Faculty of Agricultural and Environmental Sciences, including School of Dietetics and Human Nutrition (Graduate)

Programs, Courses and University Regulations

2014-2015
This PDF excerpt of *Programs, Courses and University Regulations* is an archived snapshot of the web content on the date that appears in the footer of the PDF. Archival copies are available at www.mcgill.ca/study.

This publication provides guidance to prospects, applicants, students, faculty and staff.

1. McGill University reserves the right to make changes to the information contained in this online publication - including correcting errors, altering fees, schedules of admission, and credit requirements, and revising or cancelling particular courses or programs - without prior notice.
2. In the interpretation of academic regulations, the Senate is the final authority.
3. Students are responsible for informing themselves of the University's procedures, policies and regulations, and the specific requirements associated with the degree, diploma, or certificate sought.
4. All students registered at McGill University are considered to have agreed to act in accordance with the University procedures, policies and regulations.
5. Although advice is readily available on request, the responsibility of selecting the appropriate courses for graduation must ultimately rest with the student.
6. Not all courses are offered every year and changes can be made after publication. Always check the Minerva Class Schedule link at https://horizon.mcgill.ca/pban1/bwckschd.p_disp_dyn_sched for the most up-to-date information on whether a course is offered.
7. The academic publication year begins at the start of the Fall semester and extends through to the end of the Winter semester of any given year. Students who begin study at any point within this period are governed by the regulations in the publication which came into effect at the start of the Fall semester.
8. Notwithstanding any other provision of the publication, it is expressly understood by all students that McGill University accepts no responsibility to provide any course of instruction, program or class, residential or other services including the normal range of academic, residential and/or other services in circumstances of utility interruptions, fire, flood, strikes, work stoppages, labour disputes, war, insurrection, the operation of law or acts of God or any other cause (whether similar or dissimilar to those enumerated) which reasonably prevent their provision.

Note: Throughout this publication, "you" refers to students newly admitted, readmitted or returning to McGill.
Dean's Welcome, page 11
2 Graduate and Postdoctoral Studies, page 11
 2.1 Administrative Officers, page 11
 2.2 Location, page 11
 2.3 General Statement Concerning Higher Degrees, page 12
3 Important Dates 2014–2015, page 12
4 Graduate Studies at a Glance, page 12
5 Program Requirements, page 12
 5.1 Master's Degrees, page 12
 5.2 Doctoral Degrees, page 13
 5.3 Ad Personam Programs (Thesis Option Only), page 14
 5.4 Coursework for Graduate Programs, Diplomas, and Certificates, page 14
6 Graduate Admissions and Application Procedures, page 14
7 Fellowships, Awards, and Assistantships, page 14
8 Postdoctoral Research, page 15
 8.1 Postdocs, page 15
 8.2 Guidelines and Policy for Academic Units on Postdoctoral Education, page 15
 8.3 Vacation Policy for Graduate Students and Postdocs, page 17
 8.4 Leave of Absence for Health and Parental/Familial Reasons, page 17
 8.5 Postdoctoral Research Trainees, page 17
9 Graduate Studies Guidelines and Policies, page 18
10 Information on Research Policies and Guidelines, Patents, Postdocs, Associates, Trainees, page 18
11 Academic Programs, page 18
 11.1 Agricultural Economics, page 19
 11.1.1 Location, page 19
 11.1.2 About Agricultural Economics, page 19
 11.1.3 Agricultural Economics Admission Requirements and Application Procedures, page 19
 11.1.3.1 Admission Requirements, page 19
 11.1.3.2 Application Procedures, page 19
 11.1.3.3 Application Deadlines, page 19
 11.1.4 Agricultural Economics Faculty, page 20
 11.2 Animal Science, page 20
 11.2.1 Location, page 20
 11.2.2 About Animal Science, page 20
 11.2.3 Animal Science Admission Requirements and Application Procedures, page 21
 11.2.3.1 Admission Requirements, page 21
 11.2.3.2 Application Procedures, page 21
 11.2.3.3 Application Deadlines, page 21
 11.2.4 Animal Science Faculty, page 22
 11.2.5 Master of Science (M.Sc.); Animal Science (Thesis) (45 credits), page 22
11.2.6 Master of Science, Applied (M.Sc.A.); Animal Science (Non-Thesis) (45 credits), page 23
11.2.7 Doctor of Philosophy (Ph.D.); Animal Science, page 23
11.2.8 Doctor of Philosophy (Ph.D.); Animal Science — Bioinformatics, page 24

11.3 Bioresource Engineering, page 24

11.3.1 Location, page 24
11.3.2 About Bioresource Engineering, page 24
11.3.3 Bioresource Engineering Admission Requirements and Application Procedures, page 26

11.3.3.1 Admission Requirements, page 26
11.3.3.2 Application Procedures, page 26
11.3.3.3 Application Deadlines, page 26

11.3.4 Bioresource Engineering Faculty, page 27
11.3.5 Master of Science (M.Sc.); Bioresource Engineering (Thesis) (46 credits), page 28
11.3.6 Master of Science (M.Sc.); Bioresource Engineering (Thesis) — Environment (46 credits), page 28
11.3.7 Master of Science (M.Sc.); Bioresource Engineering (Thesis) — Neotropical Environment (46 credits), page 29
11.3.8 Master of Science (M.Sc.); Bioresource Engineering (Non-Thesis) — Integrated Water Resources Management (45 credits), page 29
11.3.9 Master of Science, Applied (M.Sc.A.); Bioresource Engineering (Non-Thesis) (45 credits), page 30
11.3.10 Master of Science, Applied (M.Sc.A.); Bioresource Engineering (Non-Thesis) — Environment (45 credits), page 30
11.3.11 Master of Science, Applied (M.Sc.A.); Bioresource Engineering (Non-Thesis) — Environmental Engineering (45 credits), page 31
11.3.12 Master of Science, Applied (M.Sc.A.); Bioresource Engineering (Non-Thesis) — Integrated Food and Bioprocessing (45 credits), page 32
11.3.13 Master of Science, Applied (M.Sc.A.); Bioresource Engineering (Non-Thesis) — Neotropical Environment (45 credits), page 33
11.3.14 Doctor of Philosophy (Ph.D.); Bioresource Engineering, page 34
11.3.15 Doctor of Philosophy (Ph.D.); Bioresource Engineering — Environment, page 34
11.3.16 Doctor of Philosophy (Ph.D.); Bioresource Engineering — Neotropical Environment, page 35
11.3.17 Graduate Certificate in Bioresource Engineering — Integrated Water Resources Management (15 credits), page 35

11.4 Biotechnology, page 36

11.4.1 Location, page 36
11.4.2 About Biotechnology, page 36
11.4.3 Biotechnology Admission Requirements and Application Procedures, page 36

11.4.3.1 Admission Requirements, page 36
11.4.3.2 Application Procedures, page 37
11.4.3.3 Application Deadlines, page 37

11.4.4 Biotechnology Faculty, page 37
11.4.5 Master of Science, Applied (M.Sc.A.); Biotechnology (Non-Thesis) (45 credits), page 37
11.4.6 Graduate Certificate in Biotechnology (16 credits), page 38
11.5 Dietetics and Human Nutrition, page 38

11.5.1 Location, page 38

11.5.2 About Dietetics and Human Nutrition, page 39

11.5.3 Dietetics and Human Nutrition Admission Requirements and Application Procedures, page 39

11.5.3.1 Admission Requirements, page 39

11.5.3.2 Application Procedures, page 40

11.5.3.3 Application Deadlines, page 40

11.5.4 Dietetics and Human Nutrition Faculty, page 40

11.5.5 Master of Science (M.Sc.); Human Nutrition (Thesis) (45 credits), page 41

11.5.6 Master of Science, Applied (M.Sc.A.); Human Nutrition (Non-Thesis) — Dietetics Credentialing (83 credits), page 42

11.5.7 Master of Science, Applied (M.Sc.A.); Human Nutrition (Non-Thesis) — Practicum (45 credits), page 43

11.5.8 Master of Science, Applied (M.Sc.A.); Human Nutrition (Non-Thesis) — Project (45 credits), page 43

11.5.9 Doctor of Philosophy (Ph.D.); Human Nutrition, page 44

11.5.10 Graduate Diploma in Registered Dietitian Credentialing (30 credits), page 44

11.6 Food Science and Agricultural Chemistry, page 44

11.6.1 Location, page 44

11.6.2 About Food Science and Agricultural Chemistry, page 44

11.6.3 Food Science and Agricultural Chemistry Admission Requirements and Application Procedures, page 45

11.6.3.1 Admission Requirements, page 45

11.6.3.2 Application Procedures, page 45

11.6.3.3 Application Deadlines, page 45

11.6.4 Food Science and Agricultural Chemistry Faculty, page 46

11.6.5 Master of Science (M.Sc.); Food Science and Agricultural Chemistry (Thesis) (45 credits), page 46

11.6.6 Master of Science (M.Sc.); Food Science and Agricultural Chemistry (Non-Thesis) (45 credits), page 47

11.6.7 Master of Science (M.Sc.); Food Science and Agricultural Chemistry — Food Safety (Non-Thesis) (45 credits), page 47

11.6.8 Doctor of Philosophy (Ph.D.); Food Science and Agricultural Chemistry, page 48

11.7 Natural Resource Sciences, page 49

11.7.1 Location, page 49

11.7.2 About Natural Resource Sciences, page 49

11.7.3 Natural Resource Science Admission Requirements and Application Procedures, page 50

11.7.3.1 Admission Requirements, page 50

11.7.3.2 Application Procedures, page 51

11.7.3.3 Application Deadlines, page 51

11.7.4 Natural Resource Sciences Faculty, page 51

11.7.5 Master of Science (M.Sc.); Agricultural Economics (Thesis) (46 credits), page 53

11.7.6 Master of Science (M.Sc.); Entomology (Thesis) (45 credits), page 53

11.7.7 Master of Science (M.Sc.); Entomology (Thesis) — Environment (46 credits), page 54

11.7.8 Master of Science (M.Sc.); Entomology (Thesis) — Neotropical Environment (48 credits), page 54
11.7.9 Master of Science (M.Sc.); Microbiology (Thesis) (45 credits), page 55
11.7.10 Master of Science (M.Sc.); Microbiology (Thesis) — Environment (46 credits), page 55
11.7.11 Master of Science (M.Sc.); Renewable Resources (Thesis) (45 credits), page 56
11.7.12 Master of Science (M.Sc.); Renewable Resources (Thesis) — Environment (46 credits), page 56
11.7.13 Master of Science (M.Sc.); Renewable Resources (Thesis) — Neotropical Environment (48 credits), page 57
11.7.14 Master of Science (M.Sc.); Renewable Resources (Non-Thesis) — Environmental Assessment (45 credits), page 57
11.7.15 Doctor of Philosophy (Ph.D.); Entomology, page 58
11.7.16 Doctor of Philosophy (Ph.D.); Entomology — Environment, page 58
11.7.17 Doctor of Philosophy (Ph.D.); Entomology — Neotropical Environment, page 59
11.7.18 Doctor of Philosophy (Ph.D.); Microbiology, page 59
11.7.19 Doctor of Philosophy (Ph.D.); Microbiology — Bioinformatics, page 59
11.7.20 Doctor of Philosophy (Ph.D.); Microbiology — Environment, page 60
11.7.21 Doctor of Philosophy (Ph.D.); Renewable Resources, page 61
11.7.22 Doctor of Philosophy (Ph.D.); Renewable Resources — Environment, page 61
11.7.23 Doctor of Philosophy (Ph.D.); Renewable Resources — Neotropical Environment, page 62
11.8 Parasitology, page 62
11.8.1 Location, page 62
11.8.2 About Parasitology, page 63
11.8.3 Parasitology Admission Requirements and Application Procedures, page 63
 11.8.3.1 Admission Requirements, page 63
 11.8.3.2 Application Procedures, page 64
 11.8.3.3 Application Deadlines, page 64
11.8.4 Parasitology Faculty, page 64
11.8.5 Master of Science (M.Sc.); Parasitology (Thesis) (46 credits), page 65
11.8.6 Master of Science (M.Sc.); Parasitology (Thesis) — Bioinformatics (47 credits), page 65
11.8.7 Master of Science (M.Sc.); Parasitology (Thesis) — Environment (46 credits), page 66
11.8.8 Doctor of Philosophy (Ph.D.); Parasitology, page 66
11.8.9 Doctor of Philosophy (Ph.D.); Parasitology — Bioinformatics, page 67
11.8.10 Doctor of Philosophy (Ph.D.); Parasitology — Environment, page 67
11.9 Plant Science, page 68
11.9.1 Location, page 68
11.9.2 About Plant Science, page 68
11.9.3 Plant Science Admission Requirements and Application Procedures, page 70
 11.9.3.1 Admission Requirements, page 70
 11.9.3.2 Application Procedures, page 70
 11.9.3.3 Application Deadlines, page 70
11.9.4 Plant Science Faculty, page 70
11.9.5 Master of Science (M.Sc.); Plant Science (Thesis) (45 credits), page 71
11.9.6 Master of Science (M.Sc.); Plant Science (Thesis) — Bioinformatics (48 credits), page 71
11.9.7 Master of Science (M.Sc.); Plant Science (Thesis) — Environment (48 credits), page 72
11.9.8 Master of Science (M.Sc.); Plant Science (Thesis) — Neotropical Environment (48 credits), page 73
11.9.9 Master of Science, Applied (M.Sc.A.); Plant Science (Non-Thesis) (45 credits), page 73
11.9.10 Doctor of Philosophy (Ph.D.); Plant Science, page 73
11.9.11 Doctor of Philosophy (Ph.D.); Plant Science — Bioinformatics, page 74
11.9.12 Doctor of Philosophy (Ph.D.); Plant Science — Environment, page 74
11.9.13 Doctor of Philosophy (Ph.D.); Plant Science — Neotropical Environment, page 75
11.9.14 Graduate Certificate in Bioinformatics (15 credits), page 76
Dean’s Welcome

To Graduate Students and Postdoctoral Fellows:

I am extremely pleased to welcome you to McGill University. Graduate and Postdoctoral Studies (GPS) collaborates with the Faculties and other administrative and academic units to provide strategic leadership and vision for graduate teaching, supervision, and research across our over 400 graduate programs. GPS also oversees quality assurance in admissions and registration, the disbursement of graduate fellowships, support for postdoctoral fellows, and facilitates graduate degree completion, including the examination of theses. GPS has partnered with Enrolment Services to manage the admission and registration of graduate students and postdoctoral fellows and to offer streamlined services in a one-stop location at Service Point.

McGill is a student-centred research institution that places singular importance upon the quality of graduate education and postdoctoral training. As Associate Provost (Graduate Education), as well as Dean of Graduate and Postdoctoral Studies, I work closely with the Faculties, central administration, graduate students, professors, researchers, and postdoctoral fellows to provide a supportive, stimulating, and enriching academic environment for all graduate students and postdoctoral fellows.

McGill is ranked as one of Canada’s most intensive research universities and currently ranked 21st by QS World University Rankings 2013. We recognize that these successes come not only from our outstanding faculty members, but also from the quality of our graduate students and postdoctoral fellows—a community into which we are very happy to welcome you.

I invite you to join us in advancing this heritage of excellence at McGill.

Martin Kreiswirth, Ph.D.
Associate Provost (Graduate Education)
Dean, Graduate and Postdoctoral Studies

Administrative Officers

<table>
<thead>
<tr>
<th>Administrative Officers</th>
<th>Associate Provost (Graduate Education) and Dean (Graduate and Postdoctoral Studies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martin Kreiswirth; B.A.(Hamilton), M.A.(Chic.), Ph.D.(Tor.)</td>
<td>Associate Provost (Graduate Education) and Dean (Graduate and Postdoctoral Studies)</td>
</tr>
<tr>
<td>Heather Goad; B.A.(Br. Col.), Ph.D.(USC)</td>
<td>Associate Dean (Graduate and Postdoctoral Studies)</td>
</tr>
<tr>
<td>Jean-Jacques Lebrun; B.Sc.(France), M.Sc.(Rennes), Ph.D.(Paris)</td>
<td>Associate Dean (Graduate and Postdoctoral Studies)</td>
</tr>
<tr>
<td>Laura Nilson; B.A.(Colgate), Ph.D.(Yale)</td>
<td>Associate Dean (Graduate and Postdoctoral Studies)</td>
</tr>
<tr>
<td>Elisa Pylkkonen; B.A., M.A.(McG.)</td>
<td>Director (Graduate and Postdoctoral Studies)</td>
</tr>
</tbody>
</table>

Location

James Administration Building, Room 400
845 Sherbrooke Street West
Montreal QC H3A 0G4
Telephone: 514-398-3990
Fax: 514-398-6283
Email: servicepoint@mcgill.ca
Website: www.mcgill.ca/gps

Note: For inquiries regarding specific graduate programs, please contact the appropriate department.
2.3 General Statement Concerning Higher Degrees

Graduate and Postdoctoral Studies (GPS) oversees all programs leading to graduate diplomas, certificates, and higher degrees, with the exception of some programs in the School of Continuing Studies. It is responsible for admission policies, the supervision of graduate students' work, and for recommending to Senate those who may receive the degrees, diplomas, and certificates.

3 Important Dates 2014–2015

For all dates relating to the academic year, consult www.mcgill.ca/importantdates.

4 Graduate Studies at a Glance

Please refer to the eCalendar's University Regulations and Resources > Graduate > : Graduate Studies at a Glance for a list of all graduate departments and degrees currently being offered.

5 Program Requirements

5.1 Master's Degrees

Residence Requirements – Master's Degrees

Refers to the number of terms (or years) students must be registered on a full-time basis to complete their program. Students are NOT permitted to graduate until they have fulfilled the residence requirement (or paid the corresponding fees) in their program.

- The following master's programs have a minimum residence requirement of three full-time terms: M.Arch., M.A., M.Eng., LL.M., M.Mus. (except M.Mus. in Sound Recording), M.Sc., M.S.W., M.Sc.A. (except M.Sc.A. in Communication Sciences and Disorders).
- The following master's programs have a minimum residence requirement of four full-time terms: M.I.St.; M.Mus. in Sound Recording; M.U.P.; M.A. (60 credits – Counselling Psychology – thesis; 78 credits – Educational Psychology); M.A. Teaching and Learning – Non-Thesis; M.Sc.A. in Communication Sciences and Disorders; S.T.M., Religious Studies.
- The residence requirement for the master's program in Education (M.Ed.); Information Studies (M.I.St.); Management (M.B.A.); Religious Studies (S.T.M.); M.A. Counselling Psychology – Non-Thesis; M.A. Teaching and Learning – Non-Thesis; M.Sc. in Public Health – Non-Thesis; M.Sc.A. Nursing; M.Sc.A. Occupational Therapy; M.Sc.A. Physical Therapy; and students in part-time programs is determined on a per course basis. Residence requirements are fulfilled when students complete all course requirements in their respective programs.
- For master's programs structured as Course, Project, or Non-Thesis options where the program is pursued on a part-time basis, residence requirements are normally fulfilled when students complete all course requirements in their respective programs (minimum 45 credits or a minimum of three full-time terms) and pay the fees accordingly.

These designated periods of residence represent minimum time requirements. There is no guarantee that the work for the degree can be completed in this time. Students must register for such additional terms as are needed to complete the program.

Coursework – Master's Degrees

Program requirements are outlined in the relevant departmental sections of the Graduate and Postdoctoral Studies eCalendar.

The department concerned will examine the student's previous training and then decide which of the available courses in the area of specialization or related fields are required to bring the candidate to the proper level for the master's degree. Due account will be taken of relevant courses passed at any recognized university.

As a rule, no more than one-third of the McGill program formal coursework (not thesis, project, stage, or internship) can be credited with courses from another university.

Non-thesis degrees normally specify the course program which the candidate must follow.

The candidate is required to pass, with a grade of B- or better, all those courses that have been designated by the department as forming a part of the program, including additional requirements.
Students taking courses at another university must obtain a minimum grade of B- (65\%) if the course is to be credited toward their McGill degree. In the cases where only a letter grade is used, a B- is the minimum passing grade and no equivalent percentage will be considered. In the cases where only a percentage grade is used, 65\% is the minimum passing grade.

If courses were not used for a degree, they could be credited toward a McGill degree, keeping in mind that a maximum of one-third of the coursework (not thesis, project, stage, internship, and practicum) can be credited. If an exemption is granted, it must be replaced by another graduate course at McGill toward the degree. No double counting is ever allowed. This regulation also applies to doctoral programs.

Research and Thesis – Master's Degrees

All candidates for a research degree must present a thesis based on their own research. The total number of credits allotted to the thesis in any master's program must not be less than 24. The title of the thesis and names of examiners must be forwarded on a Nomination of Examiners form, in accordance with the dates on www.mcgill.ca/importantdates, through the Chair of the department concerned at the same time that the thesis is submitted to Graduate and Postdoctoral Studies. A thesis for the master's degree, while not necessarily requiring an exhaustive review of work in the particular field of study, or a great deal of original scholarship, must show familiarity with the language and field in which the thesis will be presented and to organize results, all of which must be presented in good literate style. The thesis will not normally exceed 100 pages; in some disciplines, shorter texts are preferred. Guidelines and deadlines are available at www.mcgill.ca/gps/thesis/guidelines.

Language Requirements – Master's Degrees

Many master's degree programs do not include language requirements, but candidates who intend to proceed to a doctoral degree should take note of any language requirements and are strongly advised to take the examinations in at least one language while working for the master's degree.

5.2 **Doctoral Degrees**

Residence Requirements – Doctoral

Refers to the numbers of terms (or years) students must be registered on a full-time basis to complete their program. Students are not permitted to graduate until they have fulfilled the residence requirement (or paid the corresponding fees) in their program.

Candidates entering Ph.D. 1 must follow a program of at least three years' residency at the University; this is a minimum requirement, and there is no guarantee that the work of the degree can be completed in this time, but students are expected to complete within the maximum specified period. Only exceptional candidates holding a bachelor’s degree will be considered for direct admission to Ph.D. 1 level.

It is required that candidates spend the greater part of each summer working on their theses, and those who do not do so are unlikely to complete a satisfactory thesis in the prescribed minimum time (see section 8.3: Vacation Policy for Graduate Students and Postdocs).

A student who has obtained a master's degree at McGill University or at an approved institution in a relevant subject and is proceeding to a Ph.D. degree will, on the recommendation of the department, be admitted to Ph.D. 2; in this case, the residency requirement for the program is two years.

In the doctoral program, students must be registered on a full-time basis for one more year after completion of the residency (i.e., Ph.D. 4 year) before continuing as Additional Session students until completion of the program.

Note: The master's degree must have been awarded before initial registration in the doctoral program; otherwise, the admission level will be at Ph.D. 1 and residency will be extended to three years. Once the level of admission is approved, it will not be changed after obtaining the master’s degree if the date falls after registration in the program. If a previous awarded degree is a condition of admission, it must be fulfilled before registration in another program.

As a rule, no more than one-third of the McGill program formal coursework can be credited with courses from another university.

