students choose either CHEE 563 or MECH 563

3 credits chosen from courses at the 300-level or higher (approved by the Department) in the Faculty of Engineering (including MECH courses) or from MIME 260 or from courses at the 300 level or higher in the Faculty of Science, including MATH courses.

Complementary Studies

6 credits

Group A - Impact of Technology on Society

3 credits from the following:

- ANTH 212 (3) Anthropology of Development
- BTEC 502 (3) Biotechnology Ethics and Society
CIVE 469 (3) Infrastructure and Society
ECON 225 (3) Economics of the Environment
ECON 347 (3) Economics of Climate Change
ENVR 201 (3) Society, Environment and Sustainability
GEOG 200 (3) Geographical Perspectives: World Environmental Problems
GEOG 203 (3) Environmental Systems
GEOG 205 (3) Global Change: Past, Present and Future
GEOG 302 (3) Environmental Management 1
MECH 526 (3) Manufacturing and the Environment
MGPO 440* (3) Strategies for Sustainability
MIME 308 (3) Social Impact of Technology
PHIL 343 (3) Biomedical Ethics
RELG 235 (3) Technology and Society
SOCI 312 (3) Sociology of Work and Industry
URBP 201 (3) Planning the 21st Century City

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Group B: Humanities and Social Sciences, Management Studies and Law

3 credits at the 200 level or higher from the following departments:

- Anthropology (ANTH)
- Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)
- History (HIST)
- Philosophy (excluding PHIL 210 and PHIL 310)
- Political Science (POLI)
- Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)
- Religious Studies (RELG)
- School of Social Work (SWRK)
- Sociology (excluding SOCI 350)

OR one of the following:

- ARCH 528 (3) History of Housing
- BUSA 465* (3) Technological Entrepreneurship
- ENVR 203 (3) Knowledge, Ethics and Environment
- ENVR 400 (3) Environmental Thought
- FACC 220 (3) Law for Architects and Engineers
- FACC 500 (3) Technology Business Plan Design
- FACC 501 (3) Technology Business Plan Project
- INDR 294* (3) Introduction to Labour-Management Relations
- MATH 338 (3) History and Philosophy of Mathematics
- MGCR 222* (3) Introduction to Organizational Behaviour
- MGCR 352* (3) Principles of Marketing
- ORGB 321* (3) Leadership
- ORGB 423* (3) Human Resources Management
* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

Elective Courses

0-6 credits

Students from Quebec CEGEPs must take 6 credits of courses at the 200 level or higher from the following faculties/schools:

- Desautels Faculty of Management
- Faculty of Agricultural and Environmental Sciences
- Faculty of Arts
- Faculty of Engineering
- Faculty of Religious Studies
- Faculty of Science
- Schulich School of Music

Typical Program of Study

Students entering the program from CEGEP follow a different curriculum from those entering from out of province. Students will be advised by the Department as to which courses they should select from the course lists above.

For a detailed curriculum, see http://www.mcgill.ca/mecheng/undergrad/curriculum.

For all minors and concentrations, students should complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the minor or concentration.

12.7.6 Bachelor of Engineering (B.Eng.) - Mechanical Engineering - Aeronautical Engineering (15 credits)

Students in this concentration take five courses in the area of Aeronautical Engineering. All courses must be passed with a grade of C or better.

Students should discuss their course selection with their adviser and complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the concentration.

Required Courses

6 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 532</td>
<td>(3)</td>
</tr>
<tr>
<td>MECH 533</td>
<td>(3)</td>
</tr>
</tbody>
</table>

Complementary Courses

9 credits

3-6 credits from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 535</td>
<td>(3)</td>
</tr>
<tr>
<td>MECH 536</td>
<td>(3)</td>
</tr>
</tbody>
</table>

3-6 credits from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 537</td>
<td>(3)</td>
</tr>
<tr>
<td>MECH 538</td>
<td>(3)</td>
</tr>
<tr>
<td>MECH 539</td>
<td>(3)</td>
</tr>
</tbody>
</table>
12.7.7 Bachelor of Engineering (B.Eng.) - Honours Mechanical Engineering - Aeronautical Engineering (15 credits)

Students in this concentration take five courses in the area of aeronautical engineering. All courses must be passed with a grade of C or better.

Students should discuss their course selection with their adviser and complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the concentration.

Required Courses

6 credits

- MECH 532 (3) Aircraft Performance, Stability and Control
- MECH 533 (3) Subsonic Aerodynamics

Complementary Courses

9 credits

3-6 credits from the following:

- MECH 535 (3) Turbomachinery and Propulsion
- MECH 536 (3) Aircraft Structures

3-6 credits from the following:

- MECH 537 (3) High-Speed Aerodynamics
- MECH 538 (3) Unsteady Aerodynamics
- MECH 539 (3) Computational Aerodynamics
- MECH 565 (3) Fluid Flow and Heat Transfer Equipment
- MECH 566 (3) Fluid-Structure Interactions

12.7.8 Bachelor of Engineering (B.Eng.) - Mechanical Engineering - Design (15 credits)

Students in this concentration take five courses in the area of design, including the completion of an interdisciplinary project.

Students should complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the concentration.

Total concentration credit weight: 15-16 credits

Required Courses

6 credits

- MECH 498 (3) Interdisciplinary Design Project 1
- MECH 499 (3) Interdisciplinary Design Project 2

Complementary Courses

9-10 credits from the following:

- ARCH 515 (3) Sustainable Design
- CHEE 453 (4) Process Design
- MECH 497 (3) Value Engineering
12.7.9 Bachelor of Engineering (B.Eng.) - Honours Mechanical Engineering - Design (15 credits)

Students in this concentration take five courses in the area of design, including the completion of an interdisciplinary project.

Students should complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the concentration.

Total concentration credit weight: 15-16 credits

Required Courses

6 credits

MECH 498 (3) Interdisciplinary Design Project 1

MECH 499 (3) Interdisciplinary Design Project 2

Complementary Courses

9-10 credits from the following:

ARCH 515 (3) Sustainable Design
CHEE 453 (4) Process Design
MECH 497 (3) Value Engineering
MECH 526 (3) Manufacturing and the Environment
MECH 528 (3) Product Design
MECH 530 (3) Mechanics of Composite Materials
MECH 541 (3) Kinematic Synthesis
MECH 543 (3) Design with Composite Materials
MECH 557 (3) Mechatronic Design
MECH 565 (3) Fluid Flow and Heat Transfer Equipment
MECH 577 (3) Optimum Design
MECH 579 (3) Multidisciplinary Design Optimization

12.7.10 Bachelor of Engineering (B.Eng.) - Mechanical Engineering - Mechatronics (18 credits)

Not offered until further notice.

Students in this concentration take six courses in the area of control, robotics, and/or CAD/CAM.

Students should complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the concentration.

Required Courses

12 credits

MECH 526 (3) Manufacturing and the Environment
MECH 528 (3) Product Design
MECH 530 (3) Mechanics of Composite Materials
MECH 541 (3) Kinematic Synthesis
MECH 543 (3) Design with Composite Materials
MECH 557 (3) Mechatronic Design
MECH 565 (3) Fluid Flow and Heat Transfer Equipment
MECH 577 (3) Optimum Design
MECH 579 (3) Multidisciplinary Design Optimization
MECH 513 (3) Control Systems
MECH 554 (3) Microprocessors for Mechanical Systems
MECH 557 (3) Mechatronic Design
MECH 572 (3) Introduction to Robotics

Complementary Courses
6 credits from the following:
MECH 528 (3) Product Design
MECH 541 (3) Kinematic Synthesis
MECH 573 (3) Mechanics of Robotic Systems

12.7.11 Bachelor of Engineering (B.Eng.) - Honours Mechanical Engineering - Mechatronics (18 credits)

Not offered until further notice

Students in this concentration take six courses in the area of control, robotics, and/or CAD/CAM.

Students should complete a Course Authorization Form, available from the Student Affairs Office (Engineering Student Centre) or from the Undergraduate Program Coordinator, indicating their intention to take the concentration.

Required Courses
12 credits
MECH 513 (3) Control Systems
MECH 554 (3) Microprocessors for Mechanical Systems
MECH 557 (3) Mechatronic Design
MECH 572 (3) Introduction to Robotics

Complementary Courses
6 credits from the following:
MECH 528 (3) Product Design
MECH 541 (3) Kinematic Synthesis
MECH 573 (3) Mechanics of Robotic Systems

12.8 Department of Mining and Materials Engineering

12.8.1 Location

General Office:
Wong Building, Room 2140
3610 University Street
Montreal QC H3A 0C5
Website: www.mcgill.ca/minmat

Materials:
Wong Building, Room 2140
3610 University Street
Montreal QC H3A 0C5
Telephone: 514-398-1040
Fax: 514-398-4492
Email: coordinator.minmat@mcgill.ca
12.8.2 About the Department of Mining and Materials Engineering

The Department of Mining and Materials Engineering offers programs leading to the Bachelor of Engineering degree in Materials Engineering or Mining Engineering. In addition to regular courses and laboratories, the curriculum includes seminars, colloquia, and student projects reinforced by field trips to industrial operations.

For more information, refer to:
- Mining Engineering – section 12.8.5.3: Bachelor of Engineering (B.Eng.) - Mining Engineering CO-OP (150 credits)

12.8.2.1 Scholarships

The Department offers renewable Entrance Scholarships every year. A substantial number of other scholarships and bursaries are also awarded by the Department as well as by the Canadian Mineral Industry Education Foundation.

Please refer to the Faculty of Engineering website's Scholarships and Financial Aid section for more information.

12.8.3 Mining and Materials Engineering Faculty

Department Chair
George P. Demopoulos

Associate Chair, Student Affairs
Richard Chromik

Associate Chair & Graduate Program Director
Mathieu Brochu

Graduate Program Coordinator
Barbara Hanley

Director, Mining Engineering Program
Hani S. Mitri (*on sabbatical as of Jan. 2017*)

Emeritus Professors
- John E. Gruzleski; B.Sc., M.Sc.(Qu.), Ph.D.(Tor.), Eng., F.C.I.M., F.A.S.M. (*Gerald G. Hatch Emeritus Professor*)

Professors
- George P. Demopoulos; Dipl.Eng.(NTU Athens), M.Sc., Ph.D.(McG.), Eng., F.C.I.M.
- Roussos Dimitrakopoulos; B.Sc.(Thessaloniki), M.Sc.(Alta.), Ph.D.(École Poly., Montr.) (*Canada Research Chair I*) (*on sabbatical as of Jan. 2017*)
- Raynald Gauvin; B.Eng., Ph.D.(Montr.), Eng. (*on sabbatical as of Sept. 2016*)
Professors

Faramarz (Ferri) P. Hassani; B.Sc., Ph.D.(Nott.), C.Eng.(U.K. Reg.) (George Boyd Webster Professor)
Hani S. Mitri; B.Sc.(Cairo), M.Eng., Ph.D.(McM.), Eng.
Stephen Yue; B.Sc., Ph.D.(Leeds) (James McGill Professor) (Lorne Trotter Chair in Aerospace Engineering)

Associate Professors

Mathieu Brochu; B.Eng.(Laval), Ph.D.(McG.) (Canada Research Chair II) (Hatch Faculty Fellow)
Marta Cerruti; B.Sc., Ph.D., Laurea in Chemistry(Torino) (on sabbatical as of Jan. 2017)
Richard Chromik; B.Sc.(Penn. St.), M.Sc., Ph.D.(SUNY/Binghamton) (Hatch Faculty Fellow)
Mainul Hasan; B.Eng.(Dhaka), M.Eng.(Dhahran), Ph.D.(McG.)
In-Ho Jung; B.Sc.(POSTECH), Ph.D. (École Poly., Montr.) (William Dawson Scholar)
Mustafa Kumral; B.Eng.(Hacettepe), M.Eng.(Cukurova), Ph.D.(Leeds)
Showan Nazhat; B.Eng., M.Sc., Ph.D.(Lond.)
Mihriban Pekguleryuz; B.Sc., M.Eng.(Flor.), Ph.D.(McG.)
Nathaniel Quitoriano; B.S.(Calif., Berk.), Ph.D.(MIT)
Kristian Waters; M.Eng., M.Sc.(UMIST), Ph.D.(Birm.) (on sabbatical as of Sept. 2016)

Assistant Professors

Kirk Bevan; Ph.D.(Purd.)
Jun Song; M.Sc., Ph.D.(Princ.)

Adjunct Professors

Bruno Benedetti, Mostafa Benzaazoua, Marc Bétournay, Michel Gamache, Abdelbaset Guerfi, Bryn Harris, Robert Harrison, Ahmad Hemami, Arun Mujumdar, Jan Nesset, Marco Quirion, Denis Thibodeau, Karim Zaghib

Faculty Lecturer

Florence Paray; B.Eng.(CSP), M.Eng., Ph.D.(McG.)

Course Lecturers

Yves Buro
Marco Quirion
Shahe Shnorhokian

Co-op Program Liaison Officers

Monika Teresa Skonieczny (Mining)
Genevieve Snider (Materials)

12.8.4 About Materials Engineering

12.8.4.1 Materials Engineering (Co-op)

The Materials Engineering degree is a cooperative program leading to a B.Eng, and includes formal industrial work periods. It is built on a strong background of mathematics, basic sciences, computer skills and applications, and specific engineering and design courses to provide up-to-date training in materials engineering. Students take core courses covering processing, fabrication, applications, and performance of materials, namely:

- metals;
- ceramics;
- polymers; and
- composites.
The program is fully accredited by the Canadian Engineering Accreditation Board (CEAB) and is designed to offer students exceptional training for employment in the field. The core courses are supplemented by complementary courses, which provide a diverse selection of specialties for the graduating engineer. The course structure is reinforced with laboratory exercises. Graduates find employment in a wide range of industries, including the resource and manufacturing sectors. Students in the Co-op program benefit from practical learning experience gained from work-term employment in meaningful engineering jobs, as well as non-tangible learning experiences arising from the responsibilities required to obtain and successfully complete the work terms.

