Program Requirements
Students who have done well in MATH 242 and MATH 235 at the end of their first term should consider, in consultation with their adviser and the instructors of the courses involved, the possibility of entering into an Honours program in Mathematics, in Applied Mathematics, in Probability and Statistics, or a Joint Honours program in Mathematics and another discipline.
Program Prerequisites
Students who have not completed the program prerequisite courses listed below or their equivalents will be required to make up any deficiencies in these courses over and above the 36 credits required for the program.

MATH 133 Linear Algebra and Geometry (3 credits)
Overview
Mathematics & Statistics (Sci) : Systems of linear equations, matrices, inverses, determinants; geometric vectors in three dimensions, dot product, cross product, lines and planes; introduction to vector spaces, linear dependence and independence, bases; quadratic loci in two and three dimensions.
Terms: Fall 2016, Winter 2017, Summer 2017
Instructors: Djivede Kelome, Jingyin Huang, Amit Sharma, Seyed Ali Aleyasin, Farzad Aryan (Fall) Djivede Kelome (Winter)
3 hours lecture, 1 hour tutorial
Prerequisite: a course in functions
Restriction A: Not open to students who have taken MATH 221 or CEGEP objective 00UQ or equivalent.
Restriction B: Not open to students who have taken or are taking MATH 123, MATH 130 or MATH 131, except by permission of the Department of Mathematics and Statistics.
Restriction C: Not open to students who are taking or have taken MATH 134.

MATH 140 Calculus 1 (3 credits)
Overview
Mathematics & Statistics (Sci) : Review of functions and graphs. Limits, continuity, derivative. Differentiation of elementary functions. Antidifferentiation. Applications.
Terms: Fall 2016, Winter 2017, Summer 2017
Instructors: Sidney Trudeau, Katarzyna Jankiewicz, Ying Hu (Fall) Patrick Orson (Winter)
3 hours lecture, 1 hour tutorial
Prerequisite: High School Calculus
Restriction: Not open to students who have taken MATH 120, MATH 139 or CEGEP objective 00UN or equivalent
Restriction: Not open to students who have taken or are taking MATH 122 or MATH 130 or MATH 131, except by permission of the Department of Mathematics and Statistics
Each Tutorial section is enrolment limited

MATH 141 Calculus 2 (4 credits)
Overview
Mathematics & Statistics (Sci) : The definite integral. Techniques of integration. Applications. Introduction to sequences and series.
Terms: Fall 2016, Winter 2017, Summer 2017
Instructors: Lars Sektnan (Fall) Damien Gobin, Sidney Trudeau, Lars Sektnan (Winter)
Restriction: Not open to students who have taken MATH 121 or CEGEP objective 00UP or equivalent
Restriction Note B: Not open to students who have taken or are taking MATH 122 or MATH 130 or MATH 131, except by permission of the Department of Mathematics and Statistics.
Each Tutorial section is enrolment limited
Guidelines for Course Selection
Where appropriate, Honourslevel courses may be substituted for their Majorslevel counterparts. Students planning to undertake graduate studies in mathematics are urged to make such substitutions.
Students interested in computer science should consider the courses MATH 317, MATH 318, MATH 327, MATH 328, MATH 340, MATH 407, MATH 417, and take the Minor Concentration Computer Science.
Students interested in probability and statistics should consider either taking the Minor Concentration Statistics under option C, or else including some or all of the courses MATH 423, MATH 447, MATH 523, MATH 524, and MATH 525.
Students interested in applied mathematics should consider the courses MATH 317, MATH 319, MATH 324, MATH 326, MATH 327, MATH 407 and MATH 417.
Students interested in careers in business, industry or government should consider the courses MATH 317, MATH 319, MATH 327, MATH 407, MATH 417, MATH 423, MATH 447, MATH 523, and MATH 525.
Required Courses (21 credits)

MATH 222 Calculus 3 (3 credits)
Overview
Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.
Terms: Fall 2016, Winter 2017, Summer 2017
Instructors: Stephen W Drury, Thomas F Fox (Fall) Alexander Garver (Winter)

MATH 235 Algebra 1 (3 credits)
Overview
Mathematics & Statistics (Sci) : Sets, functions and relations. Methods of proof. Complex numbers. Divisibility theory for integers and modular arithmetic. Divisibility theory for polynomials. Rings, ideals and quotient rings. Fields and construction of fields from polynomial rings. Groups, subgroups and cosets; group actions on sets.
Terms: Fall 2016
Instructors: Jan Vonk (Fall)
Fall
3 hours lecture; 1 hour tutorial
Prerequisite: MATH 133 or equivalent