Comprehensive Examinations – Doctoral

The majority of doctoral programs at McGill require candidates to pass a comprehensive examination or set of examinations or equivalent, such as qualifying examinations, preliminary examinations, candidacy papers, comprehensive evaluations, thesis proposals, etc. The results of this examination determine whether or not students will be permitted to continue in their programs. The methods adopted for examination and evaluation and the areas to be examined are specified by departmental regulations and approved by Graduate and Postdoctoral Studies. It is the responsibility of students to inform themselves of these details. For more information, see the eCalendar under University Regulations and Resources > Graduate > Guidelines and Policies > : Ph.D. Comprehensives Policy.

Language Requirements – Doctoral

Many graduate departments in the Faculties of Agricultural and Environmental Sciences, Education, Engineering, Management, Medicine, and Science do not require a language examination. Students should inquire in their departments if there are any such requirements, or whether any other requirements have been substituted for those relating to languages.

Graduate departments in the Faculties of Arts, Music, and Religious Studies usually require proficiency in one or two languages other than English. In all cases, students should consult departmental regulations concerning language requirements.

Language requirements for the Ph.D. degree are met through demonstrated reading knowledge. The usual languages are French, German, or Russian, but in particular instances another language may be necessary.

All language requirements must be fulfilled and the grades reported before submission of the thesis to GPS (Thesis section).

Students must contact their departments to make arrangements to take the Language Reading Proficiency Examinations. Students may, however, demonstrate competence by a pass standing in two undergraduate language courses taken at McGill (see departmental regulations).

Candidates are advised to discharge their language requirements as early in their program as possible.
Students expecting to enrol in Professional Corporations in the province of Quebec are advised to become fluent in both spoken and written French. French language courses are available at the French Language Centre. The teaching is intensive and class sizes are kept small. While undergraduate students are given preference, graduate students who are certain they can devote sufficient time to the work may enrol.

Thesis – Doctoral

The thesis for the Ph.D. degree must display original scholarship expressed in good literate style and must be a distinct contribution to knowledge. **Formal notice of a thesis title and names of examiners must be submitted to the Thesis section of GPS on the Nomination of Examiners form in accordance with the dates on www.mcgill.ca/importantdates, at the same time as the thesis is submitted.** The list of examiners must be approved by the Department Chair, the supervisor and the student. The Thesis section of GPS should be notified of any subsequent change of title as early as possible. Guidelines and deadlines are available at www.mcgill.ca/gps/thesis/guidelines.

Special regulations for the Ph.D. degree in particular departments are stated in the entries of those departments.

Thesis Oral Examination – Doctoral

After the thesis has been received and approved, a final oral examination is held on the subject of the thesis and subjects intimately related to it. This is conducted in the presence of a Committee of at least five members presided over by a Pro-Dean nominated by Graduate and Postdoctoral Studies. The Chair of the candidate’s department and the Thesis Supervisor are regularly invited to be members of the Committee; at least one member of the Committee is appointed from outside the candidate’s department. Guidelines are available at www.mcgill.ca/gps/thesis/guidelines.

5.3 Ad Personam Programs (Thesis Option Only)

In very rare circumstances, an applicant who wishes to engage in Master’s (thesis option only) or Ph.D. studies of an interdisciplinary nature involving joint supervision by two departments, each of which is authorized by the Government of Quebec to offer its own graduate programs, may be admitted to an *Ad Personam* program. For more information, see www.mcgill.ca/gradapplicants/programs and contact the relevant department.

5.4 Coursework for Graduate Programs, Diplomas, and Certificates

Upper-level undergraduate courses (excluding 500-level) may not be considered for degrees, diplomas, and certificates unless they are already listed as required courses in the approved program description. If an upper-level undergraduate course (excluding 500 level) is taken by a graduate student, it must come as a recommendation from the Graduate Program Director in the department. The recommendation must state if the undergraduate course is an additional requirement for the program (must obtain B- or better) or if the course is extra to the program (will be flagged as such on the record and fees will be charged). See document at www.mcgill.ca/gps/students/registration#coarsereg.

English and French language courses offered by the French Language Centre (Faculty of Arts) or the School of Continuing Studies may not be taken for coursework credits toward a graduate program.

All substitutions for coursework in graduate programs, diplomas, and certificates must be approved by GPS.

Courses taken at other institutions to be part of the requirements of a program of study must be approved by GPS before registration. Double counting is not permitted.

6 Graduate Admissions and Application Procedures

Please refer to the eCalendar's *University Regulations and Resources > Graduate > : Graduate Admissions and Application Procedures* for information on:

- Application for Admission
- Admission Requirements
- Application Procedures
- Competency in English

and other important information regarding admissions and application procedures for Graduate and Postdoctoral Studies.

7 Fellowships, Awards, and Assistantships

Please refer to the eCalendar's *University Regulations and Resources > Graduate > : Fellowships, Awards, and Assistantships* for information and contact information regarding fellowships, awards, and assistantships in Graduate and Postdoctoral Studies.
8 Postdoctoral Research

Students must inform themselves of University rules and regulations and keep abreast of any changes that may occur. The Postdoctoral Research section of this publication contains important details required by postdoctoral scholars during their studies at McGill and should be periodically consulted, along with other sections and related publications.

8.1 Postdocs

Postdocs are recent graduates with a Ph.D. or equivalent (i.e., Medical Specialist Diploma) engaged by a member of the University’s academic staff, including Adjunct Professors, to assist him/her in research.

Postdocs must be appointed by their department and registered with Enrolment Services in order to have access to University facilities (library, computer, etc.).

8.2 Guidelines and Policy for Academic Units on Postdoctoral Education

The general guidelines listed below are meant to encourage units to examine their policies and procedures to support postdoctoral education. Every unit hosting Postdocs should have explicitly stated policies and procedures for the provision of postdoctoral education as well as established means for informing Postdocs of policies, procedures, and privileges (e.g., orientation sessions, handbooks, etc.), as well as mechanisms for addressing complaints. Academic units should ensure that their policies, procedures and privileges are consistent with these guidelines and the Charter of Students’ Rights. For their part, Postdocs are responsible for informing themselves of policies, procedures, and privileges.

1. Definition and Status

 i. Postdoctoral status will be recognized by the University in accordance with Quebec provincial regulations. Persons may only be registered with postdoctoral status for a period of up to five years from the date they were awarded a Ph.D. or equivalent degree. Time allocated to parental or health leave is added to this period of time. Leaves for other reasons, including vacation leave, do not extend the term. Postdocs must do research under the supervision of a McGill professor, including Adjunct Professors, who is a member of McGill’s academic staff qualified in the discipline in which training is being provided and with the abilities to fulfil responsibilities as a supervisor of the research and as a mentor for career development. They are expected to be engaged primarily in research with minimal teaching or other responsibilities.

2. Registration

 i. Postdocs must be registered annually with the University through Enrolment Services. Initial registration will require an original or notarized copy of the Ph.D. diploma. Registration will be limited to persons who fulfill the definition above and for whom there is an assurance of appropriate funding and where the unit can provide assurance of the necessary resources to permit postdoctoral education.

 ii. Upon registration, the Postdoc will be eligible for a University identity card issued by Enrolment Services.

3. Appointment, Pay, Agreement of Conditions

 i. Appointments may not exceed your registration eligibility status.

 ii. In order to be registered as a Postdoc, you must be assured of financial support other than from personal means during your stay at McGill University, equivalent to the minimal stipend requirement set by the University in accordance with guidelines issued by federal and provincial research granting agencies. There are no provisions for paid parental leave unless this is stipulated in the regulations of a funding agency outside the University.

 iii. At the outset of a postdoctoral appointment, a written Letter of Agreement for Postdoctoral Education should be drawn up and signed by the Postdoc, the supervisor, and the department head or delegate (see template Letter of Agreement and supporting document—Commitments of Postdoctoral Scholars and Supervisors—on the web at www.mcgill.ca gps/postdocs/fellows/letter). This should stipulate, for example, the purpose of the postdoctoral appointment (research training and the advancement of knowledge), the duration of the fellowship/financial support, the modality of pay, the work space, travel funds, and expectations and compensation for teaching and student research supervision. Leaves from postdoctoral education must comply with the Graduate and Postdoctoral Studies Policies for Vacation, Parental/Familial, and Health Leave (see section 8.3: Vacation Policy for Graduate Students and Postdocs and the eCalendar under University Regulations and Resources > Graduate > Regulations > Categories of Students > : Leave of Absence Status). Any breach of these conditions may result in grievance procedures or the termination of the postdoctoral appointment.

 iv. Postdocs with full responsibility for teaching a course should be compensated over and above their fellowship at the standard rate paid to lecturers by their department. This applies to all postdocs, except those for whom teaching is part of the award (e.g., Mellon grantees).

 v. The amount of research, teaching, or other tasks that Postdocs engage in over and above postdoctoral activities should conform to the regulations for Postdocs specified by the Canadian research council of their discipline. This applies to all Postdocs, including those whose funding does not come from the Canadian research councils.

4. Privileges
i. Postdocs have the same pertinent rights as the ones granted to McGill students in the Handbook on Student Rights and Responsibilities (“Green Book”), available at www.mcgill.ca/secretariat/policies/students.

ii. Postdocs have full graduate student borrowing privileges in McGill libraries through their identity card.

iii. As a rule, Postdocs who are Canadian citizens or who have Permanent Resident status may take courses for credit. Admission to such courses should be sought by submitting application documents directly to the appropriate program by the Postdoc. They must be admitted by the department offering the courses as Special Students. These Postdocs may only be enrolled as part-time students in non-degree granting programs. They will be charged fees for these courses.

iv. Postdocs may be listed in the McGill directory. The Computing Centre will grant Postdocs email privileges on the same basis as graduate students upon presentation of a valid identity card.

v. The Department of Athletics will grant Postdocs access to sports facilities upon presentation of their identity card. A fee will be charged on an annual or term basis.

vi. Postdocs are mandatory members of the Post-Graduate Students’ Society (PGSS) and an annual association fee is automatically charged. PGSS fees are mandatory. Postdocs are permitted membership in the Faculty Club; an annual fee will be charged for this membership.

vii. Postdocs are encouraged to participate in Professional Development Workshops provided by Graduate and Postdoctoral Studies and Teaching and Learning services. These sessions are usually free of charge.

viii. Postdocs have access to the services provided by the Ombudsperson.

ix. Postdocs may enrol as part-time students in the second language written and spoken English/French courses offered by the School of Continuing Studies/French Language Centre. Postdocs will be charged tuition for these courses. International Postdocs may be required to obtain a CAQ and a Study Permit.

x. Access to student services and athletic services are available to the Postdoc on an opt-in basis. Fees are applicable.

5. Responsibilities

i. Postdocs are subject to the responsibilities outlined in the Handbook on Student Rights and Responsibilities (“Green Book”), available at www.mcgill.ca/secretariat/policies/students.

ii. Each academic unit hosting Postdocs should clearly identify Postdocs’ needs and the means by which they will be met by the unit.

iii. Each academic unit should assess the availability of research supervision facilities, office space, and research funding before recruiting Postdocs.

iv. Some examples of responsibilities of the department are:
 – to verify the Postdoc’s eligibility period for registration;
 – to provide Postdocs with departmental policy and procedures that pertain to them;
 – to oversee the registration and appointment of Postdocs;
 – to assign departmental personnel (e.g., Postdoc coordinator and Graduate Program Director) the responsibility for Postdocs;
 – to oversee and sign off on the Letter of Agreement for Postdoctoral Education;
 – to ensure that each Postdoc has a supervisor, lab and/or office space, access to research operating costs and necessary equipment;
 – to include Postdocs in departmental career and placement opportunities;
 – to refer Postdocs to the appropriate University policies and personnel for the resolution of conflict that may arise between a Postdoc and a supervisor.

v. Some examples of responsibilities of the supervisor are:
 – to uphold and transmit to their Postdocs the highest professional standards of research and/or scholarship;
 – to provide research guidance;
 – to meet regularly with their Postdocs;
 – to provide feedback on research submitted by the Postdocs;
 – to clarify expectations regarding intellectual property rights in accordance with the University’s policy;
 – to provide mentorship for career development;
 – to prepare, sign, and adhere to a Letter of Agreement for Postdoctoral Education.

vi. Some examples of responsibilities of Postdocs are:
 – to inform themselves of and adhere to the University’s policies and/or regulations for Postdocs for leaves, for research, and for student conduct as outlined in the Handbook on Student Rights and Responsibilities and the Graduate and Postdoctoral Studies University Regulations and Resources;
 – to submit a complete file for registration to Enrolment Services;
 – to sign and adhere to their Letter of Agreement for Postdoctoral Education;
 – to communicate regularly with their supervisor;
 – to inform their supervisor of their absences.

vii. Some examples of the responsibilities of the University are:
– to register Postdocs;
– to provide an appeal mechanism in cases of conflict;
– to provide documented policies and procedures to Postdocs;
– to provide Postdocs with the necessary information on McGill University student services.

Approved by Senate, April 2000; revised May 2014

8.3 Vacation Policy for Graduate Students and Postdocs

Graduate students and Postdocs should normally be entitled to vacation leave equivalent to university holidays and an additional total of fifteen (15) working days in the year. Funded students and Postdocs with fellowships and research grant stipends taking additional vacation leave may have their funding reduced accordingly.

Council of FGSR April 23, 1999

8.4 Leave of Absence for Health and Parental/Familial Reasons

A leave of absence may be granted for maternity or parental reasons or for health reasons (see the eCalendar under University Regulations and Resources > Graduate > Leave of Absence Status).

Such a leave must be requested on a term-by-term basis and may be granted for a period of up to 52 weeks. Students and Postdocs must make a request for such a leave in writing to their department and submit a medical certificate. The department shall forward the request to Enrolment Services. See the procedure in the eCalendar under University Regulations and Resources > Graduate > Leave of Absence Status. Students who have been granted such a leave will have to register for the term(s) in question and their registration will show as “leave of absence” on their record. No tuition fees will be charged for the duration of the authorized leave. Research supervisors are not obligated to remunerate students and Postdocs on leave. GPS has prepared a summary table of various leave policies (paid or unpaid) for students and Postdocs paid from the Federal and Quebec Councils through fellowships or research grants. The document is available at www.mcgill.ca/gps/funding/students-postdocs/accepting-maintaining-awards#poli under "Leave Policies - Funding Council Leave Policies for Graduate Students and Postdoctoral Fellows."

8.5 Postdoctoral Research Trainees

Eligibility

If your situation does not conform to the Government of Quebec's definition of Postdoctoral Fellow, you may be eligible to attend McGill as a Postdoctoral Research Trainee. While at McGill, you can perform research only (you may not register for courses or engage in clinical practice). Medical specialists who will have clinical exposure and require a training card must register through Postgraduate Medical Education of the Faculty of Medicine—not Graduate and Postdoctoral Studies.

The category of Postdoctoral Research Trainee is for:

Category 1: An individual who has completed requirements for the Doctoral degree or medical specialty, but the degree/certification has not yet been awarded. The individual will subsequently be eligible for registration as a Postdoctoral Fellow.

Category 2: An individual who is not eligible for Postdoctoral Registration according to the Government of Quebec's definition, but is a recipient of an external postdoctoral award from a recognized Canadian funding agency.

Category 3: An individual who holds a professional degree (or equivalent) in a regulated health profession (as defined under CIHR-eligible health profession) and is enrolled in a program of postgraduate medical education at another institution. The individual wishes to conduct the research stage or elective component of his/her program of study at McGill University under the supervision of a McGill professor. The individual will be engaged in full-time research with well-defined objectives, responsibilities, and methods of reporting. The application must be accompanied by a letter of permission from the home institution (signed by the Department Chair, Dean or equivalent) confirming registration in their program and stating the expected duration of the research stage. Individuals who are expecting to spend more than one year are encouraged to obtain formal training (master’s or Ph.D.) through application to a relevant graduate program.

Category 4: An individual with a regulated health professional degree (as defined under CIHR-eligible health profession), but not a Ph.D. or equivalent or medical specialty training, but who fulfills criteria for funding on a tri-council operating grant or by a CIHR fellowship (up to maximum of five years post-degree).

Note: Individuals who are not Canadian citizens or permanent residents must inquire about eligibility for a work permit.

General Conditions

• The maximum duration is three years;
the individual must be engaged in full-time research;
the individual must provide copies of official transcripts/diploma;
the individual must have the approval of a McGill professor to supervise the research and of the Unit;
the individual must have adequate proficiency in English, but is not required to provide official proof of English competency to Enrolment Services;
the individual must comply with regulations and procedures governing research ethics and safety and obtain the necessary training;
the individual will be provided access to McGill libraries, email, and required training in research ethics and safety. Any other University services must be purchased (e.g., access to athletic facilities);
the individual must arrange for basic health insurance coverage prior to arrival at McGill and may be required to provide proof of coverage.

9 Graduate Studies Guidelines and Policies

Refer to the eCalendar under University Regulations and Resources > Graduate > : Guidelines and Policies for information on the following:

- Guidelines and Regulations for Academic Units on Graduate Student Advising and Supervision
- Policy on Graduate Student Research Progress Tracking
- Ph.D. Comprehensives Policy
- Graduate Studies Reread Policy
- Failure Policy
- Guideline on Hours of Work

10 Information on Research Policies and Guidelines, Patents, Postdocs, Associates, Trainees

Refer to the eCalendar under University Regulations and Resources > Graduate > : Research Policy and Guidelines, Patents, Postdocs, Associates, Trainees for information on the following:

- Policy on Research Ethics
- Regulations on Research Policy
- Policy on Research Integrity
- Guidelines for Research Involving Human Subjects
- Guidelines for Research with Animal Subjects
- Policy on Intellectual Property
- Regulations Governing Conflicts of Interest
- Safety in Field Work
- Office of Sponsored Research
- Postdocs
- Research Associates

11 Academic Programs

The programs and courses in the following sections have been approved for the 2014–2015 session as listed. The Faculty/School reserves the right to introduce changes as may be deemed necessary or desirable at any time throughout the year.
11.1 Agricultural Economics

11.1.1 Location

Department of Agricultural Economics
Macdonald Campus
21,111 Lakeshore Road
Sainte-Anne-de-Bellevue QC H9X 3V9
Canada

Telephone: 514-398-7838
Email: gradstudies.macdonald@mcgill.ca
Website: http://agrecon.mcgill.ca

11.1.2 About Agricultural Economics

The goal of graduate training in Agricultural Economics is to provide students with the applied concepts and tools to identify, define, and analyze economic problems affecting the performance of the agri-food sector and the environment. Attention is given to the development of analytical skills in the broad areas of agricultural, environmental and ecological economics, development, and resource allocation in production and marketing in agriculture. The program prepares graduates for rewarding careers in research, analysis and decision-making in academia, private and NGO sectors, and government. For more information, visit http://agrecon.mcgill.ca/grad.htm.

11.1.3 Agricultural Economics Admission Requirements and Application Procedures

11.1.3.1 Admission Requirements

To be considered eligible for direct admission to the M.Sc. program, the applicant must have an undergraduate degree with a Cumulative Grade Point Average (CGPA) of at least 3.0 out of a possible 4.0 (Second Class - Upper Division or equivalent) or a CGPA of 3.2/4.0 for the last two full-time academic years. The ideal preparation is an undergraduate degree in Agricultural Economics or Economics, including undergraduate courses in intermediate economic theory (micro and macro), calculus, algebra, statistics and econometrics. Candidates considered to have insufficient preparation in economics will be asked to take up to two additional undergraduate courses as part of their M.Sc. program.

When an applicant does not have sufficient background in economics for admission to the M.Sc., they may be admitted to a Qualifying program of one year of undergraduate courses. The CGPA requirement is the same as for the M.Sc.

11.1.3.2 Application Procedures

McGill’s online application form for graduate program candidates is available at www.mcgill.ca/gradapplicants/apply.

See : Application Procedures for detailed application procedures.

11.1.3.2.1 Additional Requirements

The items and clarifications below are additional requirements set by this department:

- Curriculum Vitae
- Research Proposal – not required, but highly recommended
- Letters of Reference (2) must be printed on the letterhead of the referee's university or organization, and uploaded to the McGill application system
- The GRE is not required, but it is highly recommended

11.1.3.3 Application Deadlines

The application deadlines listed here are set by the Department of Agricultural Economics and may be revised at any time. Applicants must verify all deadlines and documentation requirements well in advance on the appropriate McGill departmental website; please consult the list at www.mcgill.ca/gps/contact/graduate-program.

<table>
<thead>
<tr>
<th>Canadian</th>
<th>International</th>
<th>Special/Exchange/Visiting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall: May 31</td>
<td>Fall: March 15</td>
<td>Fall: Same as Canadian/International</td>
</tr>
<tr>
<td>Winter: N/A</td>
<td>Winter: N/A</td>
<td>Winter: N/A</td>
</tr>
<tr>
<td>Summer: N/A</td>
<td>Summer: N/A</td>
<td>Summer: N/A</td>
</tr>
</tbody>
</table>
Admission to graduate studies is competitive; accordingly, late and/or incomplete applications are considered only as time and space permit. International applicants are advised to apply well in advance of these dates because immigration procedures may be lengthy.

11.1.4 Agricultural Economics Faculty

<table>
<thead>
<tr>
<th>Program Director</th>
<th>J.C. Henning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associate Professors</td>
<td>J.C. Henning; B.Sc., Ph.D.(Guelph)</td>
</tr>
<tr>
<td></td>
<td>P.J. Thomassin; B.Sc.(Agr.)(McG.), M.S., Ph.D.(Hawaii Pac.)</td>
</tr>
<tr>
<td>Assistant Professor</td>
<td>N. Kosoy; B.Sc.(Univ. Simon Bolivar), M.Sc.(Kent), M.Sc., Ph.D.(Univ. Autonoma de Barcelona)</td>
</tr>
</tbody>
</table>

11.2 Animal Science

11.2.1 Location

Department of Animal Science
Macdonald Campus
21,111 Lakeshore Road
Sainte-Anne-de-Bellevue QC H9X 3V9
Canada
Telephone: 514-398-7838
Email: gradstudies.macdonald@mcgill.ca
Website: www.mcgill.ca/animal

11.2.2 About Animal Science

The Department of Animal Science provides exciting challenges to graduate students in the areas of Biotechnology and Molecular Biology, Breeding and Genetics, Nutrition, and Reproductive Physiology as they relate, not only to livestock production, but also leading into the fields of human nutrition and medicine via animal models for human disease, infertility, and obesity. Official options in Biotechnology are also available. Departmental researchers have excellent wet-lab facilities at their disposal; large-animal studies can be carried out at the Large Animal Research Unit on the Macdonald campus farm, where other livestock species are available for research trials as well. Research can make use of the Small Animal Research Unit for studies involving rodent animal models, guinea pigs, neonatal piglets, and rabbits. Expertise is also available in applied information systems, management-software development, and large-scale data analyses. Close collaboration with the Quebec Centre for Expertise in Dairy Production (Valacta) allows for large-scale data-mining projects, software development, and the production of advising tools for the industry. The Department also has significant expertise in food safety, environmental studies related to animal production, and global food security. Our staff's many connections via research networks allow for rich learning environments for our graduate students.

section 11.2.5: Master of Science (M.Sc.); Animal Science (Thesis) (45 credits)

Two one-semester courses and three seminar courses at the postgraduate level complement an area of research (resulting in a thesis) under the supervision of one of our staff—many of whom are leaders in their respective fields. Entrance to this program is highly competitive, requiring an excellent B.Sc. and letters of reference. Graduates of this program are well prepared for careers in the animal industry, the pharmaceutical sector, and many varied fields in biotechnology.

section 11.2.6: Master of Science, Applied (M.Sc.A.); Animal Science (Non-Thesis) (45 credits)

This non-thesis degree is oriented to animal scientists already working in industry or government, to undergraduate students inspired by concepts in sustainable and integrated animal agriculture, to project leaders interested in animal resource management, and to veterinarians. The program provides graduate training in applied areas of animal production with a view toward integrating technology and management in animal production with allied areas of agricultural resource utilization.

section 11.2.7: Doctor of Philosophy (Ph.D.); Animal Science

Since the Ph.D. is primarily a research degree, the amount of coursework required will normally be considerably less than is the case for the M.Sc. It depends on the background of the individual student and must be approved by the student’s Advisory Committee. At a minimum, it includes two seminar
section 11.2.7: Doctor of Philosophy (Ph.D.); Animal Science

courses at the graduate level and the Ph.D. Comprehensive Examination as an admission to candidacy for the Ph.D. As with the M.Sc. (Thesis), admission is based on an excellent track record. Suitable candidates are encouraged to contact potential supervisors within their chosen area of interest. Applicants should, however, be aware that no professor is in a position to accept students without formal approval of the application by the Graduate Admissions Committee.

section 11.2.8: Doctor of Philosophy (Ph.D.); Animal Science — Bioinformatics

Bioinformatics research lies at the intersection of biological/medical sciences and mathematics/computer science/engineering. The intention of the Bioinformatics Option is to train students to become researchers in this interdisciplinary field. This includes the development of strategies for experimental design, the construction of tools to analyze datasets, the application of modelling techniques, the creation of tools for manipulating bioinformatics data, the integration of biological databases, and the use of algorithms and statistics.