Regarding the Co-op program fees, an amount of $200 will be billed during ten consecutive terms for a total amount of $2,000 before graduation. These fees cover expenses directly related to the operation of the Co-op program. Students must register for each of their industrial training courses within the university registration period for returning students or late fees will apply. Before registering for any work term course, students must contact the Materials Co-op Liaison Officer for approval.

12.8.4.2 Student Advising

Students entering this program must plan their schedule of studies in consultation with one of the departmental advisers. Appointments may be obtained by contacting the Administrative and Student Affairs Coordinator.

For more information, please refer to the Academic Advising section of our website.

12.8.4.3 Bachelor of Engineering (B.Eng.) - Materials Engineering CO-OP (148 credits)

Program credit weight: 148 credits
Program credit weight for Quebec CEGEP students: 119 credits

In addition to regular courses and laboratories, the B.Eng. Materials Engineering curriculum includes seminars, colloquia, and student projects reinforced by field trips to industrial operations.

Students entering this program must plan their schedule of studies in consultation with a departmental adviser.

Required Year 0 (Freshman) Courses

29 credits
Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 119-credit program.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 110</td>
<td>(4)</td>
<td>General Chemistry 1</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>(4)</td>
<td>General Chemistry 2</td>
</tr>
<tr>
<td>MATH 133</td>
<td>(3)</td>
<td>Linear Algebra and Geometry</td>
</tr>
<tr>
<td>MATH 140</td>
<td>(3)</td>
<td>Calculus 1</td>
</tr>
<tr>
<td>MATH 141</td>
<td>(4)</td>
<td>Calculus 2</td>
</tr>
<tr>
<td>PHYS 131</td>
<td>(4)</td>
<td>Mechanics and Waves</td>
</tr>
<tr>
<td>PHYS 142</td>
<td>(4)</td>
<td>Electromagnetism and Optics</td>
</tr>
</tbody>
</table>

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses

33 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCOM 206</td>
<td>(3)</td>
<td>Communication in Engineering</td>
</tr>
<tr>
<td>CHEM 233</td>
<td>(3)</td>
<td>Topics in Physical Chemistry</td>
</tr>
<tr>
<td>CIVE 205</td>
<td>(3)</td>
<td>Statics</td>
</tr>
<tr>
<td>CIVE 207</td>
<td>(4)</td>
<td>Solid Mechanics</td>
</tr>
<tr>
<td>COMP 208</td>
<td>(3)</td>
<td>Computers in Engineering</td>
</tr>
<tr>
<td>FACC 100*</td>
<td>(1)</td>
<td>Introduction to the Engineering Profession</td>
</tr>
<tr>
<td>FACC 300</td>
<td>(3)</td>
<td>Engineering Economy</td>
</tr>
<tr>
<td>FACC 400</td>
<td>(1)</td>
<td>Engineering Professional Practice</td>
</tr>
</tbody>
</table>
MATH 262 (3) Intermediate Calculus
MATH 263 (3) Ordinary Differential Equations for Engineers
MATH 264 (3) Advanced Calculus for Engineers
MECH 289 (3) Design Graphics

* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Materials Engineering Courses

71 credits

ECSE 461 (3) Electric Machinery
MIME 209 (3) Mathematical Applications
MIME 212 (3) Engineering Thermodynamics
MIME 250 (3) Introduction to Extractive Metallurgy
MIME 261 (3) Structure of Materials
MIME 280 (2) Industrial Training 1
MIME 311 (3) Modelling and Automatic Control
MIME 317 (3) Analytical and Characterization Techniques
MIME 341 (3) Introduction to Mineral Processing
MIME 345 (3) Applications of Polymers
MIME 350 (3) Extractive Metallurgical Engineering
MIME 352 (3) Hydrochemical Processing
MIME 356 (4) Heat, Mass and Fluid Flow
MIME 360 (3) Phase Transformations: Solids
MIME 362 (3) Mechanical Properties
MIME 380 (2) Industrial Training 2
MIME 442 (3) Analysis, Modelling and Optimization in Mineral Processing
MIME 452 (4) Process and Materials Design
MIME 455 (3) Advanced Process Engineering
MIME 456 (3) Steelmaking and Steel Processing
MIME 465 (3) Metallic and Ceramic Powders Processing
MIME 467 (3) Electronic Properties of Materials
MIME 473 (3) Introduction to Computational Materials Design
MIME 480 (2) Industrial Training 3

Complementary Courses

15 credits

Technical Complementaries

9 credits

6-9 credits from the following:

CHEE 515* (3) Material Surfaces: A Biomimetic Approach
CIVE 512 (3) Advanced Civil Engineering Materials
MECH 530 (3) Mechanics of Composite Materials
MIME 410 (3) Research Project
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIME 470</td>
<td>(3)</td>
<td>Engineering Biomaterials</td>
</tr>
<tr>
<td>MIME 512</td>
<td>(3)</td>
<td>Corrosion and Degradation of Materials</td>
</tr>
<tr>
<td>MIME 515*</td>
<td>(3)</td>
<td>Material Surfaces: A Biomimetic Approach</td>
</tr>
<tr>
<td>MIME 526</td>
<td>(3)</td>
<td>Mineral Economics</td>
</tr>
<tr>
<td>MIME 542</td>
<td>(3)</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>MIME 544</td>
<td>(3)</td>
<td>Analysis: Mineral Processing Systems 1</td>
</tr>
<tr>
<td>MIME 545</td>
<td>(3)</td>
<td>Analysis: Mineral Processing Systems 2</td>
</tr>
<tr>
<td>MIME 551</td>
<td>(3)</td>
<td>Electrochemical Processing</td>
</tr>
<tr>
<td>MIME 556</td>
<td>(3)</td>
<td>Sustainable Materials Processing</td>
</tr>
<tr>
<td>MIME 558</td>
<td>(3)</td>
<td>Engineering Nanomaterials</td>
</tr>
<tr>
<td>MIME 559</td>
<td>(3)</td>
<td>Aluminum Physical Metallurgy</td>
</tr>
<tr>
<td>MIME 560</td>
<td>(3)</td>
<td>Joining Processes</td>
</tr>
<tr>
<td>MIME 561</td>
<td>(3)</td>
<td>Advanced Materials Design</td>
</tr>
<tr>
<td>MIME 563</td>
<td>(3)</td>
<td>Hot Deformation of Metals</td>
</tr>
<tr>
<td>MIME 565</td>
<td>(3)</td>
<td>Aerospace Metallic-Materials and Manufacturing Processes</td>
</tr>
<tr>
<td>MIME 568</td>
<td>(3)</td>
<td>Topics in Advanced Materials</td>
</tr>
<tr>
<td>MIME 569</td>
<td>(3)</td>
<td>Electron Beam Analysis of Materials</td>
</tr>
<tr>
<td>MIME 570</td>
<td>(3)</td>
<td>Micro- and Nano-Fabrication Fundamentals</td>
</tr>
<tr>
<td>MIME 571</td>
<td>(3)</td>
<td>Surface Engineering</td>
</tr>
<tr>
<td>MIME 572</td>
<td>(3)</td>
<td>Computational Thermodynamics</td>
</tr>
</tbody>
</table>

* Students choose either CHEE 515 or MIME 515, offered in alternate years.

0-3 credits may be taken from courses outside of the Department of Mining and Materials Engineering, with departmental approval.

Complementary Studies

6 credits

Group A - Impact of Technology on Society

3 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 212</td>
<td>(3)</td>
<td>Anthropology of Development</td>
</tr>
<tr>
<td>BTEC 502</td>
<td>(3)</td>
<td>Biotechnology Ethics and Society</td>
</tr>
<tr>
<td>CIVE 469</td>
<td>(3)</td>
<td>Infrastructure and Society</td>
</tr>
<tr>
<td>ECON 225</td>
<td>(3)</td>
<td>Economics of the Environment</td>
</tr>
<tr>
<td>ECON 347</td>
<td>(3)</td>
<td>Economics of Climate Change</td>
</tr>
<tr>
<td>ENVR 201</td>
<td>(3)</td>
<td>Society, Environment and Sustainability</td>
</tr>
<tr>
<td>GEOG 200</td>
<td>(3)</td>
<td>Geographical Perspectives: World Environmental Problems</td>
</tr>
<tr>
<td>GEOG 203</td>
<td>(3)</td>
<td>Environmental Systems</td>
</tr>
<tr>
<td>GEOG 205</td>
<td>(3)</td>
<td>Global Change: Past, Present and Future</td>
</tr>
<tr>
<td>GEOG 302</td>
<td>(3)</td>
<td>Environmental Management 1</td>
</tr>
<tr>
<td>MECH 526</td>
<td>(3)</td>
<td>Manufacturing and the Environment</td>
</tr>
<tr>
<td>MGPO 440*</td>
<td>(3)</td>
<td>Strategies for Sustainability</td>
</tr>
<tr>
<td>MIME 308</td>
<td>(3)</td>
<td>Social Impact of Technology</td>
</tr>
<tr>
<td>PHIL 343</td>
<td>(3)</td>
<td>Biomedical Ethics</td>
</tr>
<tr>
<td>RELG 270</td>
<td>(3)</td>
<td>Religious Ethics and the Environment</td>
</tr>
</tbody>
</table>
Group B - Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments:

- Anthropology (ANTH)
- Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)
- History (HIST)
- Philosophy (excluding PHIL 210 and PHIL 310)
- Political Science (POLI)
- Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)
- Religious Studies (RELG)
- School of Social Work (SWRK)
- Sociology (excluding SOCI 350)

OR one of the following:

- ARCH 528 (3) History of Housing
- BUSA 465* (3) Technological Entrepreneurship
- ENVR 203 (3) Knowledge, Ethics and Environment
- ENVR 400 (3) Environmental Thought
- FACC 220 (3) Law for Architects and Engineers
- FACC 500 (3) Technology Business Plan Design
- FACC 501 (3) Technology Business Plan Project
- INDR 294* (3) Introduction to Labour-Management Relations
- MATH 338 (3) History and Philosophy of Mathematics
- MGCR 222* (3) Introduction to Organizational Behaviour
- MGCR 352* (3) Principles of Marketing
- ORGB 321* (3) Leadership
- ORGB 423* (3) Human Resources Management

* Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

12.8.5 About Mining Engineering

12.8.5.1 Mining Engineering (Co-op)

McGill is proud to be the host of the oldest mining engineering program in Canada, which started in 1870. The program is known for the excellence of its courses as well as the training it provides in mining technology, mineral economics, and mine design. Excellent career opportunities are available in Canada and around the world. There have been rapid technical developments in recent years, presenting a challenge to the creative student with a strong interest in engineering and a taste for innovative solutions.

The Department offers a co-operative program leading to an accredited B.Eng degree in Mining Engineering. It includes three paid industrial work terms. The Co-op program is offered in one of two streams: English Stream for non-CEGEP students and Bilingual Stream (six courses in French) for CEGEP
students, in collaboration with the mining engineering program at École Polytechnique in Montreal. Students in the Bilingual Stream are required to take six mining courses, designated by subject code MPMC, at École Polytechnique in the latter part of the program.

Students must register for each work term:

- MIME 290
- MIME 291
- MIME 392

and pay associated fees by the Course Change (add/drop) registration deadline. Before registering for any work term course, students must contact the Mining Co-op Liaison Officer for approval.

12.8.5.2 Student Advising

Students entering this program must plan their schedule of studies in consultation with one of the departmental advisers: Professor Mustafa Kumral or Professor Agus Sasmito.

For more information, please refer to the Academic Advising section of our website.

12.8.5.3 Bachelor of Engineering (B.Eng.) - Mining Engineering CO-OP (150 credits)

Program credit weight: 150-151 credits
Program credit weight for Quebec CEGEP students: 121-122 credits

In addition to regular courses and laboratories, the curriculum of the B.Eng. Mining Engineering Co-op program includes seminars, colloquia, and student projects reinforced by field trips to industrial operations.

Students entering this program must plan their schedule of studies in consultation with a departmental adviser.