MATH 236 Algebra 2 (3 credits)
Overview
Mathematics & Statistics (Sci) : Linear equations over a field. Introduction to vector spaces. Linear mappings. Matrix representation of linear mappings. Determinants. Eigenvectors and eigenvalues. Diagonalizable operators. CayleyHamilton theorem. Bilinear and quadratic forms. Inner product spaces, orthogonal diagonalization of symmetric matrices. Canonical forms.
Terms: Winter 2017
Instructors: Rebecca Patrias (Winter)
Winter
Prerequisite: MATH 235

MATH 242 Analysis 1 (3 credits)
Overview
Mathematics & Statistics (Sci) : A rigorous presentation of sequences and of real numbers and basic properties of continuous and differentiable functions on the real line.
Terms: Fall 2016
Instructors: Axel W Hundemer (Fall)

MATH 243 Analysis 2 (3 credits)
Overview
Mathematics & Statistics (Sci) : Definition and properties of Riemann integral, Fundamental Theorem of Calculus, Taylor's theorem. Infinite series: alternating, telescoping series, rearrangements, conditional and absolute convergence, convergence tests. Power series and Taylor series. Elementary functions. Introduction to metric spaces.
Terms: Winter 2017
Instructors: Axel W Hundemer (Winter)

MATH 314 Advanced Calculus (3 credits)
Overview
Mathematics & Statistics (Sci) : Derivative as a matrix. Chain rule. Implicit functions. Constrained maxima and minima. Jacobians. Multiple integration. Line and surface integrals. Theorems of Green, Stokes and Gauss. Fourier series with applications.
Terms: Fall 2016, Winter 2017
Instructors: Charles Roth (Fall) Stephen W Drury (Winter)

MATH 323 Probability (3 credits)
Overview
Mathematics & Statistics (Sci) : Sample space, events, conditional probability, independence of events, Bayes' Theorem. Basic combinatorial probability, random variables, discrete and continuous univariate and multivariate distributions. Independence of random variables. Inequalities, weak law of large numbers, central limit theorem.
Terms: Fall 2016, Winter 2017, Summer 2017
Instructors: Masoud AsgharianDastenaei (Fall) Sanchayan Sen (Winter)
Complementary Courses (15 credits)
15 credits selected as follows:
At least 9 credits from:
* Note: Either MATH 249 or MATH 316 may be taken but not both.

MATH 249 Honours Complex Variables (3 credits) *
Overview
Mathematics & Statistics (Sci) : Functions of a complex variable; CauchyRiemann equations; Cauchy's theorem and consequences. Taylor and Laurent expansions. Residue calculus; evaluation of real integrals; integral representation of special functions; the complex inversion integral. Conformal mapping; SchwarzChristoffel transformation; Poisson's integral formulas; applications.
Terms: Winter 2017
Instructors: Charles Roth (Winter)

MATH 315 Ordinary Differential Equations (3 credits)
Overview
Mathematics & Statistics (Sci) : First order ordinary differential equations including elementary numerical methods. Linear differential equations. Laplace transforms. Series solutions.
Terms: Fall 2016, Winter 2017, Summer 2017
Instructors: Xinyang Lu (Fall) John Mitry (Winter)

MATH 316 Complex Variables (3 credits) *
Overview
Mathematics & Statistics (Sci) : Algebra of complex numbers, CauchyRiemann equations, complex integral, Cauchy's theorems. Taylor and Laurent series, residue theory and applications.
Terms: Fall 2016
Instructors: John A Toth (Fall)

MATH 317 Numerical Analysis (3 credits)
Overview
Mathematics & Statistics (Sci) : Error analysis. Numerical solutions of equations by iteration. Interpolation. Numerical differentiation and integration. Introduction to numerical solutions of differential equations.
Terms: Fall 2016
Instructors: Tiago Miguel Saldanha Salvador (Fall)

MATH 324 Statistics (3 credits)
Overview
Mathematics & Statistics (Sci) : Sampling distributions, point and interval estimation, hypothesis testing, analysis of variance, contingency tables, nonparametric inference, regression, Bayesian inference.
Terms: Fall 2016, Winter 2017
Instructors: MariePier Côté (Fall) Masoud AsgharianDastenaei (Winter)
Fall and Winter
Prerequisite: MATH 323 or equivalent
Restriction: Not open to students who have taken or are taking MATH 357
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.