11.2.3 Animal Science Admission Requirements and Application Procedures

11.2.3.1 Admission Requirements

M.Sc. (Thesis)

Candidates are required to have either a bachelor's degree in Agriculture or a B.Sc. degree in an appropriate, related discipline with an equivalent cumulative grade point average of 3.0/4.0 (second class – upper division) or 3.2/4.0 during the last two years of full-time university study. High grades are expected in courses considered by the academic unit to be preparatory to the graduate program.

M.Sc. (Applied)

All candidates are required to have a B.Sc. degree or equivalent.

Ph.D.

Candidates are normally required to have an M.Sc. degree in an area related to the chosen field of specialization for the Ph.D. program.

Qualifying Students

Some applicants whose academic degrees and standing entitle them to serious consideration for admission to graduate studies, but who are considered inadequately prepared in the subject selected may be admitted to a Qualifying program if they have met the Graduate and Postdoctoral Studies minimum CGPA of 3.0/4.0. The course(s) to be taken in a Qualifying program will be prescribed by the academic unit concerned. Qualifying students are registered in graduate studies, but not as candidates for a degree. Only one Qualifying year is permitted. Successful completion of a Qualifying program does not guarantee admission to a degree program.

Financial Aid – Financial aid is very limited and highly competitive. It is suggested that students give serious consideration to their financial planning before submitting an application. Normally, a student will not be accepted unless adequate financial support can be provided by the student and/or the student’s supervisor. Academic units cannot guarantee financial support via teaching assistantships or other funds.

11.2.3.2 Application Procedures

McGill’s online application form for graduate program candidates is available at www.mcgill.ca/gradapplicants/apply. See Application Procedures for detailed application procedures.

11.2.3.2.1 Additional Requirements

The items and clarifications below are additional requirements set by this department:

• Acceptance to all programs depends on a staff member agreeing to serve as the student’s supervisor and the student obtaining financial support.

• The GRE is not required, but it is highly recommended.

11.2.3.3 Application Deadlines

The applications deadlines listed here are set by the Department of Animal Science and may be revised at any time. Applicants must verify all deadlines and documentation requirements well in advance on the appropriate McGill departmental website; please consult the list at www.mcgill.ca/gps/contact/graduate-program.

<table>
<thead>
<tr>
<th>Canadian</th>
<th>International</th>
<th>Special/Exchange/Visiting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall: May 31</td>
<td>Fall: March 15</td>
<td>Same as Canadian/International</td>
</tr>
<tr>
<td>Winter: Oct. 15</td>
<td>Winter: Aug. 31</td>
<td>Same as Canadian/International</td>
</tr>
<tr>
<td>Summer: N/A</td>
<td>Summer: N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Admission to graduate studies is competitive; accordingly, late and/or incomplete applications are considered only as time and space permit. International applicants are advised to apply well in advance of these dates because immigration procedures may be lengthy.
11.2.4 Animal Science Faculty

Chair
Kevin M. Wade

Emeritus Professors
R.B. Buckland; B.Sc.(Agr.), M.Sc.(McG.), Ph.D.(Md.)
E.R. Chavez; Ing.Agr.(Chile), M.Sc., Ph.D.(Calif., Davis)
E. Donefer; B.Sc., M.Sc.(Cornell), Ph.D.(McG.)
B.R. Downey; D.V.M.(Tor.), Ph.D.(McG.)
U. Kühllein; B.Sc.(Fed. Inst. of Tech., Zurich), Ph.D.(Geneva)
S. Touchburn; M.S.A.(Br. Col.), Ph.D.(Ohio St.)

Professors
J.F. Hayes; B.Agr.Sc., M.Agr.Sc.(Dublin), Ph.D.(N. Carolina St.)
X. Zhao; B.Sc., M.Sc.(Nanjing), Ph.D.(Cornell) (*James McGill Professor*)

Associate Professors
V. Bordignon; D.V.M.(URCAMP, Brazil), M.Sc.(UFPeL, Brazil), Ph.D.(Montr.)
R.I. Cue; B.Sc.(Newcastle, UK), Ph.D.(Edin.)
S. Kimmins; B.Sc.(Dal.), M.Sc.(Nova Scotia Ag.), Ph.D.(Dal.) (*CRC Chair, Tier 2*)
H. Monardes; Ing.Agr.(Concepcion, Chile), M.Sc., Ph.D.(McG.)
A.F. Mustafa; B.Sc., M.Sc.(Khartoum), Ph.D.(Sask.)
L.E. Phillip; B.Sc.(Agr.), M.Sc.(Agr.)(McG.), Ph.D.(Guelph)
K.M. Wade; B.Sc.(Agr.), M.Sc.(Agr.)(Dublin), Ph.D.(Cornell)
D. Zadworny; B.Sc., Ph.D.(Guelph)

Assistant Professors
M. Chénier; B.Sc.(Laval), M.Sc.(Queb.), Ph.D.(McG.)
R. Duggavathi; B.V.Sc., M.V.Sc.(Bangalore), Ph.D.(Sask.)

Adjunct Professors
B. Baurhoo, E. Ibeagha-Awemu, P. Lacasse, D. Lefebvre, B. Murphy, D. Soutschi

11.2.5 Master of Science (M.Sc.); Animal Science (Thesis) (45 credits)

Thesis Courses (36 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC 680</td>
<td>9</td>
<td>M.Sc. Thesis 1</td>
</tr>
<tr>
<td>ANSC 681</td>
<td>9</td>
<td>M.Sc. Thesis 2</td>
</tr>
<tr>
<td>ANSC 682</td>
<td>9</td>
<td>M.Sc. Thesis 3</td>
</tr>
<tr>
<td>ANSC 683</td>
<td>9</td>
<td>M.Sc. Thesis 4</td>
</tr>
</tbody>
</table>

Required Courses (9 credits)

- 6 credits of coursework at the 500 level or higher approved by the student's advisory committee, and three 1-credit seminars.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC 695</td>
<td>1</td>
<td>MSc. General Topic Seminar</td>
</tr>
<tr>
<td>ANSC 696</td>
<td>1</td>
<td>MSc. Research Proposal Seminar</td>
</tr>
</tbody>
</table>
Depending on the needs and competencies of the student, additional coursework may be assigned by the supervisory committee.

11.2.6 Master of Science, Applied (M.Sc.A.); Animal Science (Non-Thesis) (45 credits)

The program aims to provide graduate training in applied areas of animal production with a view toward integrating technology and management in animal production with allied areas of agricultural resource utilization.

Research Project (15 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC 643</td>
<td>3</td>
<td>Project 1</td>
</tr>
<tr>
<td>ANSC 644</td>
<td>3</td>
<td>Project 2</td>
</tr>
<tr>
<td>ANSC 645</td>
<td>3</td>
<td>Project 3</td>
</tr>
<tr>
<td>ANSC 646</td>
<td>3</td>
<td>Project 4</td>
</tr>
<tr>
<td>ANSC 647</td>
<td>3</td>
<td>Project 5</td>
</tr>
</tbody>
</table>

Complementary Courses (30 credits)

15-30 credits from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEMA 610</td>
<td>3</td>
<td>Statistical Methods 2</td>
</tr>
<tr>
<td>ANSC 504</td>
<td>3</td>
<td>Population Genetics</td>
</tr>
<tr>
<td>ANSC 530</td>
<td>3</td>
<td>Experimental Techniques in Nutrition</td>
</tr>
<tr>
<td>ANSC 551</td>
<td>3</td>
<td>Carbohydrate and Lipid Metabolism</td>
</tr>
<tr>
<td>ANSC 552</td>
<td>3</td>
<td>Protein Metabolism and Nutrition</td>
</tr>
<tr>
<td>ANSC 560</td>
<td>3</td>
<td>Biology of Lactation</td>
</tr>
<tr>
<td>ANSC 565</td>
<td>3</td>
<td>Applied Information Systems</td>
</tr>
<tr>
<td>ANSC 600</td>
<td>3</td>
<td>Advanced Eukaryotic Cells and Viruses</td>
</tr>
<tr>
<td>ANSC 604</td>
<td>3</td>
<td>Advanced Animal Biotechnology</td>
</tr>
<tr>
<td>ANSC 605</td>
<td>3</td>
<td>Estimation: Genetic Parameters</td>
</tr>
<tr>
<td>ANSC 606</td>
<td>3</td>
<td>Selection Index and Animal Improvement</td>
</tr>
<tr>
<td>ANSC 622</td>
<td>3</td>
<td>Selected Topics in Molecular Biology</td>
</tr>
<tr>
<td>ANSC 635</td>
<td>3</td>
<td>Vitamins and Minerals in Nutrition</td>
</tr>
<tr>
<td>ANSC 636</td>
<td>3</td>
<td>Analysis - Animal Breeding Research Data</td>
</tr>
<tr>
<td>ANSC 691</td>
<td>3</td>
<td>Special Topic: Animal Sciences</td>
</tr>
<tr>
<td>ANSC 692</td>
<td>3</td>
<td>Topic in Animal Sciences 1</td>
</tr>
</tbody>
</table>

0-15 credits selected from 500- and 600-level courses from across the Faculty (with the possibility of up to 9 credits from outside the Faculty if deemed appropriate by the supervisor).

11.2.7 Doctor of Philosophy (Ph.D.); Animal Science

Since the Ph.D. is primarily a research degree, the amount of coursework required will depend on the background of the individual student, and must be approved by the student's advisory committee.

Thesis

A thesis for the doctoral degree must constitute original scholarship and must be a distinct contribution to knowledge. It must show familiarity with previous work in the field and must demonstrate ability to plan and carry out research, organize results, and defend the approach and conclusions in a scholarly manner. The research presented must meet current standards of the discipline; as well, the thesis must clearly demonstrate how the research advances knowledge in the field. Finally, the thesis must be written in compliance with norms for academic and scholarly expression and for publication in the public domain.
Required Courses

- ANSC 701 (0) Doctoral Comprehensive Examination

Two seminar courses at the 500, 600, or 700 level.

11.2.8 Doctor of Philosophy (Ph.D.); Animal Science — Bioinformatics

Thesis

A thesis for the doctoral degree must constitute original scholarship and must be a distinct contribution to knowledge. It must show familiarity with previous work in the field and must demonstrate ability to plan and carry out research, organize results, and defend the approach and conclusions in a scholarly manner. The research presented must meet current standards of the discipline; as well, the thesis must clearly demonstrate how the research advances knowledge in the field. Finally, the thesis must be written in compliance with norms for academic and scholarly expression and for publication in the public domain.

Required Courses (5 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC 701</td>
<td>0</td>
<td>Doctoral Comprehensive Exam</td>
</tr>
<tr>
<td>ANSC 797</td>
<td>1</td>
<td>Animal Science Seminar 3</td>
</tr>
<tr>
<td>ANSC 798</td>
<td>1</td>
<td>Animal Science Seminar 4</td>
</tr>
<tr>
<td>COMP 616D1</td>
<td>1.5</td>
<td>Bioinformatics Seminar</td>
</tr>
<tr>
<td>COMP 616D2</td>
<td>1.5</td>
<td>Bioinformatics Seminar</td>
</tr>
</tbody>
</table>

Complementary Courses (6 credits)

Two courses chosen from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BINF 621</td>
<td>3</td>
<td>Bioinformatics: Molecular Biology</td>
</tr>
<tr>
<td>BMDE 652</td>
<td>3</td>
<td>Bioinformatics: Proteomics</td>
</tr>
<tr>
<td>BTEC 555</td>
<td>3</td>
<td>Structural Bioinformatics</td>
</tr>
<tr>
<td>COMP 618</td>
<td>3</td>
<td>Bioinformatics: Functional Genomics</td>
</tr>
<tr>
<td>PHGY 603</td>
<td>3</td>
<td>Systems Biology and Biophysics</td>
</tr>
</tbody>
</table>

Additional courses at the 500, 600, or 700 level may be required at the discretion of the candidate's supervisory committee.

11.3 Bioresource Engineering

11.3.1 Location

Department of Bioresource Engineering
Macdonald Campus
21,111 Lakeshore Road
Sainte-Anne-de-Bellevue QC H9X 3V9
Canada
Telephone: 514-398-7838
Email: gradstudies.macdonald@mcgill.ca
Website: www.mcgill.ca/bioeng

11.3.2 About Bioresource Engineering

The Department offers M.Sc. and Ph.D. research programs in various areas of bioresource engineering including: plant and animal environments; ecological engineering (ecosystem modelling, design, management, and remediation); water resources management (hydrology, irrigation, drainage, water quality);
The interdisciplinary nature of bioresource engineering often requires candidates for higher degrees to work in association with, or attend courses given by, a number of other departments at both the McGill University Macdonald campus and the Downtown campus.

section 11.3.5: Master of Science (M.Sc.); Bioresource Engineering (Thesis) (46 credits)

This option for the M.Sc. degree is oriented toward individuals who intend to develop a career in bioresource engineering research.

section 11.3.6: Master of Science (M.Sc.); Bioresource Engineering (Thesis) — Environment (46 credits)

The Environmental option is coordinated through the McGill School of Environment (MSE). This option is intended for students who want to take an interdisciplinary approach in their graduate research on environmental issues. Students will learn how to transfer knowledge into action and develop an appreciation for the roles of science, politics, economics, and ethics with regard to the environment.

section 11.3.7: Master of Science (M.Sc.); Bioresource Engineering (Thesis) — Neotropical Environment (46 credits)

This option is a joint offering between McGill University and the Smithsonian Tropical Research Institute (STRI) in Panama. This interdisciplinary option encourages and promotes ethically sound and socially significant learning in the global context of environmental problems. Participation in the MSE-Panama Symposium presentation in Montreal is a requirement of this program. This program trains students in the socio-political aspects of the Tropical Environment.

section 11.3.8: Master of Science (M.Sc.); Bioresource Engineering (Non-Thesis) — Integrated Water Resources Management (45 credits)

Integrated Water Resource Management is a one-year program providing an essential approach for sustainable management of our natural watershed resources. The 13-credit internship is a central feature of this master’s program. The degree gives students the unique opportunity to study the biophysical, environmental, legal, institutional, and socio-economic aspects of water use and management, in an integrated context. The degree is directed at practising professionals who wish to upgrade and/or focus their skill set to address water management issues. As a graduate from this program, you will be well suited to opportunities in diverse fields of employment, such as water resources consulting, international development project management, research with governments or universities, public policy and governance development, and climate change impact assessment.

section 11.3.9: Master of Science, Applied (M.Sc.A.); Bioresource Engineering (Non-Thesis) (45 credits)

The non-thesis option is aimed at individuals already employed in industry or seeking to improve their skills in specific areas (soil and water, structures and environment, waste management, environment protection, post-harvest technology, food process engineering, environmental engineering) in order to attain a higher level of engineering qualification. Candidates must be qualified to be members of a Canadian professional engineering association such as the Ordre des ingénieurs du Québec (OIQ) and must maintain contact with their academic adviser in the Department of Bioresource Engineering before registration to clarify objectives, investigate project possibilities, and plan a program of study.

section 11.3.10: Master of Science, Applied (M.Sc.A.); Bioresource Engineering (Non-Thesis) — Environment (45 credits)

The non-thesis Environment option is aimed at individuals already employed in industry or seeking to improve their skills in specific areas with the coordination of the McGill School of Environment.

section 11.3.11: Master of Science, Applied (M.Sc.A.); Bioresource Engineering (Non-Thesis) — Environmental Engineering (45 credits)

The Environmental Engineering program emphasizes interdisciplinary fundamental knowledge, practical perspective, and awareness of environmental issues through a wide range of technical and non-technical courses offered by collaborating departments and faculties at the University.

The primary objective of the program is to train environmental professionals at the advanced level. The program is thus designed for individuals with a university undergraduate degree in engineering. Through this program, students will master specialized skills in their home disciplines and acquire a broader perspective and awareness of environmental issues.

section 11.3.12: Master of Science, Applied (M.Sc.A.); Bioresource Engineering (Non-Thesis) — Integrated Food and Bioprocessing (45 credits)

This graduate program will provide students with the tools to understand how food and agricultural production interact to better manage agricultural, food, and biomass systems for the adequate supply of wholesome food, feed, fiber, biofuel, and any other bio-based material. This course-based program will present students with the skills needed to assess existing production, delivery, and quality management systems; introduce improvements; and communicate effectively with policy makers and with colleagues in multi-disciplinary teams. The goals of this program are to provide up-to-date world class knowledge on techniques for adequate process design and management of biomass production strategies for the delivery of quality food, natural fiber, biochemicals, biomaterials, and biofuels, in a sustainable and environment-friendly way that benefits all. Training activities will include laboratory research and/or industrial/government internships.

section 11.3.13: Master of Science, Applied (M.Sc.A.); Bioresource Engineering (Non-Thesis) — Neotropical Environment (45 credits)

The non-thesis option is aimed at individuals already employed in industry or seeking to improve their skills in specific areas of the Tropical Environment. Participation in the MSE-Panama Symposium presentation in Montreal is a requirement of this program.

section 11.3.14: Doctor of Philosophy (Ph.D.); Bioresource Engineering

Please contact the Department for more information about this program.
section 11.3.15: Doctor of Philosophy (Ph.D.); Bioresource Engineering — Environment

The Ph.D. Bioresource Engineering: Environment – MSE Option is coordinated through the McGill School of Environment (MSE). This option is intended for students who want to take an interdisciplinary approach in their graduate research on environmental issues. Students will learn how to transfer knowledge into action and develop an appreciation for the roles of science, politics, economics, and ethics with regard to the environment.

section 11.3.16: Doctor of Philosophy (Ph.D.); Bioresource Engineering — Neotropical Environment

This is a research-based degree with a team of co-advisers from McGill and Latin America with the requirements of a one-year residency in Panama or tropical Latin America, three interdisciplinary courses, at least two of them focusing on North-South issues, proficiency in Spanish or Portuguese, one-time off-campus (Panama) fees, and the possibility of NEO-specific fellowships. Only the accredited professors listed on the NEO website can accept students in the option.

section 11.3.17: Graduate Certificate in Bioresource Engineering — Integrated Water Resources Management (15 credits)

The Graduate Certificate in Integrated Water Resources Management is for practising professionals who wish to upgrade or focus their skill set to address water management issues. Students are trained in Water Ethics, Law and Policy of Water Management, Freshwater Ecosystems, Health, and Sanitation.

11.3.3 Bioresource Engineering Admission Requirements and Application Procedures

11.3.3.1 Admission Requirements

Candidates for M.Sc. and Ph.D. degrees and Graduate Certificates should indicate in some detail their fields of special interest when applying for admission. An equivalent cumulative grade point average of 3.0/4.0 (second class – upper division) or 3.2/4.0 during the last two years of full-time university study is required at the bachelor's level. High grades are expected in courses considered by the academic unit to be preparatory to the graduate program. Experience after the undergraduate degree is an additional asset.

Qualifying Students

Some applicants whose academic degrees and standing entitle them to serious consideration for admission to graduate studies, but who are considered inadequately prepared in the subject selected may be admitted to a Qualifying program if they have met the Graduate and Postdoctoral Studies minimum CGPA of 3.0/4.0. The course(s) to be taken in a Qualifying program will be prescribed by the academic unit concerned. Qualifying students are registered in graduate studies, but not as candidates for a degree. Only one Qualifying year is permitted. Successful completion of a Qualifying program does not guarantee admission to a degree program.

Financial Aid – Financial aid is very limited and highly competitive. It is suggested that students give serious consideration to their financial planning before submitting an application. Normally, a student will not be accepted unless adequate financial support can be provided by the student and/or the student’s supervisor. Academic units cannot guarantee financial support via teaching assistantships or other funds.

11.3.3.2 Application Procedures

McGill’s online application form for graduate program candidates is available at www.mcgill.ca/gradapplicants/apply.

See : Application Procedures for detailed application procedures.

11.3.3.2.1 Additional Requirements

The items and clarifications below are additional requirements set by this department:

• Acceptance to all programs depends on a staff member agreeing to serve as the student’s supervisor and the student obtaining financial support.

• The GRE is not required, but it is highly recommended.

11.3.3.3 Application Deadlines

The application deadlines listed here are set by the Bioresource Engineering Department and may be revised at any time. Applicants must verify all deadlines and documentation requirements well in advance on the appropriate McGill departmental website; please consult the list at www.mcgill.ca/gps/contact/graduate-program.

<table>
<thead>
<tr>
<th>Canadian</th>
<th>International</th>
<th>Special/Exchange/Visiting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall: May 31</td>
<td>Fall: Mar. 15</td>
<td>Fall: Same as Canadian/International</td>
</tr>
<tr>
<td>Winter: Oct. 15</td>
<td>Winter: Aug. 31</td>
<td>Winter: Same as Canadian/International</td>
</tr>
<tr>
<td>Summer: Feb. 28</td>
<td>Summer: Jan. 31</td>
<td>Summer: Same as Canadian/International</td>
</tr>
</tbody>
</table>

Admission to graduate studies is competitive; accordingly, late and/or incomplete applications are considered only as time and space permit.

International applicants are advised to apply well in advance of these dates because immigration procedures may be lengthy.
11.3.4 Bioresource Engineering Faculty

Chair

V. Orsat

Graduate Program Director

G.S.V. Raghavan

Associate Graduate Program Director

V. Orsat

Emeritus Professor

R.S. Broughton; B.S.A., B.A.Sc.(Tor.), S.M.(MIT), Ph.D.(McG.), LL.D.(Dal.)