Required Year 0 (Freshman) Courses

29 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 121- to 123-credit program.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 110</td>
<td>(4)</td>
<td>General Chemistry 1</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>(4)</td>
<td>General Chemistry 2</td>
</tr>
<tr>
<td>MATH 133</td>
<td>(3)</td>
<td>Linear Algebra and Geometry</td>
</tr>
<tr>
<td>MATH 140</td>
<td>(3)</td>
<td>Calculus 1</td>
</tr>
<tr>
<td>MATH 141</td>
<td>(4)</td>
<td>Calculus 2</td>
</tr>
<tr>
<td>PHYS 131</td>
<td>(4)</td>
<td>Mechanics and Waves</td>
</tr>
<tr>
<td>PHYS 142</td>
<td>(4)</td>
<td>Electromagnetism and Optics</td>
</tr>
</tbody>
</table>

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B)

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses

34 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCOME 206</td>
<td>(3)</td>
<td>Communication in Engineering</td>
</tr>
<tr>
<td>CIVE 205</td>
<td>(3)</td>
<td>Statics</td>
</tr>
<tr>
<td>CIVE 207</td>
<td>(4)</td>
<td>Solid Mechanics</td>
</tr>
<tr>
<td>COMP 208</td>
<td>(3)</td>
<td>Computers in Engineering</td>
</tr>
<tr>
<td>EPSC 221</td>
<td>(3)</td>
<td>General Geology</td>
</tr>
<tr>
<td>EPSC 225</td>
<td>(1)</td>
<td>Properties of Minerals</td>
</tr>
<tr>
<td>FACC 100*</td>
<td>(1)</td>
<td>Introduction to the Engineering Profession</td>
</tr>
<tr>
<td>FACC 300</td>
<td>(3)</td>
<td>Engineering Economy</td>
</tr>
</tbody>
</table>
FACC 400 (1) Engineering Professional Practice
MATH 262 (3) Intermediate Calculus
MATH 263 (3) Ordinary Differential Equations for Engineers
MATH 264 (3) Advanced Calculus for Engineers
MECH 289 (3) Design Graphics

* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Mining Engineering Courses

53 credits

ECSE 461 (3) Electric Machinery
MIME 200 (3) Introduction to the Minerals Industry
MIME 203 (2) Mine Surveying
MIME 209 (3) Mathematical Applications
MIME 260 (3) Materials Science and Engineering
MIME 290 (2) Industrial Work Period 1
MIME 291 (2) Industrial Work Period 2
MIME 322 (3) Rock Fragmentation
MIME 323 (3) Rock and Soil Mass Characterization
MIME 325 (3) Mineral Industry Economics
MIME 333 (3) Materials Handling
MIME 340 (3) Applied Fluid Dynamics
MIME 341 (3) Introduction to Mineral Processing
MIME 392 (2) Industrial Work Period 3
MIME 419 (3) Surface Mining
MIME 422 (3) Mine Ventilation
MIME 426 (6) Mine Design and Prefeasibility Study
MPMC 328* (3) Environnement et gestion des rejets miniers

* Mining courses taken at École Polytechnique

Complementary Courses

34-35 credits

14 credits from either Stream A or Stream B

Stream A - CEGEP Students

CEGEP students must take the following courses:

MPMC 321* (3) Mécanique des roches et contrôle des terrains
MPMC 326* (3) Recherche opérationnelle I
MPMC 329* (2) Géologie minière
MPMC 330* (3) Géotechnique minière
MPMC 421* (3) Exploitation en souterrain

* Mining courses taken at École Polytechnique

Stream B - Non-CEGEP Students

Non-CEGEP students must take the following courses:
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 208</td>
<td>(3)</td>
<td>Civil Engineering System Analysis</td>
</tr>
<tr>
<td>MIME 329</td>
<td>(2)</td>
<td>Mining Geology</td>
</tr>
<tr>
<td>MIME 330</td>
<td>(3)</td>
<td>Mining Geotechnics</td>
</tr>
<tr>
<td>MIME 421</td>
<td>(3)</td>
<td>Rock Mechanics</td>
</tr>
<tr>
<td>MIME 424</td>
<td>(3)</td>
<td>Underground Mining Methods</td>
</tr>
</tbody>
</table>

Technical Complementaries

14-15 credits

3-6 credits from the following - these courses are offered in alternate years; students are required to take one of these two courses or they may take both:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIME 413</td>
<td>(3)</td>
<td>Strategic Mine Planning With Uncertainty</td>
</tr>
<tr>
<td>MIME 425</td>
<td>(3)</td>
<td>Applied Stochastic Orebody Modelling</td>
</tr>
</tbody>
</table>

8-12 credits can be chosen from the following or from any other approved technical courses in Engineering, Management, or Science (including mathematics courses).

Note: Not all courses are given annually; see the "Courses" section of this eCalendar to know if a course is offered.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFIN 410</td>
<td>(3)</td>
<td>Investment and Portfolio Management</td>
</tr>
<tr>
<td>CIVE 416</td>
<td>(3)</td>
<td>Geotechnical Engineering</td>
</tr>
<tr>
<td>CIVE 421</td>
<td>(3)</td>
<td>Municipal Systems</td>
</tr>
<tr>
<td>CIVE 514</td>
<td>(3)</td>
<td>Structural Mechanics</td>
</tr>
<tr>
<td>CIVE 584</td>
<td>(3)</td>
<td>Groundwater Engineering</td>
</tr>
<tr>
<td>EPS 320</td>
<td>(3)</td>
<td>International Finance 1</td>
</tr>
<tr>
<td>EPS 549</td>
<td>(3)</td>
<td>Hydrogeology</td>
</tr>
<tr>
<td>FINE 482</td>
<td>(3)</td>
<td>Extraction of Energy Resources</td>
</tr>
<tr>
<td>MIME 442</td>
<td>(3)</td>
<td>Analysis, Modelling and Optimization in Mineral Processing</td>
</tr>
<tr>
<td>MIME 484</td>
<td>(3)</td>
<td>Mining Project</td>
</tr>
<tr>
<td>MIME 494</td>
<td>(2)</td>
<td>Industrial Work Period 4</td>
</tr>
<tr>
<td>MIME 520</td>
<td>(3)</td>
<td>Stability of Rock Slopes</td>
</tr>
<tr>
<td>MIME 527</td>
<td>(3)</td>
<td>Selected Topics in Mineral Resource Engineering</td>
</tr>
<tr>
<td>MIME 544</td>
<td>(3)</td>
<td>Analysis: Mineral Processing Systems 1</td>
</tr>
<tr>
<td>MIME 545</td>
<td>(3)</td>
<td>Analysis: Mineral Processing Systems 2</td>
</tr>
<tr>
<td>MIME 588</td>
<td>(3)</td>
<td>Reliability Analysis of Mining Systems</td>
</tr>
<tr>
<td>MPMC 320*</td>
<td>(3)</td>
<td>CAO et informatique pour les mines</td>
</tr>
</tbody>
</table>

* Mining course taken at École Polytechnique

Complementary Studies

6 credits

Group A - Impact of Technology on Society

3 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 212</td>
<td>(3)</td>
<td>Anthropology of Development</td>
</tr>
<tr>
<td>BTEC 502</td>
<td>(3)</td>
<td>Biotechnology Ethics and Society</td>
</tr>
<tr>
<td>CIVE 469</td>
<td>(3)</td>
<td>Infrastructure and Society</td>
</tr>
<tr>
<td>Course Code</td>
<td>Credits</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>ECON 225</td>
<td>(3)</td>
<td>Economics of the Environment</td>
</tr>
<tr>
<td>ECON 347</td>
<td>(3)</td>
<td>Economics of Climate Change</td>
</tr>
<tr>
<td>ENVR 201</td>
<td>(3)</td>
<td>Society, Environment and Sustainability</td>
</tr>
<tr>
<td>GEOG 200</td>
<td>(3)</td>
<td>Geographical Perspectives: World Environmental Problems</td>
</tr>
<tr>
<td>GEOG 203</td>
<td>(3)</td>
<td>Environmental Systems</td>
</tr>
<tr>
<td>GEOG 205</td>
<td>(3)</td>
<td>Global Change: Past, Present and Future</td>
</tr>
<tr>
<td>GEOG 302</td>
<td>(3)</td>
<td>Environmental Management 1</td>
</tr>
<tr>
<td>MECH 526</td>
<td>(3)</td>
<td>Manufacturing and the Environment</td>
</tr>
<tr>
<td>MGPO 440*</td>
<td>(3)</td>
<td>Strategies for Sustainability</td>
</tr>
<tr>
<td>MIME 308</td>
<td>(3)</td>
<td>Social Impact of Technology</td>
</tr>
<tr>
<td>PHIL 343</td>
<td>(3)</td>
<td>Biomedical Ethics</td>
</tr>
<tr>
<td>RELG 270</td>
<td>(3)</td>
<td>Religious Ethics and the Environment</td>
</tr>
<tr>
<td>SOCI 235</td>
<td>(3)</td>
<td>Technology and Society</td>
</tr>
<tr>
<td>SOCI 312</td>
<td>(3)</td>
<td>Sociology of Work and Industry</td>
</tr>
<tr>
<td>URBP 201</td>
<td>(3)</td>
<td>Planning the 21st Century City</td>
</tr>
</tbody>
</table>

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Group B - Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments:
- Anthropology (ANTH)
- Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)
- History (HIST)
- Philosophy (excluding PHIL 210 and PHIL 310)
- Political Science (POLI)
- Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)
- Religious Studies (RELG)
- School of Social Work (SWRK)
- Sociology (excluding SOCI 350)

OR 3 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 528</td>
<td>(3)</td>
<td>History of Housing</td>
</tr>
<tr>
<td>BUSA 465*</td>
<td>(3)</td>
<td>Technological Entrepreneurship</td>
</tr>
<tr>
<td>ENVR 203</td>
<td>(3)</td>
<td>Knowledge, Ethics and Environment</td>
</tr>
<tr>
<td>ENVR 400</td>
<td>(3)</td>
<td>Environmental Thought</td>
</tr>
<tr>
<td>FACC 220</td>
<td>(3)</td>
<td>Law for Architects and Engineers</td>
</tr>
<tr>
<td>FACC 500</td>
<td>(3)</td>
<td>Technology Business Plan Design</td>
</tr>
<tr>
<td>FACC 501</td>
<td>(3)</td>
<td>Technology Business Plan Project</td>
</tr>
<tr>
<td>INDR 294*</td>
<td>(3)</td>
<td>Introduction to Labour-Management Relations</td>
</tr>
<tr>
<td>MATH 338</td>
<td>(3)</td>
<td>History and Philosophy of Mathematics</td>
</tr>
<tr>
<td>MGCR 222*</td>
<td>(3)</td>
<td>Introduction to Organizational Behaviour</td>
</tr>
<tr>
<td>MGCR 352*</td>
<td>(3)</td>
<td>Principles of Marketing</td>
</tr>
<tr>
<td>ORGB 321*</td>
<td>(3)</td>
<td>Leadership</td>
</tr>
<tr>
<td>ORGB 423*</td>
<td>(3)</td>
<td>Human Resources Management</td>
</tr>
</tbody>
</table>

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.
Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

12.9 School of Urban Planning

12.9.1 Location

Macdonald-Harrington Building, Room 400
815 Sherbrooke Street West
Montreal QC H3A OC2
Telephone: 514-398-4075
Fax: 514-398-8376
Email: admissions.planning@mcgill.ca
Website: www.mcgill.ca/urbanplanning

12.9.2 About the School of Urban Planning

Urban planning can be described as the collective management of urban development. It is concerned with the welfare of communities, control of the use of land, design of the built environment, including transportation and communication networks, and protection and enhancement of the natural environment. It is at once a technical and a political process that brings together actors from the public, private, and community spheres. Planners participate in that process in a variety of ways, as designers and analysts, advocates and mediators, facilitating the search for equitable and efficient solutions to problems of urban change and development.

Modern urban planning developed into a profession largely as a response to the appalling sanitary, social, and economic conditions of rapidly developing industrial cities. Initially, the disciplines of architecture, landscape architecture, civil engineering, and public health provided the nucleus of concerned professionals; beautification schemes and infrastructure works marked the early stages of public intervention in the 19th century. Architects, engineers, and public health specialists were joined by economists, sociologists, lawyers, and geographers as the complexities of the city's problems came to be more fully understood and public pressure mounted for their solution. Contemporary urban and regional planning techniques for survey, analysis, design, and implementation developed from an interdisciplinary synthesis of these various fields. This multidisciplinarity is still a hallmark of planning practice and of planning education.

McGill was the first university in Canada to offer a planning degree, starting in 1947. The School of Urban Planning itself was established as an independent unit in 1972. Today, it brings together students from various fields (such as those mentioned above) and different parts of the world in a professional master's program and an ad hoc Ph.D. program. Key features of the work done at the school are the use of real-world projects for learning, a focus on policy-relevant research, and strong engagement with the community, both in Canada and abroad.

The School has a long track record of research, capacity-building and consulting in developing regions as well as in Montreal and other Canadian cities. Faculty and students collaborate actively with members of other McGill departments, notably Architecture, Geography, Civil Engineering, and Law, and with colleagues at other institutions in Canada and abroad. Alumni of the School work as planners and designers at various levels of government, in non-profit organizations, and with private consulting firms. Their expertise ranges from urban design to transportation planning, from housing policy to computer modelling. They devote their efforts in increasing numbers to environmental planning and sustainable development.

The objective of the School is to enable young urban planners to exercise leadership in the public, private, and community sectors. Training is provided at the postgraduate level. The main degree offered is the Master of Urban Planning (M.U.P.). Many specializations are possible within the program; one of them, in Transportation Planning, is formally recognized as a concentration. M.U.P. students in the core program may also opt to spend a semester in Barbados as part of the Barbados Field Study Semester, which focuses on global environmental issues. Details concerning each of these concentrations can be found at www.mcgill.ca/urbanplanning/programs/mup-transportation-planning (see also www.canada.ca/gov), and at www.mcgill.ca/adphd, respectively. Upon completion of the two-year program of studies, graduates are expected to have acquired basic planning skills, a broad understanding of urban issues, and specialized knowledge in a field of their own choice. The School also welcomes a small number of students into its ad hoc Ph.D. in Urban Planning, Policy, and Design. That program aims to prepare students for careers in high-level research and teaching.

The professional program of study offered by the School is fully recognized by the Ordre des Urbanistes du Québec (O.U.Q.) and the Canadian Institute of Planners (C.I.P.). Graduates may become full members of the O.U.Q. and other provincial planning associations, and therefore of C.I.P., by completing their respective internship and examination requirements. Similar requirements must be met for admission to the American Institute of Certified Planners (A.I.C.P.) and other such organizations. For details of the M.U.P. admission requirements and curriculum, consult the School's website, as well as Faculty of Engineering > Graduate > Browse Academic Units & Programs > Urban Planning.