MATH 340 Discrete Structures 2 (3 credits)
Overview
Mathematics & Statistics (Sci) : Review of mathematical writing, proof techniques, graph theory and counting. Mathematical logic. Graph connectivity, planar graphs and colouring. Probability and graphs. Introductory group theory, isomorphisms and automorphisms of graphs. Enumeration and listing.
Terms: Winter 2017
Instructors: Sergey Norin (Winter)

MATH 423 Regression and Analysis of Variance (3 credits)
Overview
Mathematics & Statistics (Sci) : Leastsquares estimators and their properties. Analysis of variance. Linear models with general covariance. Multivariate normal and chisquared distributions; quadratic forms. General linear hypothesis: Ftest and ttest. Prediction and confidence intervals. Transformations and residual plot. Balanced designs.
Terms: Fall 2016
Instructors: David Stephens (Fall)
Remaining credits from:

MATH 204 Principles of Statistics 2 (3 credits)
Overview
Mathematics & Statistics (Sci) : The concept of degrees of freedom and the analysis of variability. Planning of experiments. Experimental designs. Polynomial and multiple regressions. Statistical computer packages (no previous computing experience is needed). General statistical procedures requiring few assumptions about the probability model.
Terms: Winter 2017
Instructors: Jose Andres Correa (Winter)
Winter
Prerequisite: MATH 203 or equivalent. No calculus prerequisites
Restriction: This course is intended for students in all disciplines. For extensive course restrictions covering statistics courses see Section 3.6.1 of the Arts and of the Science sections of the calendar regarding course overlaps.
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.

MATH 318 Mathematical Logic (3 credits)
Overview
Mathematics & Statistics (Sci) : Propositional calculus, truthtables, switching circuits, natural deduction, first order predicate calculus, axiomatic theories, set theory.
Terms: Fall 2016
Instructors: Marcin Sabok (Fall)
Fall
Restriction: Not open to students who are taking or have taken PHIL 210

MATH 319 Introduction to Partial Differential Equations (3 credits)
Overview
Mathematics & Statistics (Sci) : First order equations, geometric theory; second order equations, classification; Laplace, wave and heat equations, SturmLiouville theory, Fourier series, boundary and initial value problems.
Terms: Winter 2017
Instructors: Peter Bartello (Winter)

MATH 320 Differential Geometry (3 credits)
Overview
Mathematics & Statistics (Sci) : Review of Euclidean geometry. Local theory of plane and space curves: the Frenet formulas. Local theory of surfaces: the first and second fundamental forms, the shape operator, the mean and Gaussian curvatures, surfaces of revolution with prescribed curvature, ruled and developable surfaces. Geodesic curves on surfaces of revolution. The GaussCodazzi equations, rigidity.
Terms: This course is not scheduled for the 20162017 academic year.
Instructors: There are no professors associated with this course for the 20162017 academic year.

MATH 326 Nonlinear Dynamics and Chaos (3 credits)
Overview
Mathematics & Statistics (Sci) : Linear systems of differential equations, linear stability theory. Nonlinear systems: existence and uniqueness, numerical methods, one and two dimensional flows, phase space, limit cycles, PoincareBendixson theorem, bifurcations, Hopf bifurcation, the Lorenz equations and chaos.
Terms: Fall 2016
Instructors: Antony Raymond Humphries (Fall)

MATH 327 Matrix Numerical Analysis (3 credits)
Overview
Mathematics & Statistics (Sci) : An overview of numerical methods for linear algebra applications and their analysis. Problem classes include linear systems, least squares problems and eigenvalue problems.
Terms: Winter 2017
Instructors: Ivo Panayotov (Winter)

MATH 346 Number Theory (3 credits)
Overview
Mathematics & Statistics (Sci) : Divisibility. Congruences. Quadratic reciprocity. Diophantine equations. Arithmetical functions.
Terms: Winter 2017
Instructors: Stephen Lester (Winter)

MATH 348 Topics in Geometry (3 credits)
Overview
Mathematics & Statistics (Sci) : Selected topics  the particular selection may vary from year to year. Topics include: isometries in the plane, symmetry groups of frieze and ornamental patterns, equidecomposibility, nonEuclidean geometry and problems in discrete geometry.
Terms: Fall 2016
Instructors: Piotr Przytycki (Fall)
Prerequisite: MATH 133 or equivalent or permission of instructor.