Professor (Post-Retirement)

R. Kok; B.E.Sc., Ph.D.(W. Ont.)

Professors

C.A. Madramootoo; B.Sc.(Agr.Eng.), M.Sc., Ph.D.(McG.), D.Sc.(Guelph) (James McGill Professor)
E. McKyes; B.Eng., M.Eng., Ph.D.(McG.)
M.O. Ngadi; B.Eng.(Agr.Eng.), M.A.Sc., Ph.D.(Dal.Tech.) (William Dawson Scholar)
S.O. Prasher; B.Tech., M.Tech.(Punj.), Ph.D.(Br. Col.), LL.D.(Dal.) (James McGill Professor)
G.S.V. Raghavan; B.Eng.(B’lore), M.Sc.(Guelph), Ph.D.(Colo. St.), D.Sc.(TNAU), D.Sc.(UAS Dharwad) (James McGill Professor)

Associate Professors

V.I. Adamchuk; B.Sc.(Kyiv, Ukraine), M.Sc., Ph.D.(Purd.)
V. Orsat; B.Sc., M.Sc., Ph.D.(McG.)

Assistant Professors

J. Adamowski; B.Eng.(RMC), M.Phil.(Camb.), M.B.A.(WUT, LBS, HEC, NHH), Ph.D.(Warsaw)
G. Clark; B.Sc.(Alta.), M.Sc., Ph.D.(McG.)
M.-J. Dumont; B.Eng, M.Sc.(Laval), Ph.D.(Alta.)
M. Lefsrud; B.Sc.(Sask.), M.Sc.(Rutg.), Ph.D.(Tenn.)
Z. Qi; B.Sc., M.Sc.(China Agr.), Ph.D.(Iowa)

Adjunct Professors

M. Clamen; B.Eng., Ph.D.(McG.)
F. Daneshmand; B.Sc., M.Sc., Ph.D.(Shiraz Univ.)
S. Dev; B.Sc.(TNAU), M.Sc., Ph.D.(McG.)
P. Jutras; B.Sc.(McG.), M.Sc.(Montr.), Ph.D.(McG.)
A. Madani; B.Sc., M.Sc.(Br. Col.), Ph.D.(WSU)
J. Martinez; M.Sc.(Polytechnic Inst. of Toulouse), Ph.D.(Univ. of Perpignan)
A. Mujumdar; B.Eng.(Bomb.), M.Eng., Ph.D.(McG.)
B. Tartakovsky; M.Sc., Ph.D.(Moscow State Univ.)
C. Vigneault; B.Sc., M.Sc.(Laval), Ph.D.(McG.)

Faculty Lecturers

A. Cherestes; B.Sc., M.Sc.(Queens College), Ph.D.(CUNY)
M. Knutt; M.B.Sc.(W. Ont.), M.A., Ph.D.(Brandeis)
Research/Professional Associates

Y. Gariepy; B.Sc., M.Sc.(McG.)
D. Lyew; B.Sc., M.Sc., Ph.D.(McG.)
S. Sotocinal; B.Sc.(Phil.), M.Sc., Ph.D.(McG.)

Technical

S. Manktelow

11.3.5 Master of Science (M.Sc.); Bioresource Engineering (Thesis) (46 credits)

This option for the M.Sc. degree is oriented toward individuals who intend to develop a career in bioresource engineering research.

Thesis Courses (32 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BREE 691</td>
<td>4</td>
<td>M.Sc. Thesis 1</td>
</tr>
<tr>
<td>BREE 692</td>
<td>4</td>
<td>M.Sc. Thesis 2</td>
</tr>
<tr>
<td>BREE 693</td>
<td>4</td>
<td>M.Sc. Thesis 3</td>
</tr>
<tr>
<td>BREE 694</td>
<td>4</td>
<td>M.Sc. Thesis 4</td>
</tr>
<tr>
<td>BREE 695</td>
<td>4</td>
<td>M.Sc. Thesis 5</td>
</tr>
<tr>
<td>BREE 696</td>
<td>4</td>
<td>M.Sc. Thesis 6</td>
</tr>
<tr>
<td>BREE 697</td>
<td>4</td>
<td>M.Sc. Thesis 7</td>
</tr>
<tr>
<td>BREE 698</td>
<td>4</td>
<td>M.Sc. Thesis 8</td>
</tr>
</tbody>
</table>

Required Courses (5 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BREE 651</td>
<td>1</td>
<td>Departmental Seminar M.Sc. 1</td>
</tr>
<tr>
<td>BREE 652</td>
<td>1</td>
<td>Departmental Seminar M.Sc. 2</td>
</tr>
<tr>
<td>BREE 699</td>
<td>3</td>
<td>Scientific Publication</td>
</tr>
</tbody>
</table>

Complementary Courses (9 credits)

500-, 600-, or 700-level courses in bioresource engineering and other fields to be determined in consultation with the Research Director.

11.3.6 Master of Science (M.Sc.); Bioresource Engineering (Thesis) — Environment (46 credits)

Thesis Courses (32 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BREE 691</td>
<td>4</td>
<td>M.Sc. Thesis 1</td>
</tr>
<tr>
<td>BREE 692</td>
<td>4</td>
<td>M.Sc. Thesis 2</td>
</tr>
<tr>
<td>BREE 693</td>
<td>4</td>
<td>M.Sc. Thesis 3</td>
</tr>
<tr>
<td>BREE 694</td>
<td>4</td>
<td>M.Sc. Thesis 4</td>
</tr>
<tr>
<td>BREE 695</td>
<td>4</td>
<td>M.Sc. Thesis 5</td>
</tr>
<tr>
<td>BREE 696</td>
<td>4</td>
<td>M.Sc. Thesis 6</td>
</tr>
<tr>
<td>BREE 697</td>
<td>4</td>
<td>M.Sc. Thesis 7</td>
</tr>
<tr>
<td>BREE 698</td>
<td>4</td>
<td>M.Sc. Thesis 8</td>
</tr>
</tbody>
</table>

Required Courses (11 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BREE 651</td>
<td>1</td>
<td>Departmental Seminar M.Sc. 1</td>
</tr>
<tr>
<td>BREE 652</td>
<td>1</td>
<td>Departmental Seminar M.Sc. 2</td>
</tr>
</tbody>
</table>
Complementary Courses (3 credits)

Chosen from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVR 519</td>
<td>3</td>
<td>Global Environmental Politics</td>
</tr>
<tr>
<td>ENVR 544</td>
<td>3</td>
<td>Environmental Measurement and Modelling</td>
</tr>
<tr>
<td>ENVR 620</td>
<td>3</td>
<td>Environment and Health of Species</td>
</tr>
<tr>
<td>ENVR 622</td>
<td>3</td>
<td>Sustainable Landscapes</td>
</tr>
<tr>
<td>ENVR 630</td>
<td>3</td>
<td>Civilization and Environment</td>
</tr>
<tr>
<td>ENVR 680</td>
<td>3</td>
<td>Topics in Environment 4</td>
</tr>
</tbody>
</table>

or another 500-, 600-, or 700-level course recommended by the Advisory Committee and approved by the Environment Option Committee.

11.3.7 Master of Science (M.Sc.); Bioresource Engineering (Thesis) — Neotropical Environment (46 credits)

Thesis (32 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BREE 691</td>
<td>4</td>
<td>M.Sc. Thesis 1</td>
</tr>
<tr>
<td>BREE 692</td>
<td>4</td>
<td>M.Sc. Thesis 2</td>
</tr>
<tr>
<td>BREE 693</td>
<td>4</td>
<td>M.Sc. Thesis 3</td>
</tr>
<tr>
<td>BREE 694</td>
<td>4</td>
<td>M.Sc. Thesis 4</td>
</tr>
<tr>
<td>BREE 695</td>
<td>4</td>
<td>M.Sc. Thesis 5</td>
</tr>
<tr>
<td>BREE 696</td>
<td>4</td>
<td>M.Sc. Thesis 6</td>
</tr>
<tr>
<td>BREE 697</td>
<td>4</td>
<td>M.Sc. Thesis 7</td>
</tr>
<tr>
<td>BREE 698</td>
<td>4</td>
<td>M.Sc. Thesis 8</td>
</tr>
</tbody>
</table>

Required Courses (11 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 640</td>
<td>3</td>
<td>Tropical Biology and Conservation</td>
</tr>
<tr>
<td>BREE 651</td>
<td>1</td>
<td>Departmental Seminar M.Sc. 1</td>
</tr>
<tr>
<td>BREE 652</td>
<td>1</td>
<td>Departmental Seminar M.Sc. 2</td>
</tr>
<tr>
<td>BREE 699</td>
<td>3</td>
<td>Scientific Publication</td>
</tr>
<tr>
<td>ENVR 610</td>
<td>3</td>
<td>Foundations of Environmental Policy</td>
</tr>
</tbody>
</table>

Note: Participation in the MSE-Panama Symposium presentation in Montreal is required.

Elective Course (3 credits)

3 credits, at the 500 level or higher, on environmental issues to be chosen in consultation with and approved by the student’s supervisor AND the Neotropical Environment Options Director.

11.3.8 Master of Science (M.Sc.); Bioresource Engineering (Non-Thesis) — Integrated Water Resources Management (45 credits)

Research Project (6 credits)
Required Courses (27 credits)

- BREE 503 (3) Water: Society, Law and Policy
- BREE 510 (3) Watershed Systems Management
- BREE 630 (13) Integrated Water Resources Management Internship
- BREE 651 (1) Departmental Seminar M.Sc. 1
- BREE 652 (1) Departmental Seminar M.Sc. 2
- BREE 655 (3) Integrated Water Resources Management Research Visits
- PARA 515 (3) Water, Health and Sanitation

Elective Courses (12 credits)

12 credits, at the 500 level or higher, of any relevant course(s) chosen in consultation with the Program Director.

11.3.9 Master of Science, Applied (M.Sc.A.); Bioresource Engineering (Non-Thesis) (45 credits)

The non-thesis option is aimed toward individuals already employed in industry or seeking to improve their skills in specific areas (soil and water/structures and environment/waste management/environment protection/post-harvest technology/food process engineering/environmental engineering) in order to enter the engineering profession at a higher level.

Candidates must meet the qualifications of a professional engineer either before or during their M.Sc. Applied program.

Each candidate for this option is expected to establish and maintain contact with his/her academic adviser in the Department of Bioresource Engineering some time before registration in order to clarify objectives, investigate project possibilities and plan a program of study.

Research Project (12 credits)

- BREE 671 (6) Project 1
- BREE 672 (6) Project 2

Required Courses (2 credits)

- BREE 651 (1) Departmental Seminar M.Sc. 1
- BREE 652 (1) Departmental Seminar M.Sc. 2

Complementary Courses (31 credits)

31 credits of 500-, 600-, or 700-level courses in bioresource engineering and other fields* to be determined in consultation with the Project Director.

* Note: 12 of the 31 credits are expected to be from collaborative departments, e.g., food process engineering: 12 credits divided between Food Science and Chemical Engineering.

11.3.10 Master of Science, Applied (M.Sc.A.); Bioresource Engineering (Non-Thesis) — Environment (45 credits)

Candidates must meet the qualifications of a professional engineer either before or during their M.Sc. Applied program.

Research Project (12 credits)

- BREE 671 (6) Project 1
- BREE 672 (6) Project 2

Required Courses (8 credits)

- BREE 651 (1) Departmental Seminar M.Sc. 1
Complementary Courses (25 credits)

3 credits from the following courses below:

- **ENVR 519** (3) Global Environmental Politics
- **ENVR 544** (3) Environmental Measurement and Modelling
- **ENVR 620** (3) Environment and Health of Species
- **ENVR 622** (3) Sustainable Landscapes
- **ENVR 630** (3) Civilization and Environment
- **ENVR 680** (3) Topics in Environment 4

or another course at the 500, 600, or 700 level recommended by the Advisory Committee and approved by the Environment Option Committee.

22 additional credits of 500-, 600-, or 700-level courses chosen in consultation with the academic adviser.

11.3.11 Master of Science, Applied (M.Sc.A.); Bioresource Engineering (Non-Thesis) — Environmental Engineering (45 credits)

This inter-departmental graduate program leads to a master's degree in Environmental Engineering. The objective of the program is to train environmental professionals at an advanced level. The program is designed for individuals with an undergraduate degree in engineering. This non-thesis degree falls within the M.Eng. and M.Sc. programs which are offered in the Departments of Bioresource, Chemical, Civil, and Mining, Metals, and Materials Engineering.

Research Project (6 credits)

- **BREE 671* (6)** Project 1
- **BREE 672 (6)** Project 2

* BREE 671 may also be taken as part of this requirement.

Required Courses (9 credits)

- **BREE 533 (3)** Water Quality Management
- **CHEE 591 (3)** Environmental Bioremediation
- **CIVE 615 (3)** Environmental Engineering Seminar

Complementary Courses (19 credits)

Data Analysis Course

3 credits from the following:

- **AEMA 611 (3)** Experimental Designs 1
- **CIVE 555 (3)** Environmental Data Analysis
- **PSYC 650 (3)** Advanced Statistics 1

Toxicology Course

3 credits from the following:
Water Pollution Engineering Course

4 credits from the following:
- CIVE 651 (4) Theory: Water / Wastewater Treatment
- CIVE 652 (4) Biological Treatment: Wastewaters
- CIVE 660 (4) Chemical and Physical Treatment of Waters

Air Pollution Engineering Course

3 credits from the following:
- CHEE 592 (3) Industrial Air Pollution Control
- MECH 534 (3) Air Pollution Engineering

or an approved 500-, 600-, or 700-level alternative course.

Environmental Impact Course

3 credits from the following:
- GEOG 501 (3) Modelling Environmental Systems
- GEOG 551 (3) Environmental Decisions

or an approved 500-, 600-, or 700-level alternative course.

Environmental Policy Course

3 credits from the following:
- URBP 506 (3) Environmental Policy and Planning

or an approved 500-, 600-, or 700-level alternative course.

Further complementary courses (balance of coursework to meet the 45-credit program requirement):
- Remaining Engineering or Non-Engineering courses from an approved list of courses, at the 500, 600, or 700 level, from the Faculty of Engineering, Faculty of Agricultural and Environmental Sciences, Faculty of Law, Faculty of Religious Studies, Desautels Faculty of Management, and Departments of Atmospheric and Oceanic Sciences, Biology, Chemistry, Earth and Planetary Sciences, Economics, Epidemiology and Biostatistics, Geography, Occupational Health, Political Science, Sociology, and the McGill School of Environment.

Master of Science, Applied (M.Sc.A.); Bioresource Engineering (Non-Thesis) — Integrated Food and Bioprocessing (45 credits)

Required Courses (6 credits)
- BREE 600 (1) Project/Internship Proposal
- BREE 651 (1) Departmental Seminar M.Sc. 1
- BREE 652 (1) Departmental Seminar M.Sc. 2
- BREE 699 (3) Scientific Publication

Complementary Courses (39 credits)
- Minimum of 3 credits of graduate-level Statistics in any department
- Minimum of 9 credits from courses selected from the following:
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BREE 518</td>
<td>(3)</td>
<td>Bio-Treatment of Wastes</td>
</tr>
<tr>
<td>BREE 519</td>
<td>(3)</td>
<td>Advanced Food Engineering</td>
</tr>
<tr>
<td>BREE 520</td>
<td>(3)</td>
<td>Food, Fibre and Fuel Elements</td>
</tr>
<tr>
<td>BREE 530</td>
<td>(3)</td>
<td>Fermentation Engineering</td>
</tr>
<tr>
<td>BREE 531</td>
<td>(3)</td>
<td>Post-Harvest Drying</td>
</tr>
<tr>
<td>BREE 532</td>
<td>(3)</td>
<td>Post-Harvest Storage</td>
</tr>
<tr>
<td>BREE 535</td>
<td>(3)</td>
<td>Food Safety Engineering</td>
</tr>
<tr>
<td>BREE 603</td>
<td>(3)</td>
<td>Advanced Properties: Food and Plant Materials</td>
</tr>
</tbody>
</table>

Minimum of 12 credits selected from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BREE 601</td>
<td>(6)</td>
<td>Integrated Food and Bioprocessing Internship 1</td>
</tr>
<tr>
<td>BREE 602</td>
<td>(6)</td>
<td>Integrated Food and Bioprocessing Internship 2</td>
</tr>
<tr>
<td>BREE 671</td>
<td>(6)</td>
<td>Project 1</td>
</tr>
<tr>
<td>BREE 672</td>
<td>(6)</td>
<td>Project 2</td>
</tr>
</tbody>
</table>

Minimum of 3 credits selected from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 630</td>
<td>(3)</td>
<td>Food and Agricultural Policy</td>
</tr>
<tr>
<td>AGEC 633</td>
<td>(3)</td>
<td>Environmental and Natural Resource Economics</td>
</tr>
<tr>
<td>AGEC 642</td>
<td>(3)</td>
<td>Economics of Agricultural Development</td>
</tr>
<tr>
<td>AGRI 510</td>
<td>(3)</td>
<td>Professional Practice</td>
</tr>
</tbody>
</table>

Minimum of 3 credits selected from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTEC 502</td>
<td>(3)</td>
<td>Biotechnology Ethics and Society</td>
</tr>
<tr>
<td>FDSC 519</td>
<td>(3)</td>
<td>Advanced Food Processing</td>
</tr>
<tr>
<td>FDSC 535</td>
<td>(3)</td>
<td>Food Biotechnology</td>
</tr>
<tr>
<td>FDSC 538</td>
<td>(3)</td>
<td>Food Science in Perspective</td>
</tr>
<tr>
<td>GEOG 515</td>
<td>(3)</td>
<td>Contemporary Dilemmas of Development</td>
</tr>
<tr>
<td>NUTR 501</td>
<td>(3)</td>
<td>Nutrition in Developing Countries</td>
</tr>
</tbody>
</table>

9 credits of any relevant graduate-level course chosen in consultation with the Program Director.

11.3.13 Master of Science, Applied (M.Sc.A.); Bioresource Engineering (Non-Thesis) — Neotropical Environment (45 credits)

Research Project (12 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BREE 671</td>
<td>(6)</td>
<td>Project 1</td>
</tr>
<tr>
<td>BREE 672</td>
<td>(6)</td>
<td>Project 2</td>
</tr>
</tbody>
</table>

Required Courses (8 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 640</td>
<td>(3)</td>
<td>Tropical Biology and Conservation</td>
</tr>
<tr>
<td>BREE 651</td>
<td>(1)</td>
<td>Departmental Seminar M.Sc. 1</td>
</tr>
</tbody>
</table>
Note: Participation in the MSE-Panama Symposium presentation in Montreal is required.

Complementary Courses (25 credits)

3 credits (one elective course), at the 500 level or higher, on environmental issues to be chosen in consultation with and approved by the student's supervisor and the Neotropical Environment Options Director.

22 additional credits of 500-, 600-, or 700-level courses chosen in consultation with the academic adviser.

11.3.14 Doctor of Philosophy (Ph.D.); Bioresource Engineering

Candidates for the Ph.D. degree will normally register for the M.Sc. degree first. In cases where the research work is proceeding very satisfactorily, or where the equivalent of the M.Sc. degree has been completed previously, candidates may be permitted to proceed directly to the Ph.D. degree.

Thesis

A thesis for the doctoral degree must constitute original scholarship and must be a distinct contribution to knowledge. It must show familiarity with previous work in the field and must demonstrate ability to plan and carry out research, organize results, and defend the approach and conclusions in a scholarly manner. The research presented must meet current standards of the discipline; as well, the thesis must clearly demonstrate how the research advances knowledge in the field. Finally, the thesis must be written in compliance with norms for academic and scholarly expression and for publication in the public domain.

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BREE 701</td>
<td>(0)</td>
<td>Ph.D. Comprehensive Examination</td>
</tr>
<tr>
<td>BREE 751</td>
<td>(0)</td>
<td>Departmental Seminar Ph.D. 1</td>
</tr>
<tr>
<td>BREE 752</td>
<td>(0)</td>
<td>Departmental Seminar Ph.D. 2</td>
</tr>
<tr>
<td>BREE 753</td>
<td>(0)</td>
<td>Departmental Seminar Ph.D. 3</td>
</tr>
<tr>
<td>BREE 754</td>
<td>(0)</td>
<td>Departmental Seminar Ph.D. 4</td>
</tr>
</tbody>
</table>

Complementary Courses

Courses of study selected for a Ph.D. program will depend on the existing academic qualifications of the candidate, and on those needed for effective pursuit of research in the chosen field. Candidates are encouraged to take an additional course of study of their own choice in some field of the humanities, sciences, or engineering not directly related to their research. The program will be established by consultation of the candidate with a committee that will include the Research Director and at least one other professor.

11.3.15 Doctor of Philosophy (Ph.D.); Bioresource Engineering — Environment

Thesis

A thesis for the doctoral degree must constitute original scholarship and must be a distinct contribution to knowledge. It must show familiarity with previous work in the field and must demonstrate ability to plan and carry out research, organize results, and defend the approach and conclusions in a scholarly manner. The research presented must meet current standards of the discipline; as well, the thesis must clearly demonstrate how the research advances knowledge in the field. Finally, the thesis must be written in compliance with norms for academic and scholarly expression and for publication in the public domain.

Required Courses

Note: BREE 701, the comprehensive component, must be taken either late in the first, or early in the second, registration year to qualify to proceed to the completion of the Ph.D. degree.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BREE 701</td>
<td>(0)</td>
<td>Ph.D. Comprehensive Examination</td>
</tr>
<tr>
<td>BREE 751</td>
<td>(0)</td>
<td>Departmental Seminar Ph.D. 1</td>
</tr>
<tr>
<td>BREE 752</td>
<td>(0)</td>
<td>Departmental Seminar Ph.D. 2</td>
</tr>
<tr>
<td>BREE 753</td>
<td>(0)</td>
<td>Departmental Seminar Ph.D. 3</td>
</tr>
<tr>
<td>BREE 754</td>
<td>(0)</td>
<td>Departmental Seminar Ph.D. 4</td>
</tr>
</tbody>
</table>
Foundations of Environmental Policy (ENVR 610)
Environmental Seminar 1 (ENVR 650)
Environmental Seminar 2 (ENVR 651)
Environmental Seminar 3 (ENVR 652)

Complementary Courses
One course chosen from the following:

- Global Environmental Politics (ENVR 519, 3 credits)
- Environmental Measurement and Modelling (ENVR 544, 3 credits)
- Environment and Health of Species (ENVR 620, 3 credits)
- Sustainable Landscapes (ENVR 622, 3 credits)
- Civilization and Environment (ENVR 630, 3 credits)
- Topics in Environment 4 (ENVR 680, 3 credits)

or another course at the 500, 600, or 700 level recommended by the Advisory Committee and approved by the Environment Option Committee.

11.3.16 Doctor of Philosophy (Ph.D.); Bioresource Engineering — Neotropical Environment

Thesis
A thesis for the doctoral degree must constitute original scholarship and must be a distinct contribution to knowledge. It must show familiarity with previous work in the field and must demonstrate ability to plan and carry out research, organize results, and defend the approach and conclusions in a scholarly manner. The research presented must meet current standards of the discipline; as well, the thesis must clearly demonstrate how the research advances knowledge in the field. Finally, the thesis must be written in compliance with norms for academic and scholarly expression and for publication in the public domain.