Although the M.U.P. program is primarily a professional degree program, it has a very important research component. The work done on the Supervised Research Project in the course of the second year of study qualifies for funding by federal and provincial funding agencies such as SSHRC. Some students enter the M.U.P. program with fellowships from these agencies; others obtain them after joining the School, for their second year of study.
The School of Urban Planning hosts a number of events that are open to undergraduate students and to the public: the Brenda and Samuel Gewurz Lectures in Urban Design bring speakers of international calibre to McGill; the Transportation Research Group at McGill holds seminars on issues pertaining to various aspects of urban and regional transportation; and the "urban.studies@mcgill" seminars bring speakers from academia, the profession and the community to talk about contemporary urban issues.

For details of the M.U.P. admission requirements and curriculum, consult the Faculty of Engineering section for Graduate and Postdoctoral Studies.

12.9.3 Undergraduate Courses in Urban Planning

The following courses taught by faculty in the School of Urban Planning are open to undergraduate students:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Units</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 520</td>
<td>(3)</td>
<td>Montreal: Urban Morphology</td>
</tr>
<tr>
<td>ARCH 550</td>
<td>(3)</td>
<td>Urban Planning and Development</td>
</tr>
<tr>
<td>CIVE 433</td>
<td>(3)</td>
<td>Urban Planning</td>
</tr>
<tr>
<td>URBP 201</td>
<td>(3)</td>
<td>Planning the 21st Century City</td>
</tr>
<tr>
<td>URBP 501</td>
<td>(2)</td>
<td>Principles and Practice 1</td>
</tr>
<tr>
<td>URBP 504</td>
<td>(3)</td>
<td>Planning for Active Transportation</td>
</tr>
<tr>
<td>URBP 505</td>
<td>(3)</td>
<td>Geographic Information Systems</td>
</tr>
<tr>
<td>URBP 506</td>
<td>(3)</td>
<td>Environmental Policy and Planning</td>
</tr>
<tr>
<td>URBP 507</td>
<td>(3)</td>
<td>Planning and Infrastructure</td>
</tr>
<tr>
<td>URBP 519</td>
<td>(6)</td>
<td>Sustainable Development Plans</td>
</tr>
<tr>
<td>URBP 520</td>
<td>(3)</td>
<td>Globalization: Planning and Change</td>
</tr>
<tr>
<td>URBP 530</td>
<td>(3)</td>
<td>Urban Environmental Planning</td>
</tr>
<tr>
<td>URBP 536</td>
<td>(1)</td>
<td>Transportation Seminar 1</td>
</tr>
<tr>
<td>URBP 537</td>
<td>(1)</td>
<td>Transportation Seminar 2</td>
</tr>
<tr>
<td>URBP 538</td>
<td>(1)</td>
<td>Transportation Seminar 3</td>
</tr>
<tr>
<td>URBP 551</td>
<td>(3)</td>
<td>Understanding Urban Change</td>
</tr>
</tbody>
</table>

12.9.4 Urban Planning Faculty

Director
Lisa Bornstein (Interim)

Emeritus Professors
David Farley; B.Arch.(McG.), M.Arch., M.C.P.(Harv.)
Jane Matthews-Glenn; B.A., LL.B.(Qu.), D. en droit(Stras.)

Post-Retirement Professor
David Brown; B.A.(Bishop's), M.U.P.(McG.), Ph.D.(Sheff.)

Professor
Richard Shearmur; B.A.(Camb.), M.U.P.(McG.), Ph.D.(Montr.)

Associate Professors
Madhav G. Badami; B.Tech., M.S.(IIT, Madras) M.E.Des.(Calg.), Ph.D.(Br. Col.) (joint appt. with McGill School of Environment)
Lisa Bornstein; B.Sc.(Calif., Berk.), M.R.P.(Cornell), Ph.D.(Calif., Berk.)
Ahmed Elgeneidy; B.A.A., M.Arch.(Alexandria), Ph.D.(Port. St.)
Raphaël Fischler; B.Eng.(Eindhoven), M.Sc., M.C.P.(MIT), Ph.D.(Calif., Berk.) (on sabbatical Jan. 1 to Dec. 31, 2016)
Nik Luka; B.A.A.(Fyerson), M.Arch.(Laval), Ph.D.(Tor.) (joint appt. with School of Architecture) (on sabbatical Jan. 1 to Aug. 31, 2017)
12.10 Other Engineering Related Programs

12.10.1 Bioresource Engineering

The Faculty of Engineering cooperates with the Faculty of Agricultural and Environmental Sciences in providing courses of instruction for a curriculum in agricultural and biosystems engineering to meet requirements for a professional degree awarded in the Faculty of Agricultural and Environmental Sciences. For details, refer to the B.Eng.(Bioresource) program requirements in Faculty of Agricultural and Environmental Sciences > Undergraduate > Browse Academic Programs > Bachelor of Engineering (Bioresource) – B.Eng.(Bioresource).

Some of the courses offered by the Department of Bioresource Engineering (subject code BREE) may be of interest to students in the Faculty of Engineering. The Department of Bioresource Engineering is located in the Faculty of Agricultural and Environmental Sciences on the Macdonald campus:

Department of Bioresource Engineering
Macdonald-Stewart Building, Room MS1-028
21,111 Lakeshore Road
Sainte-Anne-de-Bellevue QC H9X 3V9
Telephone: 514-398-7773
Fax: 514-398-7990
Website: www.mcgill.ca/bioeng

12.10.2 Biomedical Engineering

Lyman Duff Medical Sciences Building
3775 University Street
Montreal QC H3A 2B4
Telephone: 514-398-6736
Website: www.mcgill.ca/bme

Some of the courses offered by the Department of Biomedical Engineering (subject code BMDE) may be of interest to Engineering students, and may be approved as complementary courses. The Faculty of Engineering also offers a Minor in Biomedical Engineering; for more information, see section 12.11.2: Bachelor of Engineering (B.Eng.) - Minor Biomedical Engineering (21 credits).

12.11 Minor Programs

This section includes general information concerning minors that are designed for students in the Faculty of Engineering.

Minors are coherent sequences of courses taken in addition to the courses required for the B.Eng., B.S.E., or B.Sc.(Arch.) degree. Minors normally consist of 18–24 credits, allowing 9–12 credits of overlap with the degree program. The real credit cost to the student is typically 9–15 credits, representing one term beyond the B.Eng., B.S.E., or B.Sc.(Arch.) degree program. All courses in a minor must be passed with a grade of C or better.

Engineering students choose from a considerable variety of complementary courses under the categories of technical and complementary studies. Students should refer to their department for information concerning selection of complementary courses, and should see their departmental adviser. Departments also publish information regarding the choice of courses in this publication and in separate documents.
Note: Students are also permitted to register for minor concentrations offered by departments in the Faculty of Arts. Students must obtain approval from both the department in the Faculty of Arts and from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22), before registering in one of these minors.

Minor Programs:

- **section 12.11.1**: Bachelor of Engineering (B.Eng.) - Minor Arts (24 credits)
- **section 12.11.2**: Bachelor of Engineering (B.Eng.) - Minor Biomedical Engineering (21 credits)
- **section 12.11.3**: Bachelor of Engineering (B.Eng.) - Minor Biotechnology (for Engineering Students) (24 credits)
- **section 12.11.4**: Bachelor of Engineering (B.Eng.) - Minor Chemistry (25 credits)
- **section 12.11.5**: Computer Science Courses and Minor Program
- **section 12.11.6**: Bachelor of Engineering (B.Eng.) - Minor Construction Engineering and Management (24 credits)
- **section 12.11.7**: Bachelor of Engineering (B.Eng.) - Minor Economics (18 credits)
- **section 12.11.8**: Minor in Environment
- **section 12.11.9**: Bachelor of Engineering (B.Eng.) - Minor Environmental Engineering (21 credits)
- **section 12.11.10**: Minor Programs in Finance, Management, Marketing, and Operations Management
- **section 12.11.11**: Bachelor of Engineering (B.Eng.) - Minor Materials Engineering (24 credits)
- **section 12.11.12**: Bachelor of Engineering (B.Eng.) - Minor Mathematics (24 credits)
- **section 12.11.13**: Bachelor of Engineering (B.Eng.) - Minor Mining Engineering (23 credits)
- **section 12.11.14**: Minor in Musical Science and Technology
- **section 12.11.15**: Bachelor of Engineering (B.Eng.) - Minor Nanotechnology (21 credits)
- **section 12.11.16**: Bachelor of Engineering (B.Eng.) - Minor Physics (18 credits)
- **section 12.11.17**: Bachelor of Engineering (B.Eng.) - Minor Software Engineering (24 credits)
- **section 12.11.18**: Bachelor of Engineering (B.Eng.) - Minor Technological Entrepreneurship (18 credits)

12.11.1 Bachelor of Engineering (B.Eng.) - Minor Arts (24 credits)

Minor Adviser: Faculty Student Adviser in the Engineering Student Centre (Frank Dawson Adams Building, Room 22)

B.Sc.(Arch.), B.Eng., and B.S.E. students may obtain the Arts Minor as part of their B.Eng., B.S.E., or B.Sc.(Arch.) degree by completing 24 credits, as described below.

Students must select courses for this Minor in consultation with one of the Advisers indicated above.

All courses in the Minor must be passed with a grade of C or better.

Requirements

24 credits as follows:

a) At least two areas of concentration in the Faculty of Arts must be chosen, with a minimum of 6 credits in any one area.
b) At least 12 credits must be at the 300 level or higher.

In general, B.Eng. and B.S.E. students may use courses from the Complementary Studies lists (Group A and Group B) in their program that are offered by the Faculty of Arts to satisfy some of these requirements. No more than 9 credits of these courses can be credited toward the Arts Minor.

12.11.2 Bachelor of Engineering (B.Eng.) - Minor Biomedical Engineering (21 credits)

Minor Advisers: Prof. R. Leask (Wong Building, Room 4120) or Prof. R. Mongrain (Macdonald Engineering Building, Room 369)

Note: Open to all students in the Faculty of Engineering (including B.S.E. students).

Minor program credit weight: 21-25 credits

The Biomedical Engineering Minor allows access to courses in basic life sciences and is intended to expose students to the interdisciplinary tools used in biomedicine.

To complete this Minor, students must obtain a grade of C or better in all approved courses and satisfy the requirements of both the Major program and the Minor.

Students considering this Minor should contact the Minor Advisers listed above.

Complementary Introductory Courses in Life Sciences

3-7 credits
One or two courses from the following list (equivalents can be approved):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAT 212</td>
<td>3</td>
<td>Molecular Mechanisms of Cell Function</td>
</tr>
<tr>
<td>BIOC 212</td>
<td>3</td>
<td>Molecular Mechanisms of Cell Function</td>
</tr>
<tr>
<td>BIOL 200</td>
<td>3</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>BIOL 201</td>
<td>3</td>
<td>Cell Biology and Metabolism</td>
</tr>
<tr>
<td>CHEM 212</td>
<td>4</td>
<td>Introductory Organic Chemistry 1</td>
</tr>
<tr>
<td>PHGY 209</td>
<td>3</td>
<td>Mammalian Physiology 1</td>
</tr>
<tr>
<td>PHGY 210</td>
<td>3</td>
<td>Mammalian Physiology 2</td>
</tr>
</tbody>
</table>

Specialization Courses

12-18 credits from the following:

Students must select 6 credits from courses outside their department and at least one BMDE course. These BMDE courses are best taken near the end of the program, when prerequisites have been satisfied.

Physiological Systems, Artificial Cells and Organs

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMDE 505</td>
<td>3</td>
<td>Cell and Tissue Engineering</td>
</tr>
<tr>
<td>PHGY 311</td>
<td>3</td>
<td>Channels, Synapses & Hormones</td>
</tr>
<tr>
<td>PHGY 312</td>
<td>3</td>
<td>Respiratory, Renal, & Cardiovascular Physiology</td>
</tr>
<tr>
<td>PHGY 313</td>
<td>3</td>
<td>Blood, Gastrointestinal, & Immune Systems Physiology</td>
</tr>
<tr>
<td>PHGY 517</td>
<td>3</td>
<td>Artificial Internal Organs</td>
</tr>
<tr>
<td>PHGY 518</td>
<td>3</td>
<td>Artificial Cells</td>
</tr>
</tbody>
</table>

Bioinformatics, Genomics and Proteomics

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAT 365*</td>
<td>3</td>
<td>Cellular Trafficking</td>
</tr>
<tr>
<td>ANAT 458</td>
<td>3</td>
<td>Membranes and Cellular Signaling</td>
</tr>
<tr>
<td>BIOC 311</td>
<td>3</td>
<td>Metabolic Biochemistry</td>
</tr>
<tr>
<td>BIOC 312</td>
<td>3</td>
<td>Biochemistry of Macromolecules</td>
</tr>
<tr>
<td>BIOC 458*</td>
<td>3</td>
<td>Membranes and Cellular Signaling</td>
</tr>
<tr>
<td>BMDE 506</td>
<td>3</td>
<td>Molecular Biology Techniques</td>
</tr>
<tr>
<td>BMDE 509</td>
<td>3</td>
<td>Quantitative Analysis and Modelling of Cellular Processes</td>
</tr>
<tr>
<td>COMP 302</td>
<td>3</td>
<td>Programming Languages and Paradigms</td>
</tr>
<tr>
<td>COMP 360</td>
<td>3</td>
<td>Algorithm Design</td>
</tr>
<tr>
<td>COMP 421</td>
<td>3</td>
<td>Database Systems</td>
</tr>
<tr>
<td>COMP 424</td>
<td>3</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>COMP 462</td>
<td>3</td>
<td>Computational Biology Methods</td>
</tr>
<tr>
<td>COMP 526</td>
<td>3</td>
<td>Probabilistic Reasoning and AI</td>
</tr>
</tbody>
</table>

