Quick Links

Major Concentration Chemistry (36 credits)

Offered by: Chemistry     Degree: Bachelor of Arts and Science

Program Requirements

The Major Concentration Chemistry is not certified by the Ordre des Chimistes du Québec. Students interested in pursuing a career in Chemistry in Quebec are advised to take an appropriate B.Sc. program in Chemistry.

The Major Concentration Chemistry, which is restricted to students in the B.A. & Sc. or B.Sc./B.Ed., is a planned sequence of courses designed to permit a degree of specialization in this discipline.

Required Courses* (21 credits)

* Required courses taken at CEGEP or elsewhere that are not credited toward the B.A. & Sc. or B.Sc./B.Ed. must be replaced by courses from the Complementary Course List equal to or exceeding their credit value. Regardless of the substitution, students must take at least 36 credits in this program.

  • CHEM 204 Physical Chemistry/Biological Sciences 1 (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Similar to CHEM 223/CHEM 243. Emphasis on the use of biological examples to illustrate the principles of physical chemistry. The relevance of physical chemistry to biology is stressed.

    Terms: Fall 2016, Winter 2017

    Instructors: Patanjali Kambhampati (Fall) Bryan Clifford Sanctuary (Winter)

  • CHEM 212 Introductory Organic Chemistry 1 (4 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.

    Terms: Fall 2016, Winter 2017

    Instructors: Michel Daoust, Jean-Marc Gauthier, Mitchell Huot, Hanadi Sleiman, Laura Pavelka (Fall) Jean-Philip Lumb, Laura Pavelka, Michel Daoust, Jean-Marc Gauthier (Winter)

  • CHEM 214 Physical Chemistry/Biological Sciences 2 (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Emphasis is placed on the use of biological examples to illustrate the principles of physical chemistry. The relevance of physical chemistry to biology is stressed.

    Terms: Winter 2017

    Instructors: Anthony Mittermaier, Amy Blum (Winter)

  • CHEM 222 Introductory Organic Chemistry 2 (4 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Modern spectroscopic techniques for structure determination. The chemistry of alcohols, ethers, carbonyl compounds, and amines, with special attention to mechanistic aspects. Special topics.

    Terms: Fall 2016, Winter 2017

    Instructors: Michel Daoust, Jean-Marc Gauthier, Mitchell Huot, Dmytro Perepichka (Fall) Laura Pavelka, Michel Daoust, Jean-Marc Gauthier, Chaojun Li (Winter)

    • Fall, Winter

    • Prerequisite: CHEM 212 or equivalent.

    • Restriction: Not open to students who have taken an equivalent Organic 2 at CEGEP (see McGill University Basic Math and Sciences Equivalence Table at www.mcgill.ca/mathscitable) or who have or are taking CHEM 234.

  • CHEM 253 Introductory Physical Chemistry 1 Laboratory (1 credit)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Illustrative experiments in physical chemistry.

    Terms: Winter 2017

    Instructors: Samuel Lewis Sewall, Jean-Marc Gauthier (Winter)

    • Fall Note: For students in non-Chemistry programs and Chemistry Minors students only. Chemistry Honours and Majors must take CHEM 283.

    • Prerequisite: CHEM 110, CHEM 120 or equivalent.

    • Corequisite: CHEM 203 or CHEM 204 or CHEM 223 or equivalent or permission of instructor.

  • CHEM 267 Introductory Chemical Analysis (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Qualitative and quantitative analysis. A survey of methods of analysis including theory and practice of semimicro qualitative analysis and representative gravimetric, volumetric and instrumental methods. The laboratory component includes introductory experiments in analytical chemistry emphasizing classical and instrumental methods of quantitative analysis.

    Terms: Fall 2016

    Instructors: Jan Hamier, Samuel Lewis Sewall, Jean-Marc Gauthier (Fall)

  • CHEM 281 Inorganic Chemistry 1 (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Basic concepts of electronic structure and molecular bonding will be developed and applied to the understanding of common materials. Acid-base chemistry. Survey of the chemistry of the main group elements. Introduction to coordination and organometallic chemistry.

    Terms: Winter 2017

    Instructors: Ashok K Kakkar (Winter)

Complementary Courses (15 credits)

15 credits selected from:

  • CHEM 219 Introduction to Atmospheric Chemistry (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : An introduction to the basic topics in atmospheric chemistry. The fundamentals of the chemical composition of the atmosphere and its chemical reactions. Selected topics such as; a smog chamber, acid rain, and the ozone hole, will be examined.

    Terms: Winter 2017

    Instructors: Thomas Preston (Winter)

  • CHEM 263 Introductory Physical Chemistry 2 Laboratory (1 credit)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Illustrative experiments in physical chemistry. Laboratory section of CHEM 243.

    Terms: This course is not scheduled for the 2016-2017 academic year.

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

  • CHEM 302 Introductory Organic Chemistry 3 (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Topics covered may include the following: Aromatic compounds, heterocyclic chemistry, sulfur and phosphorus chemistry, organosulfur and organophosphorus compounds, and biomolecules such as lipids, carbohydrates, amino acids, polypeptides, DNA and RNA.

    Terms: Fall 2016

    Instructors: James L Gleason, Masad J Damha (Fall)

    • Fall, Winter

    • Prerequisites: BIOL 112, CHEM 222, or permission of the instructor.

  • CHEM 332 Biological Chemistry (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : An introduction to biological chemistry. Topics will include chemistry and structure of proteins, nucleic acids, and lipids; protein and nucleic acid biosynthesis; enzyme kinetics and mechanisms; membranes and membrane transport; bioenergetics; redox reactions in biological chemistry; gene expression; cloning, RNA and antibody technologies; genomics and proteomics.

    Terms: Winter 2017

    Instructors: Karine Auclair (Winter)

    • Prerequisite(s): CHEM 222 and CHEM 243.

    • Corequisite(s): CHEM 302

    • Restriction(s): Restricted to Chemistry Majors/Honors only except by permission of instructor.

    • Restriction(s): Not open to students who are taking or have taken BIOL 200 or BIOL 201.

  • CHEM 334 Advanced Materials (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : The physicochemical properties of advanced materials. Topics discussed include photonics, information storage, 'smart' materials, biomaterials, clean energy materials, porous materials, and polymers.

    Terms: Fall 2016

    Instructors: Tomislav Friscic (Fall)

  • CHEM 367 Instrumental Analysis 1 (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : An introduction to modern instrumental analysis emphasizing chromatography, electrochemical methods and computational data analysis. Analytical methods to be examined in detail include gas-liquid and high performance liquid chromatography, LC mass spectrometry, and advanced electro-analysis techniques

    Terms: Fall 2016

    Instructors: Samuel Lewis Sewall, Jean-Marc Gauthier (Fall)

    • Fall

    • Prerequisite(s): CHEM 287 and CHEM 297.

    • Each lab section is limited enrolment

  • CHEM 381 Inorganic Chemistry 2 (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Introduction to transition metal chemistry, coordination numbers and geometry, and nomenclature will be followed by a discussion of crystal field theory and its applications to problems in spectroscopy, magnetochemistry, thermodynamics and kinetics. Several aspects related to applications of organometallic compounds in catalysis and bioinorganic systems will be discussed.

    Terms: Fall 2016

    Instructors: David Bohle (Fall)

    • Fall

    • Prerequisite: CHEM 281.

    • Restriction: For Honours and Major Chemistry students

Chemistry courses at the 400+ level.

Bachelor of Arts & Science—2016-2017 (last updated Oct. 25, 2016) (disclaimer)