Required Courses

- Tropical Biology and Conservation (BIOL 640, 3 credits)
- Ph.D. Comprehensive Examination (BREE 701, 0 credits)
- Departmental Seminar Ph.D. 1 (BREE 751, 0 credits)
- Departmental Seminar Ph.D. 2 (BREE 752, 0 credits)
- Departmental Seminar Ph.D. 3 (BREE 753, 0 credits)
- Departmental Seminar Ph.D. 4 (BREE 754, 0 credits)
- Foundations of Environmental Policy (ENVR 610, 3 credits)

Note: Participation in the MSE-Panama Symposium presentation in Montreal is required.

Elective Course (3 credits)
3 credits, at the 500 level or higher, on environmental issues to be chosen in consultation with and approved by the student’s supervisor AND the Neotropical Environment Options Director.

11.3.17 Graduate Certificate in Bioresource Engineering — Integrated Water Resources Management (15 credits)

Required Courses (9 credits)

- Water: Society, Law and Policy (BREE 503, 3 credits)
- Freshwater Ecosystems (NRSC 514, 3 credits)
- Water, Health and Sanitation (PARA 515, 3 credits)

Complementary Courses (6 credits)
3 credits from the following:

- BREE 533 (3) Water Quality Management
- CIVE 550 (3) Water Resources Management

and 3 credits from the list available in the Department chosen in consultation with the Academic Adviser.

11.4 Biotechnology

11.4.1 Location

Institute of Parasitology
Macdonald Campus
21,111 Lakeshore Road
Sainte-Anne-de-Bellevue QC H9X 3V9
Canada

Telephone: 514-398-7838
Email: gradstudies.macdonald@mcgill.ca
Website: www.mcgill.ca/biotechgradprog

11.4.2 About Biotechnology

The non-thesis program in Biotechnology offers a course-based curriculum with practical training in laboratory courses and internships offered through the Institute of Parasitology. The Institute is housed on Macdonald Campus of McGill University in beautiful Sainte-Anne-de-Bellevue about 30 kilometers from the Montreal main campus downtown.

Graduates typically enter the biotechnology sector in research, management, or sales, or accept government positions.

BIOTECHNOLOGY PROGRAMS

section 11.4.5: Master of Science, Applied (M.Sc.A.); Biotechnology (Non-Thesis) (45 credits)

Candidates must possess a bachelor's degree in the biological/molecular sciences or an equivalent program. This applied master's program is unique in Quebec. It aims to prepare students for entry into the biotechnology and pharmaceutical industry or to pursue further graduate studies in biomedicine, agriculture, or the environment. Students can choose from a wide range of complementary courses given throughout the McGill campuses to "design" their own program toward a future career choice. The program provides in-house training in molecular biology with a strong focus on the molecular/biochemical sciences. Concurrently, it provides teaching in management and gives students the opportunity to look at the business aspect of biotechnology. A research internship of four to eight months is carried out in an active laboratory, and students learn to present and write research results. Graduates will find jobs ranging from positions as research assistants and/or technicians in biomedical or pharmaceutical laboratories to managerial or supervisory positions. They may also pursue a career in the business of biotechnology including patent and intellectual property management.

section 11.4.6: Graduate Certificate in Biotechnology (16 credits)

Candidates must possess a bachelor's degree in the biological/molecular sciences or an equivalent program. This is a short, intense program for students wishing to deepen their understanding of biotechnology and gain hands-on experience via an intensive laboratory course using the latest molecular biology techniques. Students can choose from a wide range of complementary courses given throughout the McGill campuses to "design" their own program toward a future career choice. Graduates will find employment in research or industrial laboratories as assistants and/or technicians.

11.4.3 Biotechnology Admission Requirements and Application Procedures

11.4.3.1 Admission Requirements

Candidates for the Graduate Certificate and the M.Sc.(Applied) in Biotechnology must possess a bachelor’s degree in biological sciences or equivalent with a minimum cumulative grade point average of 3.0/4.0 or 3.2/4.0 GPA in the last two full-time years of university study for the Graduate Certificate, and a minimum of 3.2/4.0 CGPA for the M.Sc.(A.), as well as prerequisites or equivalents. Prerequisites or equivalents: applicants are required to have sufficient background in biochemistry, cellular biology, and molecular biology, preferably at an advanced level for the Master's Applied.

Financial Support – Financial support for Biotechnology programs is very limited. Students must secure funding from governmental agencies or be self-sufficient. International students are strongly encouraged to secure funding from their home country or international agencies. More information is found at www.mcgill.ca/biotechgradprog/admissions/tuition.
11.4.3.2 Application Procedures

McGill’s online application form for graduate program candidates is available at www.mcgill.ca/gradapplicants/apply.

See : Application Procedures for detailed application procedures.

11.4.3.2.1 Additional Requirements

The items and clarifications below are additional requirements set by this department:

- An **English Proficiency test** is required for most international applicants.
- The GRE is not required, but it is highly recommended.
- Other Supporting Documents – Other documents may be required for the admission process. Please consult the Biotechnology website at www.mcgill.ca/biotechgradprog/admissions for full details of the admission process.

11.4.3.3 Application Deadlines

The application deadlines listed here are set by the Institute of Parasitology and may be revised at any time. Applicants must verify all deadlines and documentation requirements well in advance on the appropriate McGill departmental website; please consult the list at www.mcgill.ca/gps/contact/graduate-program.

<table>
<thead>
<tr>
<th></th>
<th>Canadian</th>
<th>International</th>
<th>Special/Exchange/Visiting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall: May 31</td>
<td>Fall: March 15</td>
<td>Fall: N/A</td>
<td></td>
</tr>
<tr>
<td>Winter: N/A</td>
<td>Winter: N/A</td>
<td>Winter: N/A</td>
<td></td>
</tr>
<tr>
<td>Summer: N/A</td>
<td>Summer: N/A</td>
<td>Summer: N/A</td>
<td></td>
</tr>
</tbody>
</table>

Admission to graduate studies is competitive; accordingly, late and/or incomplete applications are considered only as time and space permit.

International applicants are advised to apply well in advance of these dates because immigration procedures may be lengthy.

11.4.4 Biotechnology Faculty

Biotechnology programs are offered through the Institute of Parasitology. For a complete faculty listing, please refer to section 11.8.4: Parasitology Faculty.

11.4.5 Master of Science, Applied (M.Sc.A.); Biotechnology (Non-Thesis) (45 credits)

Research Project (16 credits)

- BTEC 622 (2) Biotechnology Research Project 1
- BTEC 623 (6) Biotechnology Research Project 2
- BTEC 624 (6) Biotechnology Research Project 3
- BTEC 625 (2) Biotechnology Research Project 4

Required Courses (17 credits)

- BIOT 505 (3) Selected Topics in Biotechnology
- BTEC 501 (3) Bioinformatics
- BTEC 619 (4) Biotechnology Laboratory 2
- BTEC 620 (4) Biotechnology Laboratory 1
- BTEC 621 (3) Biotechnology Management

Complementary Courses (12 credits)

- 3 credits in Ethics at the 500 level or higher, selected in consultation with the academic adviser.

- 9 credits at the 500 level or higher, selected within the Faculties of Agricultural and Environmental Sciences, Medicine, Science, or Management in consultation with the academic adviser of the program in line with the interests of the student.
11.4.6 Graduate Certificate in Biotechnology (16 credits)

Required Courses (10 credits)

- BIOT 505 (3) Selected Topics in Biotechnology
- BTEC 620 (4) Biotechnology Laboratory 1
- BTEC 621 (3) Biotechnology Management

Complimentary Courses (6 credits)

Two courses chosen from the following:

General Topics

- ANSC 622 (3) Selected Topics in Molecular Biology
- BINF 511 (3) Bioinformatics for Genomics
- BIOL 524 (3) Topics in Molecular Biology
- BIOL 568 (3) Topics on the Human Genome
- BTEC 501 (3) Bioinformatics
- BTEC 502 (3) Biotechnology Ethics and Society
- BTEC 535 (3) Functional Genomics in Model Organisms
- BTEC 555 (3) Structural Bioinformatics
- BTEC 691 (3) Biotechnology Practicum
- EXMD 511 (3) Joint Venturing with Industry
- EXMD 602 (3) Techniques in Molecular Genetics

Health

- EXMD 610 (3) Molecular Methods in Medical Research
- PARA 635 (3) Cell Biology and Infection
- PHGY 518 (3) Artificial Cells

Environment and Food

- BREE 530 (3) Fermentation Engineering
- FDSC 535 (3) Food Biotechnology

11.5 Dietetics and Human Nutrition

11.5.1 Location

School of Dietetics and Human Nutrition
Macdonald-Stewart Building
McGill University, Macdonald Campus
21,111 Lakeshore Road
Sainte-Anne-de-Bellevue QC H9X 3V9
Canada

Telephone: 514-398-7838
Email: gradstudies.macdonald@mcgill.ca
11.5.2 About Dietetics and Human Nutrition

In the School of Dietetics and Human Nutrition, cutting-edge nutrition research is conducted by its 10 tenure-track professors and four faculty lecturers in all areas recommended by North American Nutrition Societies. These include molecular and cellular nutrition, clinical, community, and international nutrition. Domains emphasized by School researchers include: epigenetics; proteomics; metabolomics; embryonic and fetal origins of health and disease; the development of improved recommendations and policies for optimizing health in at-risk populations including Aboriginal populations, mothers and children, and the elderly; and the development of novel nutritional and/or nutraceutical approaches for treatment during surgery and recovery from disease.

Research is conducted in our on-site research labs, the Centre for Indigenous Peoples’ Nutrition and Environment (CINE), the Institute for Global Food Security, the Mary Emily Clinical Nutrition Research unit, and the MUHC Teaching Hospitals. Students can conduct research or participate in clinical rotations with the BITS – Barbados, IDRC – Ghana and field sites in Asia, Africa, and Latin America.

section 11.5.5: Master of Science (M.Sc.); Human Nutrition (Thesis) (45 credits)

A master’s degree in Human Nutrition offers advanced Nutrition courses in a broad range of research areas. The program is suitable for students with an undergraduate degree in nutritional sciences, exercise physiology, kinesiology, food science, biochemistry, medicine, or another closely related field. Students are required to complete 14 credits in advanced nutrition coursework plus 31 credits related to their thesis research. Graduates of our M.Sc. thesis degree have pursued successful careers in research, international health agencies, government agencies, and industry.

section 11.5.6: Master of Science, Applied (M.Sc.A.); Human Nutrition (Non-Thesis) — Dietetics Credentialing (83 credits)

The M.Sc. Applied program in Dietetics Credentialing is a course-based master’s program with a dietetics Stage (internship) included. At the end of the program, students are qualified to be licensed with one of the provincial regulatory bodies in Canada, as well as in other countries, and practise in the areas of clinical nutrition, community nutrition, and foodservice management; French competency is an asset. The program is preceded by a Qualifying year, if necessary, to complete certain courses required for licensure. This is followed by three semesters of graduate-level courses (46 credits) and 3 semesters of Stage (37 credits), which include a practice-based graduate project.

section 11.5.7: Master of Science, Applied (M.Sc.A.); Human Nutrition (Non-Thesis) — Practicum (45 credits)

section 11.5.8: Master of Science, Applied (M.Sc.A.); Human Nutrition (Non-Thesis) — Project (45 credits)

section 11.5.9: Doctor of Philosophy (Ph.D.); Human Nutrition

A Ph.D. degree in Human Nutrition is suitable for students with an M.Sc. degree in Nutritional Sciences or related areas who wish to become independent researchers and/or leaders in the field of nutritional sciences. The School offers a stimulating research environment with opportunities in a wide range of areas of basic science, clinical research with our many hospital clinicians, as well as population health in Canada and abroad. Careers include academic, senior government, and industry positions within Canada and internationally.

section 11.5.10: Graduate Diploma in Registered Dietitian Credentialing (30 credits)

This program is currently not offered.

In the School of Dietetics and Human Nutrition at McGill, students pursuing a graduate degree in nutrition have the opportunity to apply to our Graduate Diploma in R.D. Credentialing, upon completion of the M.Sc. or Ph.D. program and upon completion of the undergraduate courses required by l’Ordre professionnel des diététistes du Québec (OPDQ). This Diploma consists of two semesters of Stage (internship) in Clinical Nutrition, Community Nutrition, and Foodservice Systems Management. Upon completion of the Diploma, the recipient is eligible to register and practice as a Dietitian in Quebec, as well as in other Canadian provinces and other countries.

11.5.3 Dietetics and Human Nutrition Admission Requirements and Application Procedures

11.5.3.1 Admission Requirements

M.Sc. Thesis and M.Sc. Applied (Project, Practicum, and Dietetics Credentialing)

Applicants must be graduates of a university of recognized reputation and hold a B.Sc. degree equivalent to a McGill degree in a subject closely related to the one selected for graduate work. Applicants must have at least a cumulative grade point average (CGPA) in McGill University’s credit equivalency of 3.2/4.0 (second class – upper division) for the M.Sc. Thesis and 3.5/4.0 for the M.Sc. Applied during their bachelor's degree program. Eligible candidates to the M.Sc. (Applied) program may select one of three options:

1. The project option;
2. The practicum option, which is reserved for those who have completed a dietetics internship and six months of work experience and wish to further develop their skills in a particular area of practice through an advanced internship;
3. The dietetics credentialing option, for those who wish to follow a program combining courses and internship, leading to licensure as a dietitian.
Ph.D.

Applicants must be graduates of a university of recognized reputation and hold a B.Sc. and M.Sc. degree equivalent to a McGill degree in a subject closely related to the one selected for graduate work. Applicants must have at least a cumulative grade point average (CGPA) in McGill University’s credit equivalency of 3.2/4.0 (second class – upper division) during their bachelor's and master's degree programs.

Qualifying Students

Some applicants whose academic degrees and standing entitle them to serious consideration for admission to graduate studies, but who are considered inadequately prepared in the subject selected may be admitted to a Qualifying program if they have met the School's minimum CGPA of 3.2 out of 4.0. The courses to be taken in a Qualifying program will be prescribed by the academic unit. Qualifying students are registered in graduate studies, but not as candidates for a degree. Only one Qualifying year (two terms) is permitted. Successful completion of a Qualifying program does not guarantee admission to a degree program. Students must re-apply for admission to a degree program.

Financial Aid – Financial aid is very limited and highly competitive. It is suggested that students give serious consideration to their financial planning before submitting an application. Normally, a student will not be accepted unless adequate financial support can be provided by the student and/or the student's supervisor. While the school cannot guarantee financial support, teaching assistantships and other scholarships may be available.

11.5.3.2 Application Procedures

McGill’s online application form for graduate program candidates is available at www.mcgill.ca/gradapplicants/apply. See Application Procedures for detailed application procedures.

11.5.3.2.1 Additional Requirements

The items and clarifications below are additional requirements set by this department:

- Final acceptance to the M.Sc. (Thesis) and Ph.D. programs depends on a staff member agreeing to serve as the student's supervisor. A supervisor is not required for acceptance to the M.Sc. (Applied) program.
- Graduate Record Exam (GRE) – The GRE is required for all Ph.D. applicants to the School of Dietetics and Human Nutrition who are submitting non-Canadian and non-U.S. transcripts.

11.5.3.3 Application Deadlines

The application deadlines listed here are set by the School of Dietetics and Human Nutrition and may be revised at any time. Applicants must verify all deadlines and documentation requirements well in advance on the appropriate McGill departmental website; please consult the list at www.mcgill.ca/gps/contact/graduate-program.

<table>
<thead>
<tr>
<th>Canadian</th>
<th>International</th>
<th>Special/Exchange/Visiting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall: April 15</td>
<td>Fall: March 15</td>
<td>Fall: Same as Canadian/International</td>
</tr>
<tr>
<td>Winter: Oct. 15</td>
<td>Winter: Aug. 31</td>
<td>Winter: Same as Canadian/International</td>
</tr>
<tr>
<td>Summer: Feb. 28</td>
<td>Summer: Jan. 31</td>
<td>Summer: Same as Canadian/International</td>
</tr>
</tbody>
</table>

Admission to graduate studies is competitive; accordingly, late and/or incomplete applications are considered only as time and space permit. International applicants are advised to apply well in advance of these dates because immigration procedures may be lengthy.

11.5.4 Dietetics and Human Nutrition Faculty

Director

Linda J. Wykes

Professor Emerita

Harriet V. Kuhnlein; B.S. (Penn. St.), M.S. (Ore. St.), Ph.D. (Calif.), R.D. (joint appt. with Faculty of Medicine)

Professors

Luis B. Agellon; B.Sc., Ph.D. (McM.) (Canada Research Chair)
Tim A. Johns; B.Sc. (McM.), M.Sc. (Br. Col.), Ph.D. (Mich.) (joint appt. with Plant Science)
Linda J. Wykes; B.Sc., M.Sc., Ph.D. (Tor.)

Associate Professors

Niladri Basu; B.Sc. (Qu.), M.Sc. (Br. Col.), Ph.D. (McG.) (Canada Research Chair) (joint appt. with Natural Resource Sciences)
Katherine Gray-Donald; B.Sc., Ph.D. (McG.), R.D. (joint appt. with Epidemiology and Biostatistics, Faculty of Medicine)
Associate Professors

Kristine G. Koski; B.S., M.S.(Wash.), Ph.D.(Calif.), R.D.
Stan Kubow; B.Sc.(McG.), M.Sc.(Tor.), Ph.D.(Guelph)
Grace S. Marquis; B.A.(Ind.), M.Sc.(Mich. St.), Ph.D.(Cornell) (Canada Research Chair)
Hugo Melgar-Qui onez; M.Sc.(SPHM), M.D.(USAC)
Louise Thibault; B.Sc., M.Sc., Ph.D.(Laval), Dt. P.
Hope Weiler; B.A.Sc.(Guelph), Ph.D.(McM.), R.D. (Canada Research Chair)

Faculty Lecturers

Mary Hendrickson-Nelson; B.A.(St. Benedict), B.Sc.(Minn.), M.Sc.(Colo. St.), Dt. P.
Sandy Phillips; B.Sc., M.Sc.(A.)McG., Dt. P. (University Coordinator, Professional Practice (Stage) in Dietetics)
Hughes Plourde; B.Sc.(McG.), M.Sc., Ph.D.(Montr.), Dt. P.
Maureen Rose; B.Sc., M.Ed., Ph.D.(McG.), Dt. P.

Associate Members

Anaesthesia: Franco Carli, Ralph Lattermann, Thomas Schricker
Food Science & Agricultural Chemistry: Selim Kermasha
Kinesiology: Ross Andersen
Medicine: Louis Beaumier, Stéphanie Chevalier, L. John Hoffer, Larry Lands, Errol B. Marliis, José Morais, Celia Rodd, Jean-François Yale
Parasitology: Marilyn E. Scott

Adjunct Professors

Kevin A. Cockell (Health Canada)
Grace Egeland; B.Sc.(Luther College), Ph.D.(Pitt.)

11.5.5 Master of Science (M.Sc.); Human Nutrition (Thesis) (45 credits)

Thesis Courses (31 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUTR 680</td>
<td>6</td>
<td>Human Nutrition M.Sc. Thesis 1</td>
</tr>
<tr>
<td>NUTR 681</td>
<td>6</td>
<td>Human Nutrition M.Sc. Thesis 2</td>
</tr>
<tr>
<td>NUTR 682</td>
<td>9</td>
<td>Human Nutrition M.Sc. Thesis 3</td>
</tr>
<tr>
<td>NUTR 683</td>
<td>10</td>
<td>Human Nutrition M.Sc. Thesis 4</td>
</tr>
</tbody>
</table>

Required Courses (2 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUTR 695</td>
<td>1</td>
<td>Human Nutrition Seminar 1</td>
</tr>
<tr>
<td>NUTR 696</td>
<td>1</td>
<td>Human Nutrition Seminar 2</td>
</tr>
</tbody>
</table>

Complementary Courses (12 credits)

3 credits in graduate-level statistics
3 credits in graduate-level research methods
3-6 credits in graduate-level courses (chosen in consultation with supervisory committee)

0-3 credits:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUTR 513</td>
<td>3</td>
<td>Credentialing in Dietetics</td>
</tr>
</tbody>
</table>
Required Courses (74 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDPC 501</td>
<td>(3)</td>
<td>Helping Relationships</td>
</tr>
<tr>
<td>NUTR 501</td>
<td>(3)</td>
<td>Nutrition in Developing Countries</td>
</tr>
<tr>
<td>NUTR 503</td>
<td>(3)</td>
<td>Bioenergetics and the Lifespan</td>
</tr>
<tr>
<td>NUTR 511</td>
<td>(3)</td>
<td>Nutrition and Behaviour</td>
</tr>
<tr>
<td>NUTR 513</td>
<td>(3)</td>
<td>Credentialing in Dietetics</td>
</tr>
<tr>
<td>NUTR 515</td>
<td>(1)</td>
<td>Dietetics French Examination</td>
</tr>
<tr>
<td>NUTR 545</td>
<td>(5)</td>
<td>Clinical Nutrition 2</td>
</tr>
<tr>
<td>NUTR 602</td>
<td>(3)</td>
<td>Nutritional - Status Assessment</td>
</tr>
<tr>
<td>NUTR 606</td>
<td>(3)</td>
<td>Human Nutrition Research Methods</td>
</tr>
<tr>
<td>NUTR 612</td>
<td>(8)</td>
<td>Graduate Professional Practice 2 Management</td>
</tr>
<tr>
<td>NUTR 613</td>
<td>(14)</td>
<td>Graduate Professional Practice 3 Clinical Nutrition</td>
</tr>
<tr>
<td>NUTR 614</td>
<td>(8)</td>
<td>Graduate Professional Practice 4 Community Nutrition</td>
</tr>
<tr>
<td>NUTR 626</td>
<td>(3)</td>
<td>Professional Dietetics Writing</td>
</tr>
<tr>
<td>NUTR 627</td>
<td>(1)</td>
<td>Professional Dietetics Presentation</td>
</tr>
<tr>
<td>NUTR 628</td>
<td>(1)</td>
<td>Dietetics Comprehensive Examination</td>
</tr>
<tr>
<td>NUTR 629</td>
<td>(6)</td>
<td>Professional Dietetics Project</td>
</tr>
<tr>
<td>NUTR 651</td>
<td>(3)</td>
<td>M.Sc. (Applied) Nutrition 1</td>
</tr>
<tr>
<td>NUTR 660</td>
<td>(1)</td>
<td>M.Sc. (Applied) Nutrition 2</td>
</tr>
<tr>
<td>NUTR 695</td>
<td>(1)</td>
<td>Human Nutrition Seminar 1</td>
</tr>
<tr>
<td>NUTR 696</td>
<td>(1)</td>
<td>Human Nutrition Seminar 2</td>
</tr>
</tbody>
</table>

Complementary Courses (9 credits)

3 credits of Social Science courses, at the 500 level or higher, to be chosen in consultation with the Adviser.