* Students choose either ANAT 365 or BIOC 458

Biomaterials, Biosensors, and Nanotechnology

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMDE 504</td>
<td>3</td>
<td>Biomaterials and Bioprocessing</td>
</tr>
<tr>
<td>BMDE 505</td>
<td>3</td>
<td>Cell and Tissue Engineering</td>
</tr>
<tr>
<td>BMDE 508</td>
<td>3</td>
<td>Introduction to Micro and Nano-Bioengineering</td>
</tr>
<tr>
<td>CHEE 380</td>
<td>3</td>
<td>Materials Science</td>
</tr>
<tr>
<td>Course Code</td>
<td>Credits</td>
<td>Course Title</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>ECSE 424</td>
<td>3</td>
<td>Human-Computer Interaction</td>
</tr>
<tr>
<td>MECH 553</td>
<td>3</td>
<td>Design and Manufacture of Microdevices</td>
</tr>
<tr>
<td>MIME 360</td>
<td>3</td>
<td>Phase Transformations: Solids</td>
</tr>
<tr>
<td>MIME 362</td>
<td>3</td>
<td>Mechanical Properties</td>
</tr>
<tr>
<td>MIME 470</td>
<td>3</td>
<td>Engineering Biomaterials</td>
</tr>
<tr>
<td>PHYS 534</td>
<td>3</td>
<td>Nanoscience and Nanotechnology</td>
</tr>
</tbody>
</table>

Biomechanics and Prosthetics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMDE 503</td>
<td>3</td>
<td>Biomedical Instrumentation</td>
</tr>
<tr>
<td>CHEE 561</td>
<td>3</td>
<td>Introduction to Soft Tissue Biophysics</td>
</tr>
<tr>
<td>CHEE 563*</td>
<td>3</td>
<td>Biofluids and Cardiovascular Mechanics</td>
</tr>
<tr>
<td>MECH 315</td>
<td>4</td>
<td>Mechanics 3</td>
</tr>
<tr>
<td>MECH 321</td>
<td>3</td>
<td>Mechanics of Deformable Solids</td>
</tr>
<tr>
<td>MECH 530</td>
<td>3</td>
<td>Mechanics of Composite Materials</td>
</tr>
<tr>
<td>MECH 561</td>
<td>3</td>
<td>Biomechanics of Musculoskeletal Systems</td>
</tr>
<tr>
<td>MECH 563*</td>
<td>3</td>
<td>Biofluids and Cardiovascular Mechanics</td>
</tr>
<tr>
<td>MIME 360</td>
<td>3</td>
<td>Phase Transformations: Solids</td>
</tr>
<tr>
<td>MIME 362</td>
<td>3</td>
<td>Mechanical Properties</td>
</tr>
</tbody>
</table>

* Students choose either CHEE 563 or MECH 563.

Medical Physics and Imaging

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMDE 519</td>
<td>3</td>
<td>Biomedical Signals and Systems</td>
</tr>
<tr>
<td>COMP 302</td>
<td>3</td>
<td>Programming Languages and Paradigms</td>
</tr>
<tr>
<td>COMP 360</td>
<td>3</td>
<td>Algorithm Design</td>
</tr>
<tr>
<td>COMP 424</td>
<td>3</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>COMP 558</td>
<td>3</td>
<td>Fundamentals of Computer Vision</td>
</tr>
<tr>
<td>ECSE 303</td>
<td>3</td>
<td>Signals and Systems 1</td>
</tr>
<tr>
<td>ECSE 304</td>
<td>3</td>
<td>Signals and Systems 2</td>
</tr>
<tr>
<td>ECSE 412</td>
<td>3</td>
<td>Discrete Time Signal Processing</td>
</tr>
<tr>
<td>PHYS 557</td>
<td>3</td>
<td>Nuclear Physics</td>
</tr>
</tbody>
</table>

Neural Systems and Biosignal Processing

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMDE 501</td>
<td>3</td>
<td>Selected Topics in Biomedical Engineering</td>
</tr>
<tr>
<td>BMDE 502</td>
<td>3</td>
<td>BME Modelling and Identification</td>
</tr>
<tr>
<td>BMDE 503</td>
<td>3</td>
<td>Biomedical Instrumentation</td>
</tr>
<tr>
<td>BMDE 519</td>
<td>3</td>
<td>Biomedical Signals and Systems</td>
</tr>
<tr>
<td>ECSE 517</td>
<td>3</td>
<td>Neural Prosthetic Systems</td>
</tr>
<tr>
<td>ECSE 526</td>
<td>3</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>PHYS 413</td>
<td>3</td>
<td>Physical Basis of Physiology</td>
</tr>
</tbody>
</table>

Complementary Courses

0-6 credits
Up to 6 credits in the B.Eng., B.S.E., or B.Sc.(Arch.) program can also be credited to the Minor, with the permission of the Departmental Adviser and approval of the Minor Adviser. In particular, courses at the 200 level or higher that are prerequisites for certain specialization courses would be eligible, with permission of the Minor Adviser. By careful selection of complementary courses, the Minor can be satisfied with 9 additional credits in the student's major program or a maximum of 12 credits of overlap with the major program.

12.11.3 Bachelor of Engineering (B.Eng.) - Minor Biotechnology (for Engineering Students) (24 credits)

Minor Adviser: Faculty Student Adviser in the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

For advising regarding Science courses, contact Nancy Nelson, Undergraduate Adviser, Department of Biology, Faculty of Science.

This Minor is offered by the Faculty of Engineering and the Faculty of Science for students who wish to take biotechnology courses that are complementary to their area. It has been designed specifically for Chemical Engineering students; other Engineering students who are interested in the Minor should contact a Faculty Student Adviser in the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

To obtain the Biotechnology Minor, students must complete 24 credits, 18 of which must be exclusively for the Minor. Approved substitutions must be made for any of the required courses that are part of the student's major program.

The Department of Chemical Engineering permits students taking this Minor to complete BIOT 505 (Selected Topics in Biotechnology) as one of their technical complementary courses. Chemical Engineering students complete 15 credits beyond their 141-credit (115-credit for CEGEP students) B.Eng. program to obtain this Minor.

Required Courses

12 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOT 505</td>
<td>Selected Topics in Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>CHEE 200</td>
<td>Chemical Engineering Principles 1</td>
<td>3</td>
</tr>
<tr>
<td>CHEE 204</td>
<td>Chemical Engineering Principles 2</td>
<td>3</td>
</tr>
<tr>
<td>CHEE 474</td>
<td>Biochemical Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

OR

Alternative Required Courses (for Chemical Engineering students)

A Chemical Engineering student may complete the Biotechnology Minor by taking the courses below plus one course from the list of complementary courses, not including FACC 300.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 200</td>
<td>Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 201</td>
<td>Cell Biology and Metabolism</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 202</td>
<td>Basic Genetics</td>
<td>3</td>
</tr>
<tr>
<td>BIOT 505</td>
<td>Selected Topics in Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>MIMM 211</td>
<td>Introductory Microbiology</td>
<td>3</td>
</tr>
</tbody>
</table>

Complementary Courses

12 credits selected from courses outside the Department of the student's major program and/or from the lists below. If courses are chosen from the lists below, at least three courses must be taken from one area of concentration as grouped.

Biomedicine

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAT 541</td>
<td>Cell and Molecular Biology of Aging</td>
<td>3</td>
</tr>
<tr>
<td>EXMD 504</td>
<td>Biology of Cancer</td>
<td>3</td>
</tr>
<tr>
<td>PATH 300</td>
<td>Human Disease</td>
<td>3</td>
</tr>
</tbody>
</table>

Chemistry

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 482</td>
<td>Organic Chemistry: Natural Products</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 502</td>
<td>Advanced Bio-Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 552</td>
<td>Physical Organic Chemistry</td>
<td>3</td>
</tr>
</tbody>
</table>
General

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACC 300</td>
<td>(3)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Engineering Economy

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Immunology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAT 261</td>
<td>(4)</td>
</tr>
<tr>
<td>Biochemistry</td>
<td></td>
</tr>
<tr>
<td>BIOC 503</td>
<td>(3)</td>
</tr>
<tr>
<td>Introductory Immunology: Elements of Immunity</td>
<td></td>
</tr>
<tr>
<td>MIMM 214</td>
<td>(3)</td>
</tr>
<tr>
<td>Advanced Immunology</td>
<td></td>
</tr>
<tr>
<td>MIMM 414</td>
<td>(3)</td>
</tr>
<tr>
<td>Cellular Immunology</td>
<td></td>
</tr>
<tr>
<td>PHGY 513</td>
<td>(3)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Management

Note: Engineering students may not use these courses to count toward a Management minor, nor toward the Complementary Studies requirement.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 208</td>
<td>(3)</td>
</tr>
<tr>
<td>Microeconomic Analysis and Applications</td>
<td></td>
</tr>
<tr>
<td>MGCR 211</td>
<td>(3)</td>
</tr>
<tr>
<td>Introduction to Financial Accounting</td>
<td></td>
</tr>
<tr>
<td>MGCR 341</td>
<td>(3)</td>
</tr>
<tr>
<td>Introduction to Finance</td>
<td></td>
</tr>
<tr>
<td>MGCR 352</td>
<td>(3)</td>
</tr>
<tr>
<td>Principles of Marketing</td>
<td></td>
</tr>
<tr>
<td>MGCR 472</td>
<td>(3)</td>
</tr>
<tr>
<td>Operations Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Microbiology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIMM 323</td>
<td>(3)</td>
</tr>
<tr>
<td>Microbial Physiology</td>
<td></td>
</tr>
<tr>
<td>MIMM 324</td>
<td>(3)</td>
</tr>
<tr>
<td>Fundamental Virology</td>
<td></td>
</tr>
<tr>
<td>MIMM 413</td>
<td>(3)</td>
</tr>
<tr>
<td>Parasitology</td>
<td></td>
</tr>
<tr>
<td>MIMM 465</td>
<td>(3)</td>
</tr>
<tr>
<td>Bacterial Pathogenesis</td>
<td></td>
</tr>
<tr>
<td>MIMM 466</td>
<td>(3)</td>
</tr>
<tr>
<td>Viral Pathogenesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Molecular Biology (Biology)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 300</td>
<td>(3)</td>
</tr>
<tr>
<td>Molecular Biology of the Gene</td>
<td></td>
</tr>
<tr>
<td>BIOL 314</td>
<td>(3)</td>
</tr>
<tr>
<td>Molecular Biology of Oncogenes</td>
<td></td>
</tr>
<tr>
<td>BIOL 520</td>
<td>(3)</td>
</tr>
<tr>
<td>Gene Activity in Development</td>
<td></td>
</tr>
<tr>
<td>BIOL 524</td>
<td>(3)</td>
</tr>
<tr>
<td>Topics in Molecular Biology</td>
<td></td>
</tr>
<tr>
<td>BIOL 551</td>
<td>(3)</td>
</tr>
<tr>
<td>Principles of Cellular Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Molecular Biology (Biochemistry)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 311</td>
<td>(3)</td>
</tr>
<tr>
<td>Metabolic Biochemistry</td>
<td></td>
</tr>
<tr>
<td>BIOC 312</td>
<td>(3)</td>
</tr>
<tr>
<td>Biochemistry of Macromolecules</td>
<td></td>
</tr>
<tr>
<td>BIOC 450</td>
<td>(3)</td>
</tr>
<tr>
<td>Protein Structure and Function</td>
<td></td>
</tr>
<tr>
<td>BIOC 454</td>
<td>(3)</td>
</tr>
<tr>
<td>Nucleic Acids</td>
<td></td>
</tr>
<tr>
<td>PSYT 455</td>
<td>(3)</td>
</tr>
<tr>
<td>Neurochemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Physiology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXMD 401</td>
<td>(3)</td>
</tr>
<tr>
<td>Physiology and Biochemistry Endocrine Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pollution

Note: Engineering students may not use these courses to count toward the Environmental Engineering Minor.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 225</td>
<td>4</td>
<td>Environmental Engineering</td>
</tr>
<tr>
<td>CIVE 430</td>
<td>3</td>
<td>Water Treatment and Pollution Control</td>
</tr>
<tr>
<td>CIVE 557</td>
<td>3</td>
<td>Microbiology for Environmental Engineering</td>
</tr>
</tbody>
</table>

12.11.4 Bachelor of Engineering (B.Eng.) - Minor Chemistry (25 credits)

Minor Adviser (program coordinator): Dr. Samuel Sewall (Director of Undergraduate Studies, Chemistry)

Program credit weight: 25 credits

A passing grade for courses in the Minor is a C.

Required Courses

10 credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEE 310*</td>
<td>3</td>
<td>Physical Chemistry for Engineers</td>
</tr>
<tr>
<td>CHEM 212</td>
<td>4</td>
<td>Introductory Organic Chemistry 1</td>
</tr>
<tr>
<td>CHEM 233*</td>
<td>3</td>
<td>Topics in Physical Chemistry</td>
</tr>
<tr>
<td>CHEM 234**</td>
<td>3</td>
<td>Topics in Organic Chemistry</td>
</tr>
</tbody>
</table>

* Students choose either CHEM 233 or CHEE 310

** or CEGEP equivalent

Complementary Courses

15 credits from the following lists, two courses of which must be laboratory courses (* indicates lab).

Note that CHEM 212 is a prerequisite for most of the courses listed below, and CHEM 223 (Introductory Physical Chemistry 1) and CHEM 243 (Introductory Physical Chemistry 2) or their equivalents are prerequisites for the Physical Chemistry courses. If students take CHEM 222 (Introductory Organic Chemistry 2), which includes a lab, instead of CHEM 234, they will receive credit for one of the two required laboratory courses, but they must complete a total of 25 credits in chemistry for the Minor.