MATH 352 Problem Seminar (1 credit)
Overview
Mathematics & Statistics (Sci) : Seminar in Mathematical Problem Solving. The problems considered will be of the type that occur in the Putnam competition and in other similar mathematical competitions.
Terms: Fall 2016
Instructors: Sergey Norin (Fall)
Prerequisite: Enrolment in a math related program or permission of the instructor. Requires departmental approval.
Prerequisite: Enrolment in a math related program or permission of the instructor.

MATH 407 Dynamic Programming (3 credits)
Overview
Mathematics & Statistics (Sci) : Sequential decision problems, resource allocation, transportation problems, equipment replacement, integer programming, network analysis, inventory systems, project scheduling, queuing theory calculus of variations, markovian decision processes, stochastic path problems, reliability, discrete and continuous control processes.
Terms: This course is not scheduled for the 20162017 academic year.
Instructors: There are no professors associated with this course for the 20162017 academic year.

MATH 410 Majors Project (3 credits)
Overview
Mathematics & Statistics (Sci) : A supervised project.
Terms: Fall 2016, Winter 2017
Instructors: Djivede Kelome, Yi Yang, JeanChristophe Nave, Gantumur Tsogtgerel, David Stephens (Fall) Djivede Kelome, Gantumur Tsogtgerel, Yi Yang (Winter)
Prerequisite: Students must have 21 completed credits of the required mathematics courses in their program, including all required 200 level mathematics courses.
Requires departmental approval.

MATH 417 Mathematical Programming (3 credits)
Overview
Mathematics & Statistics (Sci) : An introductory course in optimization by linear algebra, and calculus methods. Linear programming (convex polyhedra, simplex method, duality, multicriteria problems), integer programming, and some topics in nonlinear programming (convex functions, optimality conditions, numerical methods). Representative applications to various disciplines.
Terms: Fall 2016
Instructors: Tim Hoheisel (Fall)

MATH 427 Statistical Quality Control (3 credits)
Overview
Mathematics & Statistics (Sci) : Introduction to quality management; variability and productivity. Quality measurement: capability analysis, gauge capability studies. Process control: control charts for variables and attributes. Process improvement: factorial designs, fractional replications, response surface methodology, Taguchi methods. Acceptance sampling: operating characteristic curves; single, multiple and sequential acceptance sampling plans for variables and attributes.
Terms: This course is not scheduled for the 20162017 academic year.
Instructors: There are no professors associated with this course for the 20162017 academic year.

MATH 447 Introduction to Stochastic Processes (3 credits)
Overview
Mathematics & Statistics (Sci) : Conditional probability and conditional expectation, generating functions. Branching processes and random walk. Markov chains, transition matrices, classification of states, ergodic theorem, examples. Birth and death processes, queueing theory.
Terms: Winter 2017
Instructors: David B Wolfson (Winter)

MATH 523 Generalized Linear Models (4 credits)
Overview
Mathematics & Statistics (Sci) : Modern discrete data analysis. Exponential families, orthogonality, link functions. Inference and model selection using analysis of deviance. Shrinkage (Bayesian, frequentist viewpoints). Smoothing. Residuals. Quasilikelihood. Contingency tables: logistic regression, loglinear models. Censored data. Applications to current problems in medicine, biological and physical sciences. R software.
Terms: Winter 2017
Instructors: Russell Steele (Winter)

MATH 524 Nonparametric Statistics (4 credits)
Overview
Mathematics & Statistics (Sci) : Distribution free procedures for 2sample problem: Wilcoxon rank sum, SiegelTukey, Smirnov tests. Shift model: power and estimation. Single sample procedures: Sign, Wilcoxon signed rank tests. Nonparametric ANOVA: KruskalWallis, Friedman tests. Association: Spearman's rank correlation, Kendall's tau. Goodness of fit: Pearson's chisquare, likelihood ratio, KolmogorovSmirnov tests. Statistical software packages used.
Terms: Fall 2016
Instructors: David B Wolfson (Fall)

MATH 525 Sampling Theory and Applications (4 credits)
Overview
Mathematics & Statistics (Sci) : Simple random sampling, domains, ratio and regression estimators, superpopulation models, stratified sampling, optimal stratification, cluster sampling, sampling with unequal probabilities, multistage sampling, complex surveys, nonresponse.
Terms: Winter 2017
Instructors: Russell Steele (Winter)