3 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC 551</td>
<td>(3)</td>
<td>Carbohydrate and Lipid Metabolism</td>
</tr>
<tr>
<td>ANSC 560</td>
<td>(3)</td>
<td>Biology of Lactation</td>
</tr>
<tr>
<td>FDSC 545</td>
<td>(3)</td>
<td>Advances in Food Microbiology</td>
</tr>
<tr>
<td>NUTR 502</td>
<td>(3)</td>
<td>Independent Study 2</td>
</tr>
<tr>
<td>NUTR 512</td>
<td>(3)</td>
<td>Herbs, Foods and Phytochemicals</td>
</tr>
<tr>
<td>NUTR 551</td>
<td>(3)</td>
<td>Analysis of Nutrition Data</td>
</tr>
<tr>
<td>NUTR 608</td>
<td>(3)</td>
<td>Special Topics 1</td>
</tr>
<tr>
<td>NUTR 610</td>
<td>(3)</td>
<td>Maternal and Child Nutrition</td>
</tr>
</tbody>
</table>

3 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEMA 610</td>
<td>(3)</td>
<td>Statistical Methods 2</td>
</tr>
<tr>
<td>PSYC 650</td>
<td>(3)</td>
<td>Advanced Statistics 1</td>
</tr>
</tbody>
</table>
11.5.7 Master of Science, Applied (M.Sc.A.); Human Nutrition (Non-Thesis) — Practicum (45 credits)

Practicum (12 credits)

NUTR 656 (3) M.Sc. (Applied) Practicum 1
NUTR 657 (3) M.Sc. (Applied) Practicum 2
NUTR 658 (3) M.Sc. (Applied) Practicum 3
NUTR 659 (3) M.Sc. (Applied) Practicum 4

Required Courses (6 credits)

NUTR 651 (3) M.Sc. (Applied) Nutrition 1
NUTR 660 (1) M.Sc. (Applied) Nutrition 2
NUTR 695 (1) Human Nutrition Seminar 1
NUTR 696 (1) Human Nutrition Seminar 2

Complementary Courses (18 credits)

3 credits in statistics at the 500 level or higher
3 credits in research methods at the 500 level or higher
12 credits of course work, at the 500 level or higher, in Nutrition, Animal Science, or Food Science chosen in consultation with the student's supervisor.

Elective Courses (9 credits)

9 credits of 500-level or higher courses in consultation with the student’s academic adviser or supervisor.

11.5.8 Master of Science, Applied (M.Sc.A.); Human Nutrition (Non-Thesis) — Project (45 credits)

Research Project (12 credits)

NUTR 652 (3) M.Sc. (Applied) Project 1
NUTR 653 (3) M.Sc. (Applied) Project 2
NUTR 654 (3) M.Sc. (Applied) Project 3
NUTR 655 (3) M.Sc. (Applied) Project 4

Required Courses (6 credits)

NUTR 651 (3) M.Sc. (Applied) Nutrition 1
NUTR 660 (1) M.Sc. (Applied) Nutrition 2
NUTR 695 (1) Human Nutrition Seminar 1
NUTR 696 (1) Human Nutrition Seminar 2

Complementary Courses (18 credits)

3 credits of 500-level or higher Statistics.
3 credits in research methods at the 500 level or higher
12 credits of course work, at the 500 level or higher, in Nutrition, Animal Science, or Food Science chosen in consultation with the student's supervisor.

Elective Courses (9 credits)

9 credits of 500-level or higher courses in consultation with the student’s academic adviser or supervisor.
11.5.9 Doctor of Philosophy (Ph.D.); Human Nutrition

Thesis
A thesis for the doctoral degree must constitute original scholarship and must be a distinct contribution to knowledge. It must show familiarity with previous work in the field and must demonstrate ability to plan and carry out research, organize results, and defend the approach and conclusions in a scholarly manner. The research presented must meet current standards of the discipline; as well, the thesis must clearly demonstrate how the research advances knowledge in the field. Finally, the thesis must be written in compliance with norms for academic and scholarly expression and for publication in the public domain.

Required Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUTR 701</td>
<td>(0)</td>
<td>Doctoral Comprehensive Examination</td>
</tr>
<tr>
<td>NUTR 797</td>
<td>(1)</td>
<td>Human Nutrition Seminar 3</td>
</tr>
<tr>
<td>NUTR 798</td>
<td>(1)</td>
<td>Human Nutrition Seminar 4</td>
</tr>
</tbody>
</table>

11.5.10 Graduate Diploma in Registered Dietitian Credentialing (30 credits)

** This program is currently not offered. **

The Graduate Diploma is open to students who have completed a graduate degree with the School of Dietetics and Human Nutrition including NUTR 513 Credentialing in Dietetics.

Required Courses (30 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUTR 612</td>
<td>(8)</td>
<td>Graduate Professional Practice 2 Management</td>
</tr>
<tr>
<td>NUTR 613</td>
<td>(14)</td>
<td>Graduate Professional Practice 3 Clinical Nutrition</td>
</tr>
<tr>
<td>NUTR 614</td>
<td>(8)</td>
<td>Graduate Professional Practice 4 Community Nutrition</td>
</tr>
</tbody>
</table>

11.6 Food Science and Agricultural Chemistry

11.6.1 Location

Department of Food Science and Agricultural Chemistry
Macdonald-Stewart Building, Room MS1-034
Macdonald Campus of McGill University
21,111 Lakeshore Road
Sainte-Anne-de-Bellevue QC H9X 3V9
Canada

Telephone: 514-398-7838
Email: gradstudies.macdonald@mcgill.ca
Website: www.mcgill.ca/foodscience

11.6.2 About Food Science and Agricultural Chemistry

The Department of Food Science and Agricultural Chemistry offers both M.Sc. (thesis and non-thesis) and Ph.D. programs. These programs provide training in evolving interdisciplinary areas of food quality, food safety, food chemistry, food biotechnology, functional ingredients, applied infrared spectroscopy, food processing, thermal generation of aromas and toxicants, marine biochemistry, and food toxicology. The Department has key infrastructure with all major equipment necessary for conducting research in all these areas. Our graduate program provides strong mentoring/advisory support while maintaining high flexibility for individual research projects.

section 11.6.6: Master of Science (M.Sc.); Food Science and Agricultural Chemistry (Non-Thesis) (45 credits)

The program offers advanced food science courses in a broad range of areas. It is suitable for students with an undergraduate degree in food science or a closely related discipline. Entry is possible from other disciplines; however, students will be expected to complete a Qualifying term or year to pick up relevant courses to orient themselves to food science. Students are required to complete a total of 45 credits (10 graduate-level courses, a seminar course, and a research project). Subsequent career paths include work within the food industry and government agencies.
section 11.6.7: Master of Science (M.Sc.); Food Science and Agricultural Chemistry — Food Safety (Non-Thesis) (45 credits)

This 45-credit program is offered to candidates who seek further specialization in the area of food safety but do not wish to pursue independent research. These credits are obtained through a combination of graduate-level courses. The residence time for the M.Sc. (Non-Thesis) degree is three academic terms.

section 11.6.5: Master of Science (M.Sc.); Food Science and Agricultural Chemistry (Thesis) (45 credits)

This program is a research-based degree in various areas related to food science for candidates entering the M.Sc. program without restrictions (i.e., not requiring a Qualifying term/year). The M.Sc. degree consists of 45 graduate credits; these credits are obtained through a combination of graduate courses (15 credits) and a research thesis (30 credits). Entry into the M.Sc. (Thesis) program also hinges on the availability of supervisory staff and financing. Therefore, it is advisable that the applicant for the M.Sc. (Thesis) degree select the M.Sc. (Non-Thesis) as a second choice in the application form, to ensure admission to the Food Science graduate program. Subsequent career paths include work within the food industry, government agencies, and in research.

section 11.6.8: Doctor of Philosophy (Ph.D.); Food Science and Agricultural Chemistry

A Ph.D. in food science is suitable for students with an M.Sc. degree in food science or related areas who wish to become independent researchers and/or leaders in the field of food science. Candidates with a B.Sc. degree applying for the Ph.D. need to register first for the M.Sc. degree. In cases where the candidates are performing well during their first year, they may be permitted to fast track to the Ph.D. degree. Entry into the Ph.D. graduate program hinges on the availability of supervisory staff and financing.

11.6.3 Food Science and Agricultural Chemistry Admission Requirements and Application Procedures

11.6.3.1 Admission Requirements

Applicants to the M.Sc. programs must be graduates of a university of recognized reputation and hold a B.Sc. in Food Science or a related discipline such as Chemistry, Biochemistry, or Microbiology with a minimum cumulative grade point average (CGPA) of 3.0/4.0 (second class – upper division) and 3.2/4.0 during the last two years of full-time university study. Applicants to the Ph.D. program must hold an M.Sc. degree in Food Science or related areas with a minimum CGPA of 3.4 in their M.Sc. and 3.2 for the last two years of their B.Sc. degree. High grades are expected in courses considered by the academic unit to be preparatory to the graduate program.

Qualifying Students

Some applicants whose academic degrees and standing entitle them to serious consideration for admission to graduate studies, but who are considered inadequately prepared in the subject selected may be admitted to a Qualifying program if they have met the Graduate and Postdoctoral Studies minimum CGPA of 3.0/4.0. The course(s) to be taken in a Qualifying program will be prescribed by the academic unit concerned. Qualifying students are registered in graduate studies, but not as candidates for a degree. Only one Qualifying year is permitted. Successful completion of a Qualifying program does not guarantee admission to a degree program.

Financial Aid — Financial aid is very limited and highly competitive. It is suggested that students give serious consideration to their financial planning before submitting an application. Normally, a student will not be accepted unless adequate financial support can be provided by the student and/or the student's supervisor. While the Department cannot guarantee financial support, students can apply for teaching assistantships and other scholarships.

11.6.3.2 Application Procedures

McGill's online application form for graduate program candidates is available at www.mcgill.ca/gradapplicants/apply. See Application Procedures for detailed application procedures.

11.6.3.2.1 Additional Requirements

The items and clarifications below are additional requirements set by this department:

- Final acceptance to the M.Sc. and Ph.D. programs depends on a staff member agreeing to serve as the student's supervisor. A supervisor is not required for acceptance to the M.Sc. Non-Thesis program.
- The GRE is not required, but it is highly recommended.

11.6.3.3 Application Deadlines

The application deadlines listed here are set by the Department of Food Science and Agricultural Chemistry and may be revised at any time. Applicants must verify all deadlines and documentation requirements well in advance on the appropriate McGill departmental website; please consult the list at www.mcgill.ca/gpa/contact/graduate-program.

<table>
<thead>
<tr>
<th>Canadian</th>
<th>International</th>
<th>Special/Exchange/Visiting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall: May 31</td>
<td>Fall: March 15</td>
<td>Fall: Same as Canadian/International</td>
</tr>
<tr>
<td>Winter: Oct. 15</td>
<td>Winter: Aug. 31</td>
<td>Winter: Same as Canadian/International</td>
</tr>
<tr>
<td>Summer: Feb. 28</td>
<td>Summer: Jan. 31</td>
<td>Summer: Same as Canadian/International</td>
</tr>
</tbody>
</table>

Admission to graduate studies is competitive; accordingly, late and/or incomplete applications are considered only as time and space permit.
International applicants are advised to apply well in advance of these dates because immigration procedures may be lengthy.

11.6.4 Food Science and Agricultural Chemistry Faculty

Chair

V. Yaylayan

Chair of Graduate Program

S. Karboune

Professors

I. Alli; B.Sc.(Guy.), M.Sc., Ph.D.(McG.)

H.S. Ramaswamy; B.Sc.(B'lore), M.Sc., Ph.D.(Br. Col.)

B.K. Simpson; B.Sc.(Ghana), Ph.D.(Nfld.)

V.A. Yaylayan; B.Sc.(Beirut), M.Sc., Ph.D.(Alta.)

Associate Professors

A.A. Ismail; B.Sc., Ph.D.(McG.)

S. Kermasha; B.Sc.(Baghdad), C.E.S, D.E.A, D.Sc.(Nancy)

Assistant Professors

M. Chénier; B.Sc.(Laval), M.Sc.(IAF), Ph.D.(McG.)

S. Karboune; B.Sc., M.Sc.(Rabat), D.E.A., Ph.D.(Marseille)

Professor Post-Retirement

F.R. van de Voort; B.Sc., M.Sc., Ph.D.(Br. Col.)

Emeritus Professor

W.D. Marshall; B.Sc.(New Br.), Ph.D.(McM.)

11.6.5 Master of Science (M.Sc.); Food Science and Agricultural Chemistry (Thesis) (45 credits)

For candidates entering the M.Sc. program without restrictions, i.e., those not requiring a qualifying term/year, the M.Sc. degree consists of 45 graduate credits. These credits are obtained through a combination of graduate courses and a research thesis.

The residence time for a M.Sc. degree is three academic terms based on unqualified entry into the M.Sc. program. Students are encouraged to complete their studies within this time frame.

Thesis (30 credits)

FDSC 690 (8) M.Sc. Literature Review
FDSC 691 (7) M.Sc. Research Protocol
FDSC 692 (15) M.Sc. Thesis

Required Courses (6 credits)

FDSC 695 (3) M.Sc. Graduate Seminar 1
FDSC 696 (3) M.Sc. Graduate Seminar 2

Complementary Courses (9 credits)

At least 9 credits, normally from 500- or 600-level departmental courses.
11.6.6 Master of Science (M.Sc.); Food Science and Agricultural Chemistry (Non-Thesis) (45 credits)

This 45-credit program is offered to candidates who seek further training in Food Science, but do not wish to pursue independent research. These credits are obtained through a combination of graduate courses.

The residence time for a M.Sc. degree (Non-Thesis) is three academic terms.

PROGRAM REQUIREMENTS

Research Project (12 credits)

- M.Sc. Project Part 1 (6 credits) FDSC 697
- M.Sc. Project Part 2 (6 credits) FDSC 698

Complementary Courses (18 credits)

3 credits chosen from the following:

- M.Sc. Graduate Seminar 1 (3 credits) FDSC 695
- M.Sc. Graduate Seminar 2 (3 credits) FDSC 696

15 credits chosen from the following:

- Professional Practice (3 credits) AGRI 510
- Enzymology (3 credits) FDSC 515
- Flavour Chemistry (3 credits) FDSC 516
- Advanced Food Processing (3 credits) FDSC 519
- Biophysical Chemistry of Food (3 credits) FDSC 520
- Food Biotechnology (3 credits) FDSC 535
- Food Traceability (3 credits) FDSC 536
- Nutraceutical Chemistry (3 credits) FDSC 537
- Food Science in Perspective (3 credits) FDSC 538
- Sensory Evaluation of Foods (3 credits) FDSC 540
- Advances in Food Microbiology (3 credits) FDSC 545
- Food Toxins & Toxicants (3 credits) FDSC 634
- Principles of Food Analysis 2 (3 credits) FDSC 651
- Separation Techniques in Food Analysis 2 (3 credits) FDSC 652

Elective Courses (15 credits)

At the 500 level or higher, and chosen in consultation with the academic adviser.

11.6.7 Master of Science (M.Sc.); Food Science and Agricultural Chemistry — Food Safety (Non-Thesis) (45 credits)

The program is intended to train graduate students as specialists in food safety with the expectation that graduates will be well prepared academically to take on the challenging food safety events and issues that emerge both in Canada and globally. The program will cover food safety through the entire food supply chain from food production through processing/manufacturing to the food consumer; the courses which make up the program reflect the food safety considerations at the different stages of the farm to table food supply chain.

Required Courses (12 credits)

- Advances in Food Microbiology (3 credits) FDSC 545
- Current Food Safety Issues (3 credits) FDSC 624
- Food Safety Risk Assessment (3 credits) FDSC 626
FDSC 634 (3) Food Toxins & Toxicants

Research Project (12 credits)

FDSC 697 (6) M.Sc. Project Part 1
FDSC 698 (6) M.Sc. Project Part 2

Complementary Courses (15 credits)

3 credits chosen from the following:

FDSC 695 (3) M.Sc. Graduate Seminar 1
FDSC 696 (3) M.Sc. Graduate Seminar 2

12 credits chosen from the following:

AGRI 510 (3) Professional Practice
BREE 535 (3) Food Safety Engineering
FDSC 525 (3) Food Quality Assurance
FDSC 536 (3) Food Traceability
FDSC 555 (3) Comparative Food Law
NUTR 512 (3) Herbs, Foods and Phytochemicals
OCCH 612 (3) Principles of Toxicology
PARA 515 (3) Water, Health and Sanitation

Elective Courses (6 credits)

At the 500 level or higher, and selected in consultation with the academic adviser.

11.6.8 Doctor of Philosophy (Ph.D.); Food Science and Agricultural Chemistry

Candidates will be judged principally on their research ability. Coursework will be arranged in consultation with the student's departmental graduate advisory committee.

Thesis

A thesis for the doctoral degree must constitute original scholarship and must be a distinct contribution to knowledge. It must show familiarity with previous work in the field and must demonstrate ability to plan and carry out research, organize results, and defend the approach and conclusions in a scholarly manner. The research presented must meet current standards of the discipline; as well, the thesis must clearly demonstrate how the research advances knowledge in the field. Finally, the thesis must be written in compliance with norms for academic and scholarly expression and for publication in the public domain.

Required Courses (9 credits)

Note: Candidates should be prepared to take the Comprehensive Preliminary Examination before the end of the second year of the program.

FDSC 700 (0) Comprehensive Preliminary Examination
FDSC 725 (3) Advanced Topics in Food Science
FDSC 797 (3) Ph.D. Graduate Seminar 1
FDSC 798 (3) Ph.D. Graduate Seminar 2
11.7 Natural Resource Sciences

11.7.1 Location

Department of Natural Resource Sciences
McGill University, Macdonald Campus
21,111 Lakeshore Road
Sainte-Anne-de-Bellevue QC H9X 3V9
Canada

Telephone: 514-398-7838
Email: gradstudies.macdonald@mcgill.ca
Website: www.mcgill.ca/nrs

11.7.2 About Natural Resource Sciences

The Department of Natural Resource Sciences offers programs leading to M.Sc. and Ph.D. degrees in Entomology (includes Environment and Neotropical Environment options), Microbiology (includes Bioinformatics and Environment options), Renewable Resources (includes Forest Science, Micrometeorology, Soil Science, and Wildlife Biology with Environment and Neotropical Environment options available) and an M.Sc. degree in Agricultural Economics. It is also possible for students to pursue doctoral studies in Agricultural/Environmental Economics or with a Ph.D. in Renewable Resources. An interdisciplinary option in Bioinformatics for doctoral students is also available.

The Department possesses, or has access to, excellent facilities for laboratory and field research. Affiliated with the Department are the Lyman Entomological Museum and Research Laboratory, the Molson Nature Reserve, the Morgan Arboretum, and the Ecomuseum of the St. Lawrence Valley Natural History Society.

Master of Science Degrees

section 11.7.5: Master of Science (M.Sc.); Agricultural Economics (Thesis) (46 credits)

This program provides students with applied economic concepts and tools to identify, define, and analyze economic problems affecting the performance of the agri-food sector and the environment. The ideal prior preparation is an undergraduate degree in Agricultural Economics or Economics, including undergraduate courses in intermediate economic theory (micro and macro), calculus, algebra, statistics, and econometrics.

Attention is given to the development of analytical skills in the broad areas of agricultural, environmental, and ecological economics. Students may specialize, by way of their research program, in agribusiness, development, finance, marketing and trade, policy, and resource economics. The program prepares graduates for rewarding careers in research, analysis, and decision-making in academia, private and NGO sectors, and government.

section 11.7.6: Master of Science (M.Sc.); Entomology (Thesis) (45 credits)

Please contact the Department for more information about this program.

section 11.7.7: Master of Science (M.Sc.); Entomology (Thesis) — Environment (46 credits)

Please contact the Department for more information about this program.

section 11.7.8: Master of Science (M.Sc.); Entomology (Thesis) — Neotropical Environment (48 credits)

Please contact the Department for more information about this program.

section 11.7.9: Master of Science (M.Sc.); Microbiology (Thesis) (45 credits)

Please contact the Department for more information about this program.

section 11.7.10: Master of Science (M.Sc.); Microbiology (Thesis) — Environment (46 credits)

Please contact the Department for more information about this program.

section 11.7.11: Master of Science (M.Sc.); Renewable Resources (Thesis) (45 credits)

(Including Micrometeorology, Forest Science, Soil Science, and Wildlife Biology as areas of research)

section 11.7.12: Master of Science (M.Sc.); Renewable Resources (Thesis) — Environment (46 credits)

Please contact the Department for more information about this program.
section 11.7.13: Master of Science (M.Sc.); Renewable Resources (Thesis) — Neotropical Environment (48 credits)

Please contact the Department for more information about this program.

section 11.7.14: Master of Science (M.Sc.); Renewable Resources (Non-Thesis) — Environmental Assessment (45 credits)

This program is currently not offered.

Ph.D. Degrees in Entomology, Microbiology, or Renewable Resources (Includes Micrometeorology, Forest Science, Soil Science, and Wildlife Biology)

section 11.7.15: Doctor of Philosophy (Ph.D.); Entomology

Please contact the Department for more information about this program.

section 11.7.16: Doctor of Philosophy (Ph.D.); Entomology — Environment

Please contact the Department for more information about this program.

section 11.7.17: Doctor of Philosophy (Ph.D.); Entomology — Neotropical Environment

Please contact the Department for more information about this program.

section 11.7.18: Doctor of Philosophy (Ph.D.); Microbiology

Please contact the Department for more information about this program.

section 11.7.19: Doctor of Philosophy (Ph.D.); Microbiology — Bioinformatics

Please contact the Department for more information about this program.

section 11.7.20: Doctor of Philosophy (Ph.D.); Microbiology — Environment

Please contact the Department for more information about this program.

section 11.7.21: Doctor of Philosophy (Ph.D.); Renewable Resources

Please contact the Department for more information about this program.

section 11.7.22: Doctor of Philosophy (Ph.D.); Renewable Resources — Environment

Please contact the Department for more information about this program.

section 11.7.23: Doctor of Philosophy (Ph.D.); Renewable Resources — Neotropical Environment

Please contact the Department for more information about this program.

11.7.3 Natural Resource Science Admission Requirements and Application Procedures

11.7.3.1 Admission Requirements

M.Sc. Thesis (Agricultural Economics)

Direct admission to the M.Sc. requires the completion of a B.Sc. in Agricultural Economics or a closely related area, with the equivalent cumulative grade point average of 3.0/4.0 (second class – upper division) or 3.2/4.0 during the last two years of full-time university study. High grades are expected in courses considered by the academic unit to be preparatory to the graduate program.

The ideal preparation includes courses in agricultural economics, economic theory (intermediate micro and macro), calculus, linear algebra, and statistics. Students with deficiencies in these areas will be required to take additional courses as part of their degree program.

M.Sc. Thesis (Entomology, Microbiology, Renewable Resources)

Candidates are required to have a bachelor's degree with an equivalent cumulative grade point average of 3.0/4.0 (second class – upper division) or 3.2/4.0 during the last two years of full-time university study. High grades are expected in courses considered by the academic unit to be preparatory to the graduate program.

M.Sc. in Renewable Resources (Non-Thesis) – Environmental Assessment Option

Applications are not being accepted for the 2014-2015 academic year; the program is currently under review.