Inorganic Chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 281</td>
<td>3</td>
<td>Inorganic Chemistry 1</td>
</tr>
<tr>
<td>CHEM 371*</td>
<td>2</td>
<td>Inorganic Chemistry Laboratory</td>
</tr>
<tr>
<td>CHEM 381</td>
<td>3</td>
<td>Inorganic Chemistry 2</td>
</tr>
<tr>
<td>CHEM 591</td>
<td>3</td>
<td>Bioinorganic Chemistry</td>
</tr>
</tbody>
</table>

Analytical Chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 267</td>
<td>3</td>
<td>Introductory Chemical Analysis</td>
</tr>
<tr>
<td>CHEM 367</td>
<td>3</td>
<td>Instrumental Analysis 1</td>
</tr>
<tr>
<td>CHEM 377</td>
<td>3</td>
<td>Instrumental Analysis 2</td>
</tr>
</tbody>
</table>
Organic Chemistry

- CHEM 302 (3) Introductory Organic Chemistry 3
- CHEM 362* (2) Advanced Organic Chemistry Laboratory
- CHEM 482 (3) Organic Chemistry: Natural Products

Physical Chemistry

- CHEM 345 (3) Introduction to Quantum Chemistry
- CHEM 355 (3) Applications of Quantum Chemistry
- CHEM 493* (2) Advanced Physical Chemistry Laboratory
- CHEM 574 (3) Introductory Polymer Chemistry

12.11.5 Computer Science Courses and Minor Program

The School of Computer Science offers an extensive range of courses for Engineering students interested in computers. Engineering students may obtain a Computer Science Minor as part of their B.Eng., B.S.E., or B.Sc.(Arch.) degree by completing 24 credits of courses, passed with a grade of C or better.

Students interested in this Minor should contact:

Liette Chin
Undergraduate Program Coordinator
School of Computer Science
Lorne Trotter Building, Room 2070
Telephone: 514-398-7071, ext. 00118
Email: liette.chin@mcgill.ca

and the Minor Adviser in the School of Computer Science.

12.11.5.1 Computer Science Courses in Engineering Programs

The School of Computer Science offers an extensive range of courses for Engineering students interested in computers. The course taken by students in most B.Eng. programs (COMP 208) and other courses included in the core of the various B.Eng. and B.S.E. programs are listed below.

Search under All Courses for other courses offered by the School of Computer Sciences (subject code COMP).

Computer Science Courses in Engineering Programs

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 202</td>
<td>3</td>
<td>Foundations of Programming</td>
</tr>
<tr>
<td>COMP 206</td>
<td>3</td>
<td>Introduction to Software Systems</td>
</tr>
<tr>
<td>COMP 208</td>
<td>3</td>
<td>Computers in Engineering</td>
</tr>
<tr>
<td>COMP 250</td>
<td>3</td>
<td>Introduction to Computer Science</td>
</tr>
<tr>
<td>COMP 251</td>
<td>3</td>
<td>Algorithms and Data Structures</td>
</tr>
<tr>
<td>COMP 302</td>
<td>3</td>
<td>Programming Languages and Paradigms</td>
</tr>
<tr>
<td>COMP 360</td>
<td>3</td>
<td>Algorithm Design</td>
</tr>
<tr>
<td>COMP 421</td>
<td>3</td>
<td>Database Systems</td>
</tr>
</tbody>
</table>

12.11.5.2 Bachelor of Engineering (B.Eng.) - Minor Computer Science (24 credits)

Minor Adviser: Students interested in this Minor should see Liette Chin, Undergraduate Program Coordinator, in the School of Computer Science (Lorne Trotter Building, Room 2060) to obtain the appropriate forms, and should see both the Minor Adviser in Computer Science and their department adviser for approval of their course selection. Forms must be submitted and approved before the end of the Course Change (drop/add) period of the student's final term.

Note: This Minor is open to B.Eng., B.S.E., and B.Sc.(Arch.) students in Engineering.

Engineering students may obtain the Minor in Computer Science as part of their B.Eng., B.S.E., or B.Sc.(Arch.) degree by completing the 24 credits of courses passed with a grade of C or better. In general, some complementary courses within B.Eng. and B.S.E. programs may be used to satisfy some of these...
requirements, but the Minor will require at least 12 extra credits from Computer Science (COMP) courses beyond those needed for the B.Eng. or B.S.E. degree. Students should consult their departments about the use of complementsaries, and credits that can be double counted.

Note: COMP 202 and COMP 208 (compulsory for some Engineering students) do not form part of the Minor in Computer Science.

For more information, see the School of Computer Science website: http://www.cs.mcgill.ca.

Required Courses

6 credits

- COMP 206 (3) Introduction to Software Systems
- COMP 250 (3) Introduction to Computer Science

Complementary Courses

18 credits

3 credits from the following:

- COMP 302 (3) Programming Languages and Paradigms
- COMP 303 (3) Software Design

3 credits from the following:

- COMP 273 (3) Introduction to Computer Systems
- ECSE 221 (3) Introduction to Computer Engineering

3-4 credits from the following:

- CIVE 320 (4) Numerical Methods
- COMP 350 (3) Numerical Computing
- ECSE 443 (3) Introduction to Numerical Methods in Electrical Engineering
- MATH 317 (3) Numerical Analysis
- MECH 309 (3) Numerical Methods in Mechanical Engineering

0-3 credits from the following:

- COMP 251 (3) Algorithms and Data Structures

6-9 credits chosen from other Computer Science courses at the 300 level or higher.

Notes:

A. COMP 208 may be taken before COMP 250; however, it cannot be taken for credit in the same term or afterward.

B. COMP 396 (Undergraduate Research Project) cannot be taken for credit toward this Minor.

Courses that make considerable use of computing from other departments may also be selected, with the approval of the School of Computer Science. Students should consult with their advisers about counting specific courses.

12.11.6 Bachelor of Engineering (B.Eng.) - Minor Construction Engineering and Management (24 credits)

Minor Adviser: Prof. L. Chouinard, Macdonald Engineering Building, Room 491 (Telephone: 514-398-6446)

Minor program credit weight: 24-25 credits

Note: This Minor is particularly designed for Civil Engineering students, but is open to all B.Eng., B.S.E., and B.Sc.(Arch.) students.

All courses in the Minor must be passed with a grade of C or better.
Prerequisites

CIVE 208 (3) Civil Engineering System Analysis
CIVE 302 (3) Probabilistic Systems
COMP 208 (3) Computers in Engineering
FACC 300 (3) Engineering Economy

Required Courses: Management and Law

15 credits

CIVE 324 (3) Sustainable Project Management
FACC 220 (3) Law for Architects and Engineers
INDR 294 (3) Introduction to Labour-Management Relations
MGCR 211 (3) Introduction to Financial Accounting
MGCR 341 (3) Introduction to Finance

Complementary Courses

3-4 credits (4 credits from List A OR 3 credits from List B)

List A - Building Structures

4 credits from the following:

ARCH 447 (2) Lighting
ARCH 451 (2) Building Regulations and Safety
CIVE 492 (2) Structures

OR

List B - Heavy Construction

3 credits from the following:

MIME 322 (3) Rock Fragmentation
MIME 333 (3) Materials Handling

Construction-Related Complementary Courses

6 credits from the following:

BUSA 462 (3) Management of New Enterprises
CIVE 446 (3) Construction Engineering
CIVE 527 (3) Renovation and Preservation: Infrastructure
ECSE 461 (3) Electric Machinery
FINE 445 (3) Real Estate Finance
MIME 520 (3) Stability of Rock Slopes
MIME 521 (3) Stability of Underground Openings
MPMC 321* (3) Mécanique des roches et contrôle des terrains

* Course offered in French at École Polytechnique in Montreal
12.11.7 Bachelor of Engineering (B.Eng.) - Minor Economics (18 credits)

Minor Adviser: Faculty Student Adviser in the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

Program credit weight: 18 credits

This Minor consists of 18 credits of required and complementary courses given in the Economics Department. In addition, it is presumed that all Engineering students will have a sufficient background in statistics. Engineering Economy, FACC 300, does not form part of this Minor. Engineering students who want to complete a minor in economics are required to complete the following program rather than one of the minor concentrations offered by the Department of Economics in the Faculty of Arts section of this eCalendar, unless they have obtained permission from the Faculty of Engineering.

All courses in the Minor must be passed with a grade of C or better.

Required Courses
9 credits

ECON 209* (3) Macroeconomic Analysis and Applications
ECON 230D1** (3) Microeconomic Theory
ECON 230D2** (3) Microeconomic Theory

* This requirement is waived for students who choose ECON 330D1/ECON 330D2 from the list of complementary courses. Students may not take both ECON 209 and ECON 330D1/ECON 330D2.

** Students may, with consent of the instructor, take ECON 250D1/ ECON 250D2 Introduction to Economic Theory: Honours, in place of ECON 230D1/ECON 230D2.

Complementary Courses
9 credits from:

ECON 225 (3) Economics of the Environment
ECON 303 (3) Canadian Economic Policy
ECON 304 (3) Financial Instruments & Institutions
ECON 305 (3) Industrial Organization
ECON 306 (3) Labour Markets and Wages
ECON 308 (3) Governmental Policy Towards Business
ECON 313 (3) Economic Development 1
ECON 314 (3) Economic Development 2
ECON 316 (3) The Underground Economy
ECON 326 (3) Ecological Economics
ECON 330D1 (3) Macroeconomic Theory
ECON 330D2 (3) Macroeconomic Theory
ECON 335 (3) The Japanese Economy
ECON 336 (3) The Chinese Economy
ECON 337 (3) Introductory Econometrics 1
ECON 344 (3) Industrial Revolution and Economic Development
ECON 345 (3) The International Economy since 1914
ECON 347 (3) Economics of Climate Change
ECON 405 (3) Natural Resource Economics
ECON 406 (3) Topics in Economic Policy
ECON 408 (3) Public Sector Economics 1
ECON 409 (3) Public Sector Economics 2
ECON 411 (3) Economic Development: A World Area
ECON 416 (3) Topics in Economic Development 2
Note: Mining Engineering students are permitted to include MIME 526 Mineral Economics among the Complementary Courses.

12.11.8 Minor in Environment

Environmental studies focus on the interactions between humans and their natural and technological environments. Environmental problems are complex, and their satisfactory solutions require the synthesis of social, scientific, and institutional knowledge. The Minor in Environment is offered and administered by the McGill School of Environment (MSE).

Since the program comprises a total of 18 credits for the Minor, additional credits beyond those needed for the B.Eng. degree are required. Students wishing to complete the Minor should prepare a program and have it approved by both their regular Engineering departmental adviser and the MSE Adviser. For program details, see McGill School of Environment > Undergraduate > Browse Academic Programs > Minor in Environment.

Note: Engineering students interested in this Minor must submit a completed Course Authorization Form to the McGill Engineering Student Centre (Student Affairs Office; Frank Dawson Adams Building, Room 22).

Minor Adviser: Students interested in this Minor should contact:

Kathy Roulet
McGill School of Environment Program Adviser
Telephone: 514-398-4306
Email: kathy.roulet@mcgill.ca

12.11.9 Bachelor of Engineering (B.Eng.) - Minor Environmental Engineering (21 credits)

Minor Adviser: Prof. S. Ghoshal, Macdonald Engineering Building, Room 569C

Minor program credit weight: 21-22 credits

The Environmental Engineering Minor is administered by the Department of Civil Engineering and Applied Mechanics and is offered for all students in Engineering (including B.S.E. students) and in the Department of Bioresource Engineering wishing to pursue studies in this area.

A maximum of 12 credits of coursework in the student's major may double-count with the Minor.

To complete the Minor in Environmental Engineering, students must obtain a grade of C or better in all approved courses in the Minor, and satisfy the requirements of both the Minor and their major program.

Note: Not all courses listed are offered every year. Students should see the "Courses" section of this eCalendar to know if a course is offered.

Complementary Courses

21-22 credits

18 credits from Stream A, B, or C below

and

One course (3-4 credits) from the following list:

- BREE 327 (3) Bio-Environmental Engineering
- CHEE 230 (3) Environmental Aspects of Technology
- CIVE 225 (4) Environmental Engineering

Stream A

15 credits* from the Engineering Course List and 3 credits from the Non-Engineering Course List below
A minimum of 6 credits must be from outside the student's department. A maximum of 6 credits of research project courses may be counted toward this category, provided the project has sufficient environmental engineering content (project requires approval of project supervisor and coordinator of the Minor).

Stream B

15 credits of courses that make up the "Barbados Field Study Semester" below, provided the project for CIVE/AGRI/URBP 519 Sustainable Development Plans has sufficient environmental engineering content (project requires approval of the Coordinator of the Minor);

AND

One course (3-4 credits) chosen from the Engineering Course List below, excluding CHEE 496.

Barbados Field Study Courses

Required Courses

6 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>URBP 507</td>
<td>(3)</td>
<td>Planning and Infrastructure</td>
</tr>
<tr>
<td>URBP 520</td>
<td>(3)</td>
<td>Globalization: Planning and Change</td>
</tr>
</tbody>
</table>

Complementary Courses

9 credits

One of the following cross-listed courses (3 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRI 452</td>
<td>(3)</td>
<td>Water Resources in Barbados</td>
</tr>
<tr>
<td>CIVE 452</td>
<td>(3)</td>
<td>Water Resources in Barbados</td>
</tr>
</tbody>
</table>

AND

One of the following cross-listed project courses (6 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRI 519</td>
<td>(6)</td>
<td>Sustainable Development Plans</td>
</tr>
<tr>
<td>CIVE 519</td>
<td>(6)</td>
<td>Sustainable Development Plans</td>
</tr>
<tr>
<td>URBP 519</td>
<td>(6)</td>
<td>Sustainable Development Plans</td>
</tr>
</tbody>
</table>

Stream C

9 credits of courses specified from the "Barbados Interdisciplinary Tropical Studies (BITS)" field semester below, provided the project has sufficient environmental engineering content (project requires approval of the Coordinator of the Minor):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEBI 425</td>
<td>(3)</td>
<td>Tropical Energy and Food</td>
</tr>
<tr>
<td>AEBI 427</td>
<td>(6)</td>
<td>Barbados Interdisciplinary Project</td>
</tr>
</tbody>
</table>

AND

9 credits chosen from the Engineering Course List below, excluding CHEE 496.