Ph.D. (Entomology, Microbiology, Renewable Resources)

Candidates, normally, are required to hold an M.Sc. degree and will be judged primarily on their ability to conduct an original and independent research study.
Qualifying Students

Some applicants whose academic degrees and standing entitle them to serious consideration for admission to graduate studies, but who are considered inadequately prepared in the subject selected may be admitted to a Qualifying program if they have met the Graduate and Postdoctoral Studies minimum CGPA of 3.0/4.0. The course(s) to be taken in a Qualifying program will be prescribed by the academic unit concerned. Qualifying students are registered in graduate studies, but not as candidates for a degree. Only one Qualifying year is permitted. Successful completion of a Qualifying program does not guarantee admission to a degree program.

Financial Support – Financial aid is very limited and highly competitive. It is suggested that students give serious consideration to their financial planning before submitting an application. Normally, a student will not be accepted unless adequate financial support can be provided by the student and/or the student’s supervisor. Academic units cannot guarantee financial support via teaching assistantships or other funds.

11.7.3.2 Application Procedures

McGill’s online application form for graduate program candidates is available at www.mcgill.ca/gradapplicants/apply.

See: Application Procedures for detailed application procedures.

11.7.3.2.1 Additional Requirements

The items and clarifications below are additional requirements set by this department:

- Acceptance to all programs normally depends on a staff member agreeing to serve as the student’s supervisor and the student obtaining financial support.
- The GRE is not required, but it is highly recommended.

11.7.3.3 Application Deadlines

The application deadlines listed here are set by the Department of Natural Resource Sciences and may be revised at any time. Applicants must verify all deadlines and documentation requirements well in advance on the appropriate McGill departmental website; please consult the list at www.mcgill.ca/gps/contact/graduate-program.

<table>
<thead>
<tr>
<th>Canadian</th>
<th>International</th>
<th>Special/Exchange/Visiting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall: May 31</td>
<td>Fall: March 15</td>
<td>Fall: Same as Canadian/International</td>
</tr>
<tr>
<td>Winter: Oct. 15</td>
<td>Winter: Aug. 31</td>
<td>Winter: Same as Canadian/International</td>
</tr>
<tr>
<td>Summer: Feb. 28</td>
<td>Summer: Jan. 31</td>
<td>Summer: Same as Canadian/International</td>
</tr>
</tbody>
</table>

Admission to graduate studies is competitive; accordingly, late and/or incomplete applications are considered only as time and space permit. International applicants are advised to apply well in advance of these dates because immigration procedures may be lengthy.

11.7.4 Natural Resource Sciences Faculty

Chair
J.W. Fyles

Graduate Program Director
B. Côté

Program Director - Agricultural Economics
J.C. Henning

Emeritus Professors
D.M. Bird; B.Sc.(Guelph), M.Sc., Ph.D.(McG.); Wildlife Biology
E.S. Idziak; B.Sc.(Agr.), M.Sc.(McG.), D.Sc.(Delft); Microbiology
A.F. MacKenzie; B.S.A., M.Sc.(Sask.), Ph.D.(Cornell); Soil Science
R.A. MacLeod; B.A., M.A.(Br. Col.), Ph.D.(Wisc.), F.R.S.C.; Microbiology
P.H. Schuepp; Dipl.Sc.Nat.(Zür.), Ph.D.(Tor.); Agricultural Physics
R.K. Stewart; B.Sc.(Agr.), Ph.D.(Glas.); Entomology

Professors
P. Brown; B.A.(Haver.), M.A., Ph.D.(Col.); Environmental Policy and Ethics (joint appt. with Geography and McGill School of Environment)
Professors

<table>
<thead>
<tr>
<th>Name</th>
<th>Degrees and Institutions</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>J.W. Fyles</td>
<td>B.Sc., M.Sc.(Vic., BC), Ph.D.(Alta.)</td>
<td>Forest Resources (Tomlinson Chair in Forest Ecology)</td>
</tr>
<tr>
<td>W.H. Hendershot</td>
<td>B.Sc.(Tor.), M.Sc.(McG.), Ph.D.(Br. Col.)</td>
<td>Soil Science</td>
</tr>
</tbody>
</table>

Associate Professors

<table>
<thead>
<tr>
<th>Name</th>
<th>Degrees and Institutions</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. Basu</td>
<td>B.Sc.(Qu.), M.Sc.(Br. Col.), Ph.D.(McG.)</td>
<td>Ecotoxicology (Canada Research Chair) (joint appt. with School of Dietetics and Human Nutrition)</td>
</tr>
<tr>
<td>E. Bennett</td>
<td>B.A.(Oberlin), M.S., Ph.D.(Wisc.)</td>
<td>Ecosystem Ecology (joint appt. with McGill School of Environment)</td>
</tr>
<tr>
<td>C. Buddle</td>
<td>B.Sc.(Guelph), Ph.D.(Alta.)</td>
<td>Forest Insect Ecology</td>
</tr>
<tr>
<td>B. Côté</td>
<td>B.Sc., Ph.D.(Laval)</td>
<td>Forest Resources</td>
</tr>
<tr>
<td>B.T. Driscoll</td>
<td>B.Sc., Ph.D.(McM.)</td>
<td>Agricultural Economics</td>
</tr>
<tr>
<td>G.B. Dunphy</td>
<td>B.Sc.(New Br.), M.Sc., Ph.D.(Nfld.)</td>
<td>Entomology</td>
</tr>
<tr>
<td>J.C. Henning</td>
<td>B.Sc., Ph.D.(Guelph)</td>
<td>Agricultural Economics</td>
</tr>
<tr>
<td>G. Hickey</td>
<td>B.Sc.(Melb.), Ph.D.(Br. Col.), EMPA(ANZSOG, Monash)</td>
<td>Sustainable Natural Resource Management</td>
</tr>
<tr>
<td>M. Humphries</td>
<td>B.Sc.(Manit.), M.Sc.(Alta.), Ph.D.(McG.)</td>
<td>Wildlife Biology</td>
</tr>
<tr>
<td>D.J. Lewis</td>
<td>B.Sc., M.Sc., Ph.D.(Nfld.)</td>
<td>Entomology</td>
</tr>
<tr>
<td>I.B. Strachan</td>
<td>B.Sc.(Tor.), M.Sc., Ph.D.(Qu.)</td>
<td>Micrometeorology</td>
</tr>
<tr>
<td>P.J. Thomassin</td>
<td>B.Sc.(McG.), M.S., Ph.D.(Hawaii Pac.)</td>
<td>Agricultural and Environmental Economics</td>
</tr>
<tr>
<td>J. Whalen</td>
<td>B.Sc.(Agr.)(Dal.), M.Sc.(McG.), Ph.D.(Ohio St.)</td>
<td>Soil Science</td>
</tr>
<tr>
<td>T.A. Wheeler</td>
<td>B.Sc.(Nfld.), M.Sc., Ph.D.(Guelph)</td>
<td>Entomology</td>
</tr>
<tr>
<td>L.G. Whyte</td>
<td>B.Sc.(Regina), Ph.D.(Wat.)</td>
<td>Microbiology</td>
</tr>
</tbody>
</table>

Assistant Professors

<table>
<thead>
<tr>
<th>Name</th>
<th>Degrees and Institutions</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Biswas</td>
<td>B.Sc.(BCKV), M.Sc.(UAS Bangalore), Ph.D.(Sask.)</td>
<td>Soil Physics</td>
</tr>
<tr>
<td>S. Faucher</td>
<td>B.Sc., Ph.D.(Montr.)</td>
<td>Microbiology</td>
</tr>
<tr>
<td>N. Kosoy</td>
<td>B.Sc.(Univ. Simon Bolivar), M.Sc.(Univ. of Kent, Univ. Autonoma de Barcelona), Ph.D.(Univ. Autonoma de Barcelona)</td>
<td>Ecological Economics (joint appt. with McGill School of Environment)</td>
</tr>
<tr>
<td>C. Solomon</td>
<td>B.Sc.(Cornell), Ph.D.(Wisc.)</td>
<td>Wildlife Biology</td>
</tr>
</tbody>
</table>

Associate Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.A. Chapman</td>
<td>Anthropology</td>
</tr>
<tr>
<td>L.J. Chapman</td>
<td>Biology</td>
</tr>
<tr>
<td>M. Chénier</td>
<td>Food Science and Agricultural Chemistry</td>
</tr>
<tr>
<td>D. Green</td>
<td>Redpath Museum</td>
</tr>
<tr>
<td>M. Scott</td>
<td>Institute of Parasitology</td>
</tr>
<tr>
<td>D. Smith</td>
<td>Plant Science</td>
</tr>
<tr>
<td>I. Vaccaro</td>
<td>Anthropology, McGill School of Environment</td>
</tr>
</tbody>
</table>

Adjunct Professors

<table>
<thead>
<tr>
<th>Name</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Angers</td>
<td></td>
</tr>
<tr>
<td>G. Boivin</td>
<td></td>
</tr>
<tr>
<td>K. Fernie</td>
<td></td>
</tr>
<tr>
<td>C. Greer</td>
<td></td>
</tr>
<tr>
<td>J. Macdonald</td>
<td></td>
</tr>
<tr>
<td>J. Nocera</td>
<td></td>
</tr>
<tr>
<td>G. Sunahara</td>
<td></td>
</tr>
</tbody>
</table>
11.7.5 Master of Science (M.Sc.); Agricultural Economics (Thesis) (46 credits)

Students may specialize, by way of their research program, in agri-business, development, finance, marketing and trade, policy, and resource and ecological economics.

Thesis Courses (27 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 691</td>
<td>6</td>
<td>M.Sc. Thesis 1</td>
</tr>
<tr>
<td>AGEC 692</td>
<td>3</td>
<td>M.Sc. Thesis 2</td>
</tr>
<tr>
<td>AGEC 693</td>
<td>6</td>
<td>M.Sc. Thesis 3</td>
</tr>
<tr>
<td>AGEC 694</td>
<td>6</td>
<td>M.Sc. Thesis 4</td>
</tr>
<tr>
<td>AGEC 695</td>
<td>6</td>
<td>M.Sc. Thesis 5</td>
</tr>
</tbody>
</table>

Required Course

(1 credit)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 690</td>
<td>1</td>
<td>Seminar</td>
</tr>
</tbody>
</table>

Complementary Courses (18 credits)

6 credits, two theory courses chosen from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 633</td>
<td>3</td>
<td>Environmental and Natural Resource Economics</td>
</tr>
<tr>
<td>ECON 610</td>
<td>3</td>
<td>Microeconomic Theory 1</td>
</tr>
<tr>
<td>ECON 611</td>
<td>3</td>
<td>Microeconomic Theory 2</td>
</tr>
<tr>
<td>ECON 620</td>
<td>3</td>
<td>Macroeconomic Theory 1</td>
</tr>
<tr>
<td>ECON 621</td>
<td>3</td>
<td>Macroeconomic Theory 2</td>
</tr>
</tbody>
</table>

3 credits, one quantitative methods course chosen from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEMA 610</td>
<td>3</td>
<td>Statistical Methods 2</td>
</tr>
<tr>
<td>ECON 525</td>
<td>3</td>
<td>Project Analysis</td>
</tr>
<tr>
<td>ECON 662</td>
<td>6</td>
<td>Econometrics</td>
</tr>
<tr>
<td>ECON 665</td>
<td>3</td>
<td>Quantitative Methods</td>
</tr>
<tr>
<td>MGSC 679</td>
<td>3</td>
<td>Applied Deterministic Optimization</td>
</tr>
</tbody>
</table>

9 credits, three 3-credit courses at the 500, 600, or 700 level, at least one of which must be in Agricultural Economics, chosen in consultation with the Agricultural Economics Adviser.

11.7.6 Master of Science (M.Sc.); Entomology (Thesis) (45 credits)

Thesis Courses (36 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRSC 691</td>
<td>12</td>
<td>M.Sc. Thesis Research 1</td>
</tr>
<tr>
<td>NRSC 692</td>
<td>12</td>
<td>M.Sc. Thesis Research 2</td>
</tr>
<tr>
<td>NRSC 693</td>
<td>12</td>
<td>M.Sc. Thesis Research 3</td>
</tr>
</tbody>
</table>

Required Courses (3 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRSC 643</td>
<td>1</td>
<td>Graduate Seminar 1</td>
</tr>
</tbody>
</table>
Complementary Courses (6 credits)

Two 3-credit courses at the 500, 600, or 700 level; normally one of these will be a course in statistics.

11.7.7 Master of Science (M.Sc.); Entomology (Thesis) — Environment (46 credits)

Thesis Courses (36 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRSC 691</td>
<td>12</td>
<td>M.Sc. Thesis Research 1</td>
</tr>
<tr>
<td>NRSC 692</td>
<td>12</td>
<td>M.Sc. Thesis Research 2</td>
</tr>
<tr>
<td>NRSC 693</td>
<td>12</td>
<td>M.Sc. Thesis Research 3</td>
</tr>
</tbody>
</table>

Required Courses (7 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVR 610</td>
<td>3</td>
<td>Foundations of Environmental Policy</td>
</tr>
<tr>
<td>ENVR 650</td>
<td>1</td>
<td>Environmental Seminar 1</td>
</tr>
<tr>
<td>ENVR 651</td>
<td>1</td>
<td>Environmental Seminar 2</td>
</tr>
<tr>
<td>ENVR 652</td>
<td>1</td>
<td>Environmental Seminar 3</td>
</tr>
<tr>
<td>NRSC 651</td>
<td>1</td>
<td>Graduate Seminar 3</td>
</tr>
</tbody>
</table>

Complementary Courses (3 credits)

One of the following courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVR 519</td>
<td>3</td>
<td>Global Environmental Politics</td>
</tr>
<tr>
<td>ENVR 544</td>
<td>3</td>
<td>Environmental Measurement and Modelling</td>
</tr>
<tr>
<td>ENVR 620</td>
<td>3</td>
<td>Environment and Health of Species</td>
</tr>
<tr>
<td>ENVR 622</td>
<td>3</td>
<td>Sustainable Landscapes</td>
</tr>
<tr>
<td>ENVR 630</td>
<td>3</td>
<td>Civilization and Environment</td>
</tr>
<tr>
<td>ENVR 680</td>
<td>3</td>
<td>Topics in Environment 4</td>
</tr>
</tbody>
</table>

or another 500-, 600-, or 700-level course recommended by the Advisory Committee and approved by the Environment Option Committee.

11.7.8 Master of Science (M.Sc.); Entomology (Thesis) — Neotropical Environment (48 credits)

Thesis Courses (36 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRSC 691</td>
<td>12</td>
<td>M.Sc. Thesis Research 1</td>
</tr>
<tr>
<td>NRSC 692</td>
<td>12</td>
<td>M.Sc. Thesis Research 2</td>
</tr>
<tr>
<td>NRSC 693</td>
<td>12</td>
<td>M.Sc. Thesis Research 3</td>
</tr>
</tbody>
</table>

Required Courses (9 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 640</td>
<td>3</td>
<td>Tropical Biology and Conservation</td>
</tr>
<tr>
<td>ENVR 610</td>
<td>3</td>
<td>Foundations of Environmental Policy</td>
</tr>
<tr>
<td>NRSC 643</td>
<td>1</td>
<td>Graduate Seminar 1</td>
</tr>
<tr>
<td>NRSC 644</td>
<td>1</td>
<td>Graduate Seminar 2</td>
</tr>
</tbody>
</table>
Graduate Seminar 3 (1) NRSC 651

Note: Participation in the MSE-Panama Symposium presentation in Montreal is also required.

Elective Courses (3 credits)

3 credits, at the 500 level or higher, on environmental issues to be chosen in consultation with and approved by the student’s supervisor AND the Neotropical Environment Options Director.

11.7.9 Master of Science (M.Sc.); Microbiology (Thesis) (45 credits)

Thesis Courses (36 credits)

- NRSC 691 (12) M.Sc. Thesis Research 1
- NRSC 692 (12) M.Sc. Thesis Research 2
- NRSC 693 (12) M.Sc. Thesis Research 3

Required Courses (3 credits)

- NRSC 643 (1) Graduate Seminar 1
- NRSC 644 (1) Graduate Seminar 2
- NRSC 651 (1) Graduate Seminar 3

Complementary Courses (6 credits)

Two 3-credit 500-, 600-, or 700-level courses; normally one of these will be a course in statistics.

11.7.10 Master of Science (M.Sc.); Microbiology (Thesis) — Environment (46 credits)

Thesis Courses (36 credits)

- NRSC 691 (12) M.Sc. Thesis Research 1
- NRSC 692 (12) M.Sc. Thesis Research 2
- NRSC 693 (12) M.Sc. Thesis Research 3

Required Courses (7 credits)

- ENVR 610 (3) Foundations of Environmental Policy
- ENVR 650 (1) Environmental Seminar 1
- ENVR 651 (1) Environmental Seminar 2
- ENVR 652 (1) Environmental Seminar 3
- NRSC 651 (1) Graduate Seminar 3

Complementary Course (3 credits)

One of the following courses:

- ENVR 519 (3) Global Environmental Politics
- ENVR 544 (3) Environmental Measurement and Modelling
- ENVR 620 (3) Environment and Health of Species
- ENVR 622 (3) Sustainable Landscapes
- ENVR 630 (3) Civilization and Environment
- ENVR 680 (3) Topics in Environment 4
or another 500-, 600-, or 700-level course recommended by the Advisory Committee and approved by the Environment Option Committee.

11.7.11 Master of Science (M.Sc.); Renewable Resources (Thesis) (45 credits)

Includes Micrometeorology, Forest Science, Soil Science and Wildlife Biology as areas of research.

Thesis Courses (36 credits)
- NRSC 691 (12) M.Sc. Thesis Research 1
- NRSC 692 (12) M.Sc. Thesis Research 2
- NRSC 693 (12) M.Sc. Thesis Research 3

Required Courses (3 credits)
- NRSC 643 (1) Graduate Seminar 1
- NRSC 644 (1) Graduate Seminar 2
- NRSC 651 (1) Graduate Seminar 3

Complementary Courses (6 credits)
Two 3-credit courses at the 500 level or higher recommended by the supervisory committee; one of which must be in quantitative methods/techniques.

11.7.12 Master of Science (M.Sc.); Renewable Resources (Thesis) — Environment (46 credits)

Thesis Courses (33 credits)
- NRSC 691 (12) M.Sc. Thesis Research 1
- NRSC 692 (12) M.Sc. Thesis Research 2
- NRSC 694 (9) M.Sc. Thesis Research 4

Required Courses (7 credits)
- ENVR 610 (3) Foundations of Environmental Policy
- ENVR 650 (1) Environmental Seminar 1
- ENVR 651 (1) Environmental Seminar 2
- ENVR 652 (1) Environmental Seminar 3
- NRSC 651 (1) Graduate Seminar 3

Complementary Courses (6 credits)
3 credits, one of the following courses:
- ENVR 519 (3) Global Environmental Politics
- ENVR 544 (3) Environmental Measurement and Modelling
- ENVR 620 (3) Environment and Health of Species
- ENVR 622 (3) Sustainable Landscapes
- ENVR 630 (3) Civilization and Environment
- ENVR 680 (3) Topics in Environment 4

or another 500-, 600-, or 700-level course recommended by the Advisory Committee and approved by the Environment Option Committee.

3 credits of statistics at the 500, 600, or 700 level.
11.7.13 Master of Science (M.Sc.); Renewable Resources (Thesis) — Neotropical Environment (48 credits)

Thesis Courses (36 credits)

- NRSC 691 (12) M.Sc. Thesis Research 1
- NRSC 692 (12) M.Sc. Thesis Research 2
- NRSC 693 (12) M.Sc. Thesis Research 3

Required Courses (9 credits)

- BIOL 640 (3) Tropical Biology and Conservation
- ENVR 610 (3) Foundations of Environmental Policy
- NRSC 643 (1) Graduate Seminar 1
- NRSC 644 (1) Graduate Seminar 2
- NRSC 651 (1) Graduate Seminar 3

Note: Participation in the MSE-Panama Symposium presentation in Montreal is also required.

Elective Courses (3 credits)

3 credits, at the 500 level or higher, on environmental issues to be chosen in consultation with and approved by the student’s supervisor AND the Neotropical Environment Options Director.

11.7.14 Master of Science (M.Sc.); Renewable Resources (Non-Thesis) — Environmental Assessment (45 credits)

This program is currently not offered.

The non-thesis master’s in Renewable Resources: Environmental Assessment option is normally taken over a one year cycle beginning in the Winter term and concluding in the Fall term. It is comprised of three interrelated elements: graduate-level courses, primarily given in the Winter term, a Summer term internship, and a project-related research paper, which is completed in the Fall term. The program is aimed at environmental assessment professionals and advanced environmental science scholars planning for careers in the public and private sector agencies, which guide environmental impact assessment, integrated assessment, and sustainable development in Canada and internationally. McGill's non-thesis master’s in Environmental Assessment is offered in conjunction with a Memorandum of Understanding (MOU) with the United Nations Environment Program (UNEP - 2003), which designates the Faculty of Agricultural and Environmental Sciences as a UNEP Collaborating Centre on Environmental Assessment. An important component of the MOU is that the Faculty advance teaching and training through the development of course offerings that enable students to prepare for contributing to sustainable development by utilizing the excellent materials provided by UNEP and other national and international agencies.

Research Project (9 credits)

- NRSC 616 (9) Environmental Assessment Project Paper

Required Internship (15 credits)

- NRSC 615 (15) Environmental Assessment Internship

Required Courses (15 credits)

- NRSC 610 (3) Advanced Environmental Assessment
- NRSC 611 (3) Environmental Assessment Knowledge Base
- NRSC 612 (3) Environmental Assessment and Sustainable Development
- NRSC 613 (3) Strategic and Sectoral Environmental Assessment
- NRSC 614 (3) Meeting Environmental Assessment Regulations

Complementary Courses (6 credits)

500- or 600-level relevant courses to be chosen in consultation with the Supervisor and Program Director.
11.7.15 Doctor of Philosophy (Ph.D.); Entomology

Includes Micrometeorology, Forest Science, Soil Science, and Wildlife Biology.

Thesis
A thesis for the doctoral degree must constitute original scholarship and must be a distinct contribution to knowledge. It must show familiarity with previous work in the field and must demonstrate ability to plan and carry out research, organize results, and defend the approach and conclusions in a scholarly manner. The research presented must meet current standards of the discipline; as well, the thesis must clearly demonstrate how the research advances knowledge in the field. Finally, the thesis must be written in compliance with norms for academic and scholarly expression and for publication in the public domain.

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRSC 701</td>
<td>(0)</td>
<td>Ph.D. Comprehensive Examination</td>
</tr>
<tr>
<td>NRSC 751</td>
<td>(0)</td>
<td>Graduate Seminar 4</td>
</tr>
<tr>
<td>NRSC 752</td>
<td>(0)</td>
<td>Graduate Seminar 5</td>
</tr>
<tr>
<td>NRSC 753</td>
<td>(0)</td>
<td>Graduate Seminar 6</td>
</tr>
<tr>
<td>NRSC 754</td>
<td>(0)</td>
<td>Graduate Seminar 7</td>
</tr>
</tbody>
</table>

Coursework
Course requirements are specified by the staff in the discipline, but are flexible and depend largely on the student's background, immediate interests, and ultimate objectives.