Engineering Course List

Courses offered at the Macdonald campus:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BREE 217*</td>
<td>(3)</td>
<td>Hydrology and Water Resources</td>
</tr>
<tr>
<td>BREE 322</td>
<td>(3)</td>
<td>Organic Waste Management</td>
</tr>
<tr>
<td>BREE 416</td>
<td>(3)</td>
<td>Engineering for Land Development</td>
</tr>
<tr>
<td>BREE 518</td>
<td>(3)</td>
<td>Ecological Engineering</td>
</tr>
</tbody>
</table>

* Not open to students who have passed CIVE 323.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Units</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 377</td>
<td>3</td>
<td>Energy, Environment and Buildings</td>
</tr>
<tr>
<td>ARCH 515</td>
<td>3</td>
<td>Sustainable Design</td>
</tr>
<tr>
<td>CHEE 351</td>
<td>3</td>
<td>Separation Processes</td>
</tr>
<tr>
<td>CHEE 370</td>
<td>3</td>
<td>Elements of Biotechnology</td>
</tr>
<tr>
<td>CHEE 496</td>
<td>3</td>
<td>Environmental Research Project</td>
</tr>
<tr>
<td>CHEE 591</td>
<td>3</td>
<td>Environmental Bioremediation</td>
</tr>
<tr>
<td>CHEE 592</td>
<td>3</td>
<td>Industrial Air Pollution Control</td>
</tr>
<tr>
<td>CHEE 593</td>
<td>3</td>
<td>Industrial Water Pollution Control</td>
</tr>
<tr>
<td>CIVE 225</td>
<td>4</td>
<td>Environmental Engineering</td>
</tr>
<tr>
<td>CIVE 323**</td>
<td>3</td>
<td>Hydrology and Water Resources</td>
</tr>
<tr>
<td>CIVE 421</td>
<td>3</td>
<td>Municipal Systems</td>
</tr>
<tr>
<td>CIVE 428</td>
<td>3</td>
<td>Water Resources and Hydraulic Engineering</td>
</tr>
<tr>
<td>CIVE 430</td>
<td>3</td>
<td>Water Treatment and Pollution Control</td>
</tr>
<tr>
<td>CIVE 451</td>
<td>3</td>
<td>Geoenvironmental Engineering</td>
</tr>
<tr>
<td>CIVE 550</td>
<td>3</td>
<td>Water Resources Management</td>
</tr>
<tr>
<td>CIVE 555</td>
<td>3</td>
<td>Environmental Data Analysis</td>
</tr>
<tr>
<td>CIVE 557</td>
<td>3</td>
<td>Microbiology for Environmental Engineering</td>
</tr>
<tr>
<td>CIVE 572</td>
<td>3</td>
<td>Computational Hydraulics</td>
</tr>
<tr>
<td>CIVE 573</td>
<td>3</td>
<td>Hydraulic Structures</td>
</tr>
<tr>
<td>CIVE 574</td>
<td>3</td>
<td>Fluid Mechanics of Water Pollution</td>
</tr>
<tr>
<td>CIVE 577</td>
<td>3</td>
<td>River Engineering</td>
</tr>
<tr>
<td>CIVE 584</td>
<td>3</td>
<td>Groundwater Engineering</td>
</tr>
<tr>
<td>MECH 447</td>
<td>3</td>
<td>Combustion</td>
</tr>
<tr>
<td>MECH 526</td>
<td>3</td>
<td>Manufacturing and the Environment</td>
</tr>
<tr>
<td>MECH 534</td>
<td>3</td>
<td>Air Pollution Engineering</td>
</tr>
<tr>
<td>MECH 535</td>
<td>3</td>
<td>Turbomachinery and Propulsion</td>
</tr>
<tr>
<td>MIME 422</td>
<td>3</td>
<td>Mine Ventilation</td>
</tr>
<tr>
<td>MIME 512</td>
<td>3</td>
<td>Corrosion and Degradation of Materials</td>
</tr>
<tr>
<td>MPMC 328</td>
<td>3</td>
<td>Environnement et gestion des rejets miniers</td>
</tr>
<tr>
<td>URBP 506</td>
<td>3</td>
<td>Environmental Policy and Planning</td>
</tr>
</tbody>
</table>

** Not open to students who have passed BREE 217.

Non-Engineering Course List

Courses offered at the Macdonald campus:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Units</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSCI 230+</td>
<td>3</td>
<td>Introductory Microbiology</td>
</tr>
<tr>
<td>MICR 331+</td>
<td>3</td>
<td>Microbial Ecology</td>
</tr>
<tr>
<td>MICR 341</td>
<td>3</td>
<td>Mechanisms of Pathogenicity</td>
</tr>
<tr>
<td>RELG 270</td>
<td>3</td>
<td>Religious Ethics and the Environment</td>
</tr>
<tr>
<td>SOIL 210+</td>
<td>3</td>
<td>Principles of Soil Science</td>
</tr>
<tr>
<td>SOIL 331</td>
<td>3</td>
<td>Environmental Soil Physics</td>
</tr>
<tr>
<td>WILD 375</td>
<td>3</td>
<td>Issues: Environmental Sciences</td>
</tr>
<tr>
<td>WILD 415</td>
<td>2</td>
<td>Conservation Law</td>
</tr>
<tr>
<td>WOOD 420</td>
<td>3</td>
<td>Environmental Issues: Forestry</td>
</tr>
</tbody>
</table>
Courses offered at the Downtown campus:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 206</td>
<td>Environment and Culture</td>
<td>(3)</td>
</tr>
<tr>
<td>BIOL 205</td>
<td>Biology of Organisms</td>
<td>(3)</td>
</tr>
<tr>
<td>BIOL 432</td>
<td>Limnology</td>
<td>(3)</td>
</tr>
<tr>
<td>CMPL 580</td>
<td>Environment and the Law</td>
<td>(3)</td>
</tr>
<tr>
<td>ECON 225</td>
<td>Economics of the Environment</td>
<td>(3)</td>
</tr>
<tr>
<td>ECON 326</td>
<td>Ecological Economics</td>
<td>(3)</td>
</tr>
<tr>
<td>ECON 347</td>
<td>Economics of Climate Change</td>
<td>(3)</td>
</tr>
<tr>
<td>EPSC 549</td>
<td>Hydrogeology</td>
<td>(3)</td>
</tr>
<tr>
<td>GEOG 200</td>
<td>Geographical Perspectives: World Environmental Problems</td>
<td>(3)</td>
</tr>
<tr>
<td>GEOG 201</td>
<td>Introductory Geo-Information Science</td>
<td>(3)</td>
</tr>
<tr>
<td>GEOG 203</td>
<td>Environmental Systems</td>
<td>(3)</td>
</tr>
<tr>
<td>GEOG 205</td>
<td>Global Change: Past, Present and Future</td>
<td>(3)</td>
</tr>
<tr>
<td>GEOG 302</td>
<td>Environmental Management 1</td>
<td>(3)</td>
</tr>
<tr>
<td>GEOG 308</td>
<td>Principles of Remote Sensing</td>
<td>(3)</td>
</tr>
<tr>
<td>GEOG 321</td>
<td>Climatic Environments</td>
<td>(3)</td>
</tr>
<tr>
<td>GEOG 404</td>
<td>Environmental Management 2</td>
<td>(3)</td>
</tr>
<tr>
<td>MIMM 211</td>
<td>Introductory Microbiology</td>
<td>(3)</td>
</tr>
</tbody>
</table>

12.11.10 Minor Programs in Finance, Management, Marketing, and Operations Management

Prerequisite: None

Minors for Non-Management Students: Students considering one of these Minor programs should consult a Faculty Student Adviser in the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) before applying to the Desautels Faculty of Management.

Many engineers begin to assume management functions within a few years of graduation. They can, at this stage, take up the study of economics, behavioural science, and other management subjects. Students wishing to include such studies in their undergraduate program can take suitable courses from Engineering and Management.

Each Minor is comprised of 18 credits of courses available from the core program of the Desautels Faculty of Management (subject to timetable requirements). Some courses from the Management core program have considerable overlap with Engineering courses and thus are not available to Engineering students. Students embarking on a minor must be prepared to take credits additional to their Engineering program. Students in a B.Eng, or B.S.E, program may be able to count up to 6 credits of Complementary Studies Group B courses (Humanities and Social Sciences, Management Studies, and Law courses) toward both their Engineering major program and a Management minor where applicable. More information about Complementary Studies is given in each individual academic program listing for the B.Eng. and B.S.E degrees (see section 12: Browse Academic Units & Programs).

Students must have a minimum CGPA of 3.0 or better to be considered for one of these Minor programs.

Students planning to take any course with statistics as a prerequisite must have completed MGCR 271 (Business Statistics) or an equivalent course approved by the BCom Student Affairs Office.

Application and Program Requirements

Detailed information on the following Minor programs can be found in Desautels Faculty of Management > Undergraduate > Overview of Programs Offered by the Desautels Faculty of Management > Minors for Non-Management Students.

- : Minor Finance (For Non-Management Students) - (18 credits)
- : Minor Management (For Non-Management Students) - (18 credits)
- : Minor Marketing (For Non-Management Students) - (18 credits)
- : Minor Operations Management (For Non-Management Students) - (18 credits)

Further information can also be found at www.mcgill.ca/engineering/current-students/undergraduate/advising-programs/academic-program-curriculum/minor-programs.
Bachelor of Engineering (B.Eng.) - Minor Materials Engineering (24 credits)

Required Courses
15 credits

- CHEE 380* (3) Materials Science
- CHEE 484 (3) Materials Engineering
- MIME 260* (3) Materials Science and Engineering
- MIME 345 (3) Applications of Polymers
- MIME 465 (3) Metallic and Ceramic Powders Processing
- MIME 467 (3) Electronic Properties of Materials

* Students choose either CHEE 380 or MIME 260.

Complementary Courses
9 credits from the following:

- CHEE 587 (3) Chemical Processing: Electronics Industry
- ECSE 545 (3) Microelectronics Technology
- MECH 530 (3) Mechanics of Composite Materials
- MIME 360 (3) Phase Transformations: Solids
- MIME 512 (3) Corrosion and Degradation of Materials
- MIME 560 (3) Joining Processes
- MIME 561 (3) Advanced Materials Design
- MIME 563 (3) Hot Deformation of Metals
- MIME 569 (3) Electron Beam Analysis of Materials

Bachelor of Engineering (B.Eng.) - Minor Mathematics (24 credits)

Course Selection

At least 18 credits must be chosen from the Mathematics and Statistics courses approved for the Mathematics Major or Honours program, or from the following courses:

- MATH 249 (3) Honours Complex Variables
- MATH 363 (3) Discrete Mathematics
- MATH 381 (3) Complex Variables and Transforms

The remaining credits may be chosen from mathematically-allied courses.

The following courses cannot be used toward the Minor:

- MATH 222 (3) Calculus 3
12.11.13 Bachelor of Engineering (B.Eng.) - Minor Mining Engineering (23 credits)

Minor Adviser: Prof. Mustafa Kumral (Minor Coordinator)
Frank Dawson Adams Building, Room 119

Program credit weight: 23 credits
One of the required courses is a work term for which enrolment may be limited.

Required Courses

14 credits

- MIME 200 (3) Introduction to the Minerals Industry
- MIME 291 (2) Industrial Work Period 2
- MIME 322 (3) Rock Fragmentation
- MIME 325 (3) Mineral Industry Economics
- MIME 333 (3) Materials Handling

Complementary Courses

9 credits

List A: Mining Engineering

3-9 credits from the following:

- MIME 320 (3) Extraction of Energy Resources
- MIME 323 (3) Rock and Soil Mass Characterization
- MIME 341 (3) Introduction to Mineral Processing
- MIME 419 (3) Surface Mining
- MIME 422 (3) Mine Ventilation
- MIME 520 (3) Stability of Rock Slopes
- MIME 521 (3) Stability of Underground Openings
- MIME 526 (3) Mineral Economics
- MIME 588 (3) Reliability Analysis of Mining Systems

List B: Mechanical Engineering

0-6 credits from the following:
MECH 497 (3) Value Engineering
MECH 557 (3) Mechatronic Design
MECH 572 (3) Introduction to Robotics
MECH 573 (3) Mechanics of Robotic Systems
MECH 577 (3) Optimum Design

List C: Civil Engineering
0-6 credits from the following:
CIVE 416 (3) Geotechnical Engineering
CIVE 451 (3) Geoenvironmental Engineering
CIVE 462 (3) Design of Steel Structures
CIVE 463 (3) Design of Concrete Structures
CIVE 527 (3) Renovation and Preservation: Infrastructure

List D: Chemical Engineering
0-6 credits from the following:
CHEE 453 (4) Process Design
CHEE 455 (3) Process Control
CHEE 484 (3) Materials Engineering

List E: Electrical Engineering
0-6 credits from the following:
ECSE 404 (3) Control Systems
ECSE 426 (3) Microprocessor Systems
ECSE 436 (3) Signal Processing Hardware
ECSE 451 (3) EM Transmission and Radiation
ECSE 464 (3) Power Systems Analysis

12.11.14 Minor in Musical Science and Technology

The Musical Science and Technology Minor focuses on interdisciplinary topics in science and technology applied to music. The goal of the program is to help prepare students for commercial jobs in the audio technology sector and/or for subsequent graduate research study. Enrolment in the MST Minor is limited to students with existing scientific backgrounds from all faculties at McGill University. Selection is based on prior experience in math, computer programming, and related sciences; expressed interest in the program; and Cumulative Grade Point Average (CGPA).

Engineering students may apply for admission to the Minor in Musical Science and Technology. Detailed information on this program can be found in Schulich School of Music > Undergraduate > Browse Academic Units & Programs > Department of Music Research: Composition; Music Education; Music History; Theory; Faculty Program > : Minor Musical Science and Technology - (18 credits). Enrolment in Music Technology programs is highly restricted.

Application forms will be available at www.mcgill.ca/music/programs/minormst and should be submitted to the Department of Music Research either by email (research.music@mcgill.ca) or in person (Strathcona Music Building, Room A726C). Application forms must be completed and submitted to the Department of Music Research by June 1. Late applications will be accepted at the discretion of the Department. Successful applicants will be notified by June 20. Registration will be limited to available lab space.

For further information about this Minor, please contact:
Department of Music Research
Telephone: 514-398-4540
Email: research.music@mcgill.ca
Website: www.music.mcgill.ca/musictech/programmes_and_admissions

McGill University, Faculty of Engineering, including Schools of Architecture and Urban Planning, 2016-2017
Minor Adviser:
Prof. Gary Scavone
Area Chair for the Music Technology Program
Email: gary.scavone@mcgill.ca

12.11.15 Bachelor of Engineering (B.Eng.) - Minor Nanotechnology (21 credits)

Through courses already offered in the Faculties of Science, Engineering, and Medicine, depending on the courses completed, undergraduate students will acquire knowledge in some of the following areas related to nanotechnology:
- Nanomaterial synthesis and processing approaches
- Physicochemistry and quantum behavior of nanomaterials
- State-of-the-art techniques for nanomaterial characterization and detection
- Applications of nanomaterials in engineered solutions
- Nanomaterials in medicine and pharmacology
- Nanomaterials in electronics and energy
- Environmental, health, and social impacts of nanomaterials

Minor program credit weight: 21-22 credits

Minor Advisers:
Prof. N. Tufenkji, Wong Building, Room 4300 (Engineering students)
Prof. P. Grutter, Rutherford Physics Building, Room 108 (Science students)

Students must complete 21 credits of courses as indicated below. For students in the Faculty of Engineering, a maximum of 12 credits of courses in the student's major may double-count with the Minor. For students in the Faculty of Science, 18 credits of the Minor must be exclusively for the Minor.

Students who have not taken the listed prerequisites for any of these courses should ensure that they have the adequate background and/or meet with the instructor before registering for the course. Permission from the instructor and/or department may be required.

The program is open to undergraduate students that are in Year 2 or higher.

Complementary Courses (21-22 credits)

Group A

Students must complete a minimum of 3 credits from the following list of courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIEN 510</td>
<td>Nanoparticles in the Medical Sciences</td>
<td>3</td>
</tr>
<tr>
<td>BMDE 508</td>
<td>Introduction to Micro and Nano-Bioengineering</td>
<td>3</td>
</tr>
<tr>
<td>CHEE 521*</td>
<td>Nanomaterials and the Aquatic Environment</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 534*</td>
<td>Nanoscience and Nanotechnology</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 521*</td>
<td>Nanomaterials and the Aquatic Environment</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 535**</td>
<td>Nanoelectronic Devices</td>
<td>3</td>
</tr>
<tr>
<td>MIME 570</td>
<td>Micro- and Nano-Fabrication Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 534*</td>
<td>Nanoscience and Nanotechnology</td>
<td>3</td>
</tr>
</tbody>
</table>

Group B

Students will be required to take up to 18-19 credits of courses from Group B, depending on how many courses from Group A were taken.

Bioengineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIEN 520</td>
<td>High Throughput Bioanalytical Devices</td>
<td>3</td>
</tr>
<tr>
<td>BIEN 550</td>
<td>Biomolecular Devices</td>
<td>3</td>
</tr>
</tbody>
</table>

Chemical Engineering
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEE 380*</td>
<td>3</td>
<td>Materials Science</td>
</tr>
<tr>
<td>CHEE 515*</td>
<td>3</td>
<td>Material Surfaces: A Biomimetic Approach</td>
</tr>
<tr>
<td>CHEE 543</td>
<td>3</td>
<td>Plasma Engineering</td>
</tr>
<tr>
<td>CHEE 582</td>
<td>3</td>
<td>Polymer Science & Engineering</td>
</tr>
<tr>
<td>CHEE 585</td>
<td>3</td>
<td>Foundations of Soft Matter</td>
</tr>
<tr>
<td>CHEE 587</td>
<td>3</td>
<td>Chemical Processing: Electronics Industry</td>
</tr>
<tr>
<td>CHEM 334</td>
<td>3</td>
<td>Advanced Materials</td>
</tr>
<tr>
<td>CHEM 531</td>
<td>3</td>
<td>Chemistry of Inorganic Materials</td>
</tr>
<tr>
<td>CHEM 582</td>
<td>3</td>
<td>Supramolecular Chemistry</td>
</tr>
<tr>
<td>CHEM 585</td>
<td>3</td>
<td>Colloid Chemistry</td>
</tr>
<tr>
<td>CHEM 587</td>
<td>3</td>
<td>Topics in Modern Analytical Chemistry</td>
</tr>
<tr>
<td>ECSE 423</td>
<td>3</td>
<td>Fundamentals of Photonics</td>
</tr>
<tr>
<td>ECSE 430</td>
<td>3</td>
<td>Photonic Devices and Systems</td>
</tr>
<tr>
<td>ECSE 433</td>
<td>4</td>
<td>Physical Basis of Transistor Devices</td>
</tr>
<tr>
<td>ECSE 519**</td>
<td>3</td>
<td>Semiconductor Nanostructures and Nanophotonic Devices</td>
</tr>
<tr>
<td>ECSE 536**</td>
<td>3</td>
<td>RF Microelectronics</td>
</tr>
<tr>
<td>ECSE 571**</td>
<td>3</td>
<td>Optoelectronic Devices</td>
</tr>
<tr>
<td>ECSE 596**</td>
<td>3</td>
<td>Optical Waveguides</td>
</tr>
<tr>
<td>MIME 262*</td>
<td>3</td>
<td>Properties of Materials in Electrical Engineering</td>
</tr>
<tr>
<td>MECH 500***</td>
<td>3</td>
<td>Selected Topics in Mechanical Engineering</td>
</tr>
<tr>
<td>MECH 553</td>
<td>3</td>
<td>Design and Manufacture of Microdevices</td>
</tr>
<tr>
<td>MECH 556</td>
<td>3</td>
<td>Microfluidics and BioMEMS</td>
</tr>
<tr>
<td>MIME 260*</td>
<td>3</td>
<td>Materials Science and Engineering</td>
</tr>
<tr>
<td>MIME 261*</td>
<td>3</td>
<td>Structure of Materials</td>
</tr>
<tr>
<td>MIME 467</td>
<td>3</td>
<td>Electronic Properties of Materials</td>
</tr>
<tr>
<td>MIME 515*</td>
<td>3</td>
<td>Material Surfaces: A Biomimetic Approach</td>
</tr>
<tr>
<td>MIME 542</td>
<td>3</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>MIME 558</td>
<td>3</td>
<td>Engineering Nanomaterials</td>
</tr>
<tr>
<td>MIME 569</td>
<td>3</td>
<td>Electron Beam Analysis of Materials</td>
</tr>
<tr>
<td>MIME 571</td>
<td>3</td>
<td>Surface Engineering</td>
</tr>
</tbody>
</table>

Pharmacology
PHAR 504 (3) Drug Discovery and Development 2

Physics

BIOL 319* (3) Introduction to Biophysics
PHYS 319* (3) Introduction to Biophysics
PHYS 446 (3) Majors Quantum Physics
PHYS 558 (3) Solid State Physics

* Students can take only one course from each set of the following courses:
 - MIME 260, MIME 261, MIME 262 or CHEE 380
 - CHEE 515 or MIME 515
 - CHEE 521 or CIVE 521
 - CHEM 534 or PHYS 534
 - BIOL 319 or PHYS 319

** A 3.0 or higher CGPA is required in order to take these courses.
*** When topic is appropriate, with approval from the Minor Adviser.

12.11.16 Bachelor of Engineering (B.Eng.) - Minor Physics (18 credits)

Minor Adviser: Prof. G. Holder, Department of Physics

Students in Honours Electrical Engineering may obtain this Minor as part of their B.Eng. degree by completing 18 credits of Physics courses, as listed below.

Required Courses

9 credits

PHYS 253 (3) Thermal Physics
PHYS 357* (3) Honours Quantum Physics 1
PHYS 457* (3) Honours Quantum Physics 2

* Students who take PHYS 357 and PHYS 457 can omit PHYS 271 from their normal Electrical Engineering program.

Complementary Courses

9 credits from the following:

PHYS 351 (3) Honours Classical Mechanics 2
PHYS 362 (3) Statistical Mechanics
PHYS 432 (3) Physics of Fluids
PHYS 514 (3) General Relativity
PHYS 551 (3) Quantum Theory
PHYS 557 (3) Nuclear Physics
PHYS 558 (3) Solid State Physics
PHYS 559 (3) Advanced Statistical Mechanics
PHYS 562 (3) Electromagnetic Theory
PHYS 567 (3) Particle Physics

12.11.17 Bachelor of Engineering (B.Eng.) - Minor Software Engineering (24 credits)

Minor Adviser: Faculty Student Adviser in the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).
The Software Engineering Minor will prepare engineering students for a career in software engineering. It will provide a foundation in basic computer science, computer programming, and software engineering practice.

This Minor consists of 24 credits (eight courses). Up to four courses (12 credits) may be double-counted for credit toward the B. Eng. degree in Electrical Engineering or Computer Engineering. Students in other programs may double-count up to three courses (9 credits).

Students considering this Minor should consult with the Minor Adviser listed above.

Required Courses
12 credits

- COMP 250 (3) Introduction to Computer Science
- ECSE 221 (3) Introduction to Computer Engineering
- ECSE 321 (3) Introduction to Software Engineering
- ECSE 428 (3) Software Engineering Practice

Complementary Courses
12 credits from the following:

Engineering Courses
6-12 credits from the following:

- CHEE 571 (3) Small Computer Applications: Chemical Engineering
- CIVE 460 (3) Matrix Structural Analysis
- CIVE 550 (3) Water Resources Management
- CIVE 572 (3) Computational Hydraulics
- ECSE 322 (3) Computer Engineering
- ECSE 420 (3) Parallel Computing
- ECSE 421 (3) Embedded Systems
- ECSE 422 (3) Fault Tolerant Computing
- ECSE 424 (3) Human-Computer Interaction
- ECSE 427 (3) Operating Systems
- ECSE 429 (3) Software Validation
- ECSE 526 (3) Artificial Intelligence
- ECSE 532 (3) Computer Graphics
- MECH 524 (3) Computer Integrated Manufacturing
- MECH 539 (3) Computational Aerodynamics

Computer Science Courses
0-6 credits from the following (no more than 6 credits will count toward the Minor):

- COMP 302 (3) Programming Languages and Paradigms
- COMP 421 (3) Database Systems
- COMP 424 (3) Artificial Intelligence
- COMP 527 (3) Logic and Computation

12.11.18 Bachelor of Engineering (B.Eng.) - Minor Technological Entrepreneurship (18 credits)

Minor Adviser: Faculty Student Adviser in the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

This Minor is a collaboration of the Faculty of Engineering and Desautels Faculty of Management and is designed to provide Engineering (B.Eng., B.S.E., and B.Sc. (Arch.)) students with an understanding of how to conceptualize, develop, and manage successful new ventures – including for-profit private...
companies, social enterprises, and cooperatives as well as intrapreneurship initiatives. The program covers the essentials of management and is multidisciplinary and integrative. Many courses in the Minor will address a mix of students from across multiple McGill faculties.

B.Eng. and B.S.E students may double-count up to two courses (6 credits) of Complementary Studies (Group B., Humanities, and Social Science courses) toward the Minor. B.Eng. Mechanical Engineering students may double-count up to 6 credits of Complementary Studies Group B courses and/or Elective courses (for Mechanical Engineering students from a CEGEP background) toward the Minor.

This Minor is restricted to students in Year 2 or higher. Students in this Minor are not permitted to take the Desautels Minors in Management, Marketing, Finance or Operations Management (for non-Management students).

Required Courses (12 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACC 500</td>
<td>3</td>
<td>Technology Business Plan Design</td>
</tr>
<tr>
<td>INTG 201</td>
<td>3</td>
<td>Integrated Management Essentials 1</td>
</tr>
<tr>
<td>INTG 202</td>
<td>3</td>
<td>Integrated Management Essentials 2</td>
</tr>
<tr>
<td>MGPO 362</td>
<td>3</td>
<td>Fundamentals of Entrepreneurship</td>
</tr>
</tbody>
</table>

Complementary Courses (6 credits)

3-6 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACC 501</td>
<td>3</td>
<td>Technology Business Plan Project</td>
</tr>
<tr>
<td>MGPO 364</td>
<td>3</td>
<td>Entrepreneurship in Practice</td>
</tr>
</tbody>
</table>

0-3 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSA 465</td>
<td>3</td>
<td>Technological Entrepreneurship</td>
</tr>
<tr>
<td>MGPO 438</td>
<td>3</td>
<td>Social Entrepreneurship and Innovation</td>
</tr>
<tr>
<td>ORGB 321</td>
<td>3</td>
<td>Leadership</td>
</tr>
</tbody>
</table>