11.7.16 Doctor of Philosophy (Ph.D.); Entomology — Environment

Thesis
A thesis for the doctoral degree must constitute original scholarship and must be a distinct contribution to knowledge. It must show familiarity with previous work in the field and must demonstrate ability to plan and carry out research, organize results, and defend the approach and conclusions in a scholarly manner. The research presented must meet current standards of the discipline; as well, the thesis must clearly demonstrate how the research advances knowledge in the field. Finally, the thesis must be written in compliance with norms for academic and scholarly expression and for publication in the public domain.

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVR 610</td>
<td>(3)</td>
<td>Foundations of Environmental Policy</td>
</tr>
<tr>
<td>ENVR 650</td>
<td>(1)</td>
<td>Environmental Seminar 1</td>
</tr>
<tr>
<td>ENVR 651</td>
<td>(1)</td>
<td>Environmental Seminar 2</td>
</tr>
<tr>
<td>ENVR 652</td>
<td>(1)</td>
<td>Environmental Seminar 3</td>
</tr>
<tr>
<td>NRSC 701</td>
<td>(0)</td>
<td>Ph.D. Comprehensive Examination</td>
</tr>
<tr>
<td>NRSC 754</td>
<td>(0)</td>
<td>Graduate Seminar 7</td>
</tr>
</tbody>
</table>

Coursework
Course requirements are specified by the staff in the discipline, but are flexible and depend largely on the student's background, immediate interests, and ultimate objectives.

Complementary Courses
One course chosen from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVR 519</td>
<td>(3)</td>
<td>Global Environmental Politics</td>
</tr>
<tr>
<td>ENVR 544</td>
<td>(3)</td>
<td>Environmental Measurement and Modelling</td>
</tr>
<tr>
<td>ENVR 620</td>
<td>(3)</td>
<td>Environment and Health of Species</td>
</tr>
<tr>
<td>ENVR 622</td>
<td>(3)</td>
<td>Sustainable Landscapes</td>
</tr>
<tr>
<td>ENVR 630</td>
<td>(3)</td>
<td>Civilization and Environment</td>
</tr>
<tr>
<td>ENVR 680</td>
<td>(3)</td>
<td>Topics in Environment 4</td>
</tr>
</tbody>
</table>
or another 500-, 600-, or 700-level course recommended by the Advisory Committee and approved by the Environment Option Committee.

11.7.17 Doctor of Philosophy (Ph.D.); Entomology — Neotropical Environment

Thesis
A thesis for the doctoral degree must constitute original scholarship and must be a distinct contribution to knowledge. It must show familiarity with previous work in the field and must demonstrate ability to plan and carry out research, organize results, and defend the approach and conclusions in a scholarly manner. The research presented must meet current standards of the discipline; as well, the thesis must clearly demonstrate how the research advances knowledge in the field. Finally, the thesis must be written in compliance with norms for academic and scholarly expression and for publication in the public domain.

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 640</td>
<td>(3)</td>
<td>Tropical Biology and Conservation</td>
</tr>
<tr>
<td>ENVR 610</td>
<td>(3)</td>
<td>Foundations of Environmental Policy</td>
</tr>
<tr>
<td>NRSC 701</td>
<td>(0)</td>
<td>Ph.D. Comprehensive Examination</td>
</tr>
<tr>
<td>NRSC 751</td>
<td>(0)</td>
<td>Graduate Seminar 4</td>
</tr>
<tr>
<td>NRSC 752</td>
<td>(0)</td>
<td>Graduate Seminar 5</td>
</tr>
<tr>
<td>NRSC 753</td>
<td>(0)</td>
<td>Graduate Seminar 6</td>
</tr>
<tr>
<td>NRSC 754</td>
<td>(0)</td>
<td>Graduate Seminar 7</td>
</tr>
</tbody>
</table>

Note: Participation in the MSE-Panama Symposium presentation in Montreal is also required.

Elective Courses
3 credits, at the 500 level or higher, on environmental issues to be chosen in consultation with and approved by the student’s supervisor AND the Neotropical Environment Options Director.

11.7.18 Doctor of Philosophy (Ph.D.); Microbiology

Includes Micrometeorology, Forest Science, Soil Science, and Wildlife Biology.

Thesis
A thesis for the doctoral degree must constitute original scholarship and must be a distinct contribution to knowledge. It must show familiarity with previous work in the field and must demonstrate ability to plan and carry out research, organize results, and defend the approach and conclusions in a scholarly manner. The research presented must meet current standards of the discipline; as well, the thesis must clearly demonstrate how the research advances knowledge in the field. Finally, the thesis must be written in compliance with norms for academic and scholarly expression and for publication in the public domain.

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRSC 701</td>
<td>(0)</td>
<td>Ph.D. Comprehensive Examination</td>
</tr>
<tr>
<td>NRSC 751</td>
<td>(0)</td>
<td>Graduate Seminar 4</td>
</tr>
<tr>
<td>NRSC 752</td>
<td>(0)</td>
<td>Graduate Seminar 5</td>
</tr>
<tr>
<td>NRSC 753</td>
<td>(0)</td>
<td>Graduate Seminar 6</td>
</tr>
<tr>
<td>NRSC 754</td>
<td>(0)</td>
<td>Graduate Seminar 7</td>
</tr>
</tbody>
</table>

Coursework
Course requirements are specified by the staff in the discipline, but are flexible and depend largely on the student's background, immediate interests, and ultimate objectives.

11.7.19 Doctor of Philosophy (Ph.D.); Microbiology — Bioinformatics

Thesis
A thesis for the doctoral degree must constitute original scholarship and must be a distinct contribution to knowledge. It must show familiarity with previous work in the field and must demonstrate ability to plan and carry out research, organize results, and defend the approach and conclusions in a scholarly manner.
The research presented must meet current standards of the discipline; as well, the thesis must clearly demonstrate how the research advances knowledge in the field. Finally, the thesis must be written in compliance with norms for academic and scholarly expression and for publication in the public domain.

Required Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 616D1</td>
<td>1.5</td>
<td>Bioinformatics Seminar</td>
</tr>
<tr>
<td>COMP 616D2</td>
<td>1.5</td>
<td>Bioinformatics Seminar</td>
</tr>
<tr>
<td>NRSC 701</td>
<td>0</td>
<td>Ph.D. Comprehensive Examination</td>
</tr>
<tr>
<td>NRSC 751</td>
<td>0</td>
<td>Graduate Seminar 4</td>
</tr>
<tr>
<td>NRSC 752</td>
<td>0</td>
<td>Graduate Seminar 5</td>
</tr>
<tr>
<td>NRSC 753</td>
<td>0</td>
<td>Graduate Seminar 6</td>
</tr>
<tr>
<td>NRSC 754</td>
<td>0</td>
<td>Graduate Seminar 7</td>
</tr>
</tbody>
</table>

Complementary Courses

6 credits from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BINF 621</td>
<td>3</td>
<td>Bioinformatics: Molecular Biology</td>
</tr>
<tr>
<td>BMDE 652</td>
<td>3</td>
<td>Bioinformatics: Proteomics</td>
</tr>
<tr>
<td>BTEC 555</td>
<td>3</td>
<td>Structural Bioinformatics</td>
</tr>
<tr>
<td>COMP 618</td>
<td>3</td>
<td>Bioinformatics: Functional Genomics</td>
</tr>
<tr>
<td>PHGY 603</td>
<td>3</td>
<td>Systems Biology and Biophysics</td>
</tr>
</tbody>
</table>

Additional courses at the 500, 600, or 700 level may be required at the discretion of the candidate's supervisory committee.

11.7.20 Doctor of Philosophy (Ph.D.); Microbiology — Environment

Thesis

A thesis for the doctoral degree must constitute original scholarship and must be a distinct contribution to knowledge. It must show familiarity with previous work in the field and must demonstrate ability to plan and carry out research, organize results, and defend the approach and conclusions in a scholarly manner. The research presented must meet current standards of the discipline; as well, the thesis must clearly demonstrate how the research advances knowledge in the field. Finally, the thesis must be written in compliance with norms for academic and scholarly expression and for publication in the public domain.

Required Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVR 610</td>
<td>3</td>
<td>Foundations of Environmental Policy</td>
</tr>
<tr>
<td>ENVR 650</td>
<td>1</td>
<td>Environmental Seminar 1</td>
</tr>
<tr>
<td>ENVR 651</td>
<td>1</td>
<td>Environmental Seminar 2</td>
</tr>
<tr>
<td>ENVR 652</td>
<td>1</td>
<td>Environmental Seminar 3</td>
</tr>
<tr>
<td>NRSC 701</td>
<td>0</td>
<td>Ph.D. Comprehensive Examination</td>
</tr>
<tr>
<td>NRSC 754</td>
<td>0</td>
<td>Graduate Seminar 7</td>
</tr>
</tbody>
</table>

Coursework

Course requirements are specified by the staff in the discipline, but are flexible and depend largely on the student's background, immediate interests, and ultimate objectives.

Complementary Courses

One course chosen from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVR 519</td>
<td>3</td>
<td>Global Environmental Politics</td>
</tr>
<tr>
<td>ENVR 544</td>
<td>3</td>
<td>Environmental Measurement and Modelling</td>
</tr>
</tbody>
</table>
or another 500-, 600-, or 700-level course recommended by the Advisory Committee and approved by the Environment Option Committee.

11.7.21 Doctor of Philosophy (Ph.D.); Renewable Resources

Includes Micrometeorology, Forest Science, Soil Science, and Wildlife Biology.

Thesis

A thesis for the doctoral degree must constitute original scholarship and must be a distinct contribution to knowledge. It must show familiarity with previous work in the field and must demonstrate ability to plan and carry out research, organize results, and defend the approach and conclusions in a scholarly manner. The research presented must meet current standards of the discipline; as well, the thesis must clearly demonstrate how the research advances knowledge in the field. Finally, the thesis must be written in compliance with norms for academic and scholarly expression and for publication in the public domain.

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRSC 701</td>
<td>0</td>
<td>Ph.D. Comprehensive Examination</td>
</tr>
<tr>
<td>NRSC 751</td>
<td>0</td>
<td>Graduate Seminar 4</td>
</tr>
<tr>
<td>NRSC 752</td>
<td>0</td>
<td>Graduate Seminar 5</td>
</tr>
<tr>
<td>NRSC 753</td>
<td>0</td>
<td>Graduate Seminar 6</td>
</tr>
<tr>
<td>NRSC 754</td>
<td>0</td>
<td>Graduate Seminar 7</td>
</tr>
</tbody>
</table>

Coursework

Course requirements are specified by the staff in the discipline, but are flexible and depend largely on the student's background, immediate interests, and ultimate objectives.

11.7.22 Doctor of Philosophy (Ph.D.); Renewable Resources — Environment

Thesis

A thesis for the doctoral degree must constitute original scholarship and must be a distinct contribution to knowledge. It must show familiarity with previous work in the field and must demonstrate ability to plan and carry out research, organize results, and defend the approach and conclusions in a scholarly manner. The research presented must meet current standards of the discipline; as well, the thesis must clearly demonstrate how the research advances knowledge in the field. Finally, the thesis must be written in compliance with norms for academic and scholarly expression and for publication in the public domain.

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVR 610</td>
<td>3</td>
<td>Foundations of Environmental Policy</td>
</tr>
<tr>
<td>ENVR 650</td>
<td>1</td>
<td>Environmental Seminar 1</td>
</tr>
<tr>
<td>ENVR 651</td>
<td>1</td>
<td>Environmental Seminar 2</td>
</tr>
<tr>
<td>ENVR 652</td>
<td>1</td>
<td>Environmental Seminar 3</td>
</tr>
<tr>
<td>NRSC 701</td>
<td>0</td>
<td>Ph.D. Comprehensive Examination</td>
</tr>
<tr>
<td>NRSC 754</td>
<td>0</td>
<td>Graduate Seminar 7</td>
</tr>
</tbody>
</table>

Coursework

Course requirements are specified by the staff in the discipline but are flexible and depend largely on the student's background, immediate interests, and ultimate objectives.

Complementary Courses
One course chose from the following:

- ENVR 519 (3) Global Environmental Politics
- ENVR 544 (3) Environmental Measurement and Modelling
- ENVR 620 (3) Environment and Health of Species
- ENVR 622 (3) Sustainable Landscapes
- ENVR 630 (3) Civilization and Environment
- ENVR 680 (3) Topics in Environment 4

or other graduate course recommended by the Advisory Committee and approved by the Environment Option Committee.

11.7.23 Doctor of Philosophy (Ph.D.); Renewable Resources — Neotropical Environment

Thesis

A thesis for the doctoral degree must constitute original scholarship and must be a distinct contribution to knowledge. It must show familiarity with previous work in the field and must demonstrate ability to plan and carry out research, organize results, and defend the approach and conclusions in a scholarly manner. The research presented must meet current standards of the discipline; as well, the thesis must clearly demonstrate how the research advances knowledge in the field. Finally, the thesis must be written in compliance with norms for academic and scholarly expression and for publication in the public domain.

Required Courses

- BIOL 640 (3) Tropical Biology and Conservation
- ENVR 610 (3) Foundations of Environmental Policy
- NRSC 701 (0) Ph.D. Comprehensive Examination
- NRSC 751 (0) Graduate Seminar 4
- NRSC 752 (0) Graduate Seminar 5
- NRSC 753 (0) Graduate Seminar 6
- NRSC 754 (0) Graduate Seminar 7

Note: Participation in the MSE-Panama Symposium presentation in Montreal is required.

Elective Courses

3 credits, at the 500 level or higher, on environmental issues to be chosen in consultation with and approved by the student’s supervisor AND the Neotropical Environment Options Director.

11.8 Parasitology

11.8.1 Location

Institute of Parasitology
Macdonald Campus
21,111 Lakeshore Road
Sainte-Anne-de-Bellevue QC H9X 3V9
Canada

Telephone: 514-398-7838
Email: gradstudies.macdonald@mcgill.ca
Website: www.mcgill.ca/parasitology
11.8.2 About Parasitology

The Institute of Parasitology teaches and researches the phenomenon of parasitism of humans and livestock. The nutrition/parasitism interface is also examined. Current research involvement includes the biology, biochemistry, bioinformatics, pharmacology, control, ecology, epidemiology, immunology, molecular biology, neurobiology, and population and molecular genetics of parasitic organisms, viruses, and cancer cells. The non-thesis programs in Biotechnology offer a course-based curriculum with practical training in laboratory courses and internships.

The Institute is housed in its own building adjacent to the Macdonald Campus Library and has well-equipped laboratories. A confocal microscopy suite is available on site. Small and large animal facilities are present on the Macdonald campus. The Institute is affiliated with the McGill Centre for Tropical Diseases at the Montreal General Hospital.

Graduates typically go on to become career research scientists, enter the biotechnology sector in research, management, or sales, or accept government positions.

Parasitology Programs

section 11.8.5: Master of Science (M.Sc.); Parasitology (Thesis) (46 credits)

A research project is undertaken in an area of parasitology under the direction of a supervisor, and a thesis is produced. Coursework is minimal. Graduates have gone on to medical school, to teaching positions, or have found employment in scientific fields.

section 11.8.6: Master of Science (M.Sc.); Parasitology (Thesis) — Bioinformatics (47 credits)

A research project is undertaken in an area of parasitology under the direction of a supervisor, and a thesis is produced. This option involves additional coursework specializing in bioinformatics, and graduates are highly trained professionals with expertise in bioinformatics.

section 11.8.7: Master of Science (M.Sc.); Parasitology (Thesis) — Environment (46 credits)

A research project is undertaken under the direction of a supervisor, and a thesis is produced. This option involves extra coursework in topics relevant to the environment and is suitable for students interested in environmental issues. Graduates find employment in science and/or the environment, such as management or consulting positions in the emerging field of environmental protection, or go on to further graduate studies.

section 11.8.8: Doctor of Philosophy (Ph.D.); Parasitology

An advanced, original research project is undertaken in an area of parasitology supervised by faculty staff. Coursework is minimal. Graduates are well suited for teaching positions in academia or research careers in a university or private industry laboratory.

section 11.8.9: Doctor of Philosophy (Ph.D.); Parasitology — Bioinformatics

An advanced, original research project in an area of parasitology is undertaken supervised by faculty staff, and a thesis is produced. Additional coursework in the field of bioinformatics is required for this option. Graduates are well suited for a teaching or research career, especially where there is particular emphasis on the science of bioinformatics.

section 11.8.10: Doctor of Philosophy (Ph.D.); Parasitology — Environment

An advanced, original research project in an area of parasitology is undertaken supervised by faculty staff, and a thesis is produced. There is additional coursework on environmental topics for this option. Graduates are prepared for careers in academia, industry, or government, especially where the focus is on environmental protection or management of valuable natural resources, such as water.

11.8.3 Parasitology Admission Requirements and Application Procedures

11.8.3.1 Admission Requirements

Candidates for either the M.Sc. or the Ph.D. thesis research degree should possess a bachelor’s degree in the biological or medical sciences with a minimum cumulative grade point average of 3.2/4.0 (second class – upper division). High grades are expected in courses considered by the academic unit to be preparatory to the graduate program. Previous experience in parasitology is not essential.

Qualifying Students

Some applicants whose academic degrees and standing entitle them to serious consideration for admission to graduate studies, but who are considered inadequately prepared in the subject selected, may be admitted to a Qualifying program if they have met the Graduate and Postdoctoral Studies minimum CGPA of 3.0/4.0. The course(s) to be taken in a Qualifying program will be prescribed by the academic unit concerned. Qualifying students are registered in graduate studies, but not as candidates for a degree. Only one Qualifying year is permitted. Successful completion of a Qualifying program does not guarantee admission to a degree program.

Financial Aid – Financial aid is very limited and highly competitive. It is suggested that students give serious consideration to their financial planning before submitting an application. Normally, a student will not be accepted unless adequate financial support can be provided by the student and/or the student’s supervisor. Academic units cannot guarantee financial support via teaching assistantships or other funds.
11.8.3.2 Application Procedures
McGill’s online application form for graduate program candidates is available at www.mcgill.ca/gradapplicants/apply.
See Application Procedures for detailed application procedures.

11.8.3.2.1 Additional Requirements
The items and clarifications below are additional requirements set by this department:

- Acceptance to all thesis research programs depends on a staff member agreeing to serve as the student’s supervisor and the student obtaining financial support.
- International students are strongly encouraged to secure funding from their home country or international agencies.
- Other Supporting Documents – Other documents may be required for the admission process. Please consult the Parasitology website at www.mcgill.ca/parasitology/graduatestudies/admission for full details.

11.8.3.3 Application Deadlines
The application deadlines listed here are set by the Institute of Parasitology and may be revised at any time. Applicants must verify all deadlines and documentation requirements well in advance on the appropriate McGill departmental website; please consult the list at www.mcgill.ca/gps/contact/graduate-program.

<table>
<thead>
<tr>
<th>Canadian</th>
<th>International</th>
<th>Special/Exchange/Visiting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall: May 31</td>
<td>Fall: March 15</td>
<td>Fall: Same as Canadian/International</td>
</tr>
<tr>
<td>Winter: Oct. 15</td>
<td>Winter: Aug. 31</td>
<td>Winter: Same as Canadian/International</td>
</tr>
<tr>
<td>Summer: N/A</td>
<td>Summer: N/A</td>
<td>Summer: N/A</td>
</tr>
</tbody>
</table>

Admission to graduate studies is competitive; accordingly, late and/or incomplete applications are considered only as time and space permit. International applicants are advised to apply well in advance of these dates because immigration procedures may be lengthy.

11.8.4 Parasitology Faculty

Director
Timothy G. Geary

Professors
Timothy G. Geary; B.Sc.(Notre Dame), Ph.D.(Mich.) (Canada Research Chair in Parasite Biotechnology)
Roger Prichard; B.Sc., Ph.D.(NSW) (James McGill Professor)
Marilyn Scott; B.Sc.(New Br.), Ph.D.(McG.)

Associate Professors
Robin N. Beech; B.Sc.(Nott.), Ph.D.(Edin.)
Elias Georges; B.Sc., Ph.D.(McG.)
Armando Jardim; B.Sc., Ph.D.(Vic., BC)
Paula Ribeiro; B.Sc., Ph.D.(York)
Reza Salavati; B.A., M.A.(Calif. St.), Ph.D.(Wesl.)

Assistant Professors
Jerry Aldridge; B.Sc.(Lenoir-Rhyne), Ph.D.(Wake Forest)
Petra Rohrbach; B.Sc.(McG.), Ph.D.(Heidelberg, Germany)

Associate Members
Gregory J. Matlashewski; B.Sc.(C’dia), Ph.D.(Ott.)
Martin Olivier; B.Sc., M.Sc.(Montr.), Ph.D.(McG.)
Mary Stevenson; B.A.(Hood Coll.), M.Sc., Ph.D.(CUA)
Brian Ward; M.Sc.(Oxf.), M.D.,C.M.(McG.), DTM&H(Lond.)
Adjunct Professors

John P. Dalton; B.Sc., Ph.D.(Dublin)

Sean Forrester; B.Sc.(Cape Breton), M.Sc.(Lake.), Ph.D.(McG.)

11.8.5 Master of Science (M.Sc.); Parasitology (Thesis) (46 credits)

Thesis Courses (32 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARA 687</td>
<td>(10)</td>
<td>Thesis Research 1</td>
</tr>
<tr>
<td>PARA 688</td>
<td>(10)</td>
<td>Thesis Research 2</td>
</tr>
<tr>
<td>PARA 689</td>
<td>(12)</td>
<td>Thesis Research 3</td>
</tr>
</tbody>
</table>

Required Courses (14 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARA 600</td>
<td>(4)</td>
<td>Thesis Proposal for M.Sc</td>
</tr>
<tr>
<td>PARA 606</td>
<td>(2)</td>
<td>Parasitology Seminar</td>
</tr>
<tr>
<td>PARA 607</td>
<td>(2)</td>
<td>Parasitology Research Seminar</td>
</tr>
<tr>
<td>PARA 635</td>
<td>(3)</td>
<td>Cell Biology and Infection</td>
</tr>
<tr>
<td>PARA 655</td>
<td>(3)</td>
<td>Host-Parasite Interactions</td>
</tr>
</tbody>
</table>

Other course work in related subjects may be required, depending upon the candidate's background and research orientation.

11.8.6 Master of Science (M.Sc.); Parasitology (Thesis) — Bioinformatics (47 credits)

Thesis Courses (24 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARA 688</td>
<td>(10)</td>
<td>Thesis Research 2</td>
</tr>
<tr>
<td>PARA 689</td>
<td>(12)</td>
<td>Thesis Research 3</td>
</tr>
<tr>
<td>PARA 690</td>
<td>(2)</td>
<td>Thesis Research 4</td>
</tr>
</tbody>
</table>

Required Courses (17 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 616D1</td>
<td>(1.5)</td>
<td>Bioinformatics Seminar</td>
</tr>
<tr>
<td>COMP 616D2</td>
<td>(1.5)</td>
<td>Bioinformatics Seminar</td>
</tr>
<tr>
<td>PARA 600</td>
<td>(4)</td>
<td>Thesis Proposal for M.Sc</td>
</tr>
<tr>
<td>PARA 606</td>
<td>(2)</td>
<td>Parasitology Seminar</td>
</tr>
<tr>
<td>PARA 607</td>
<td>(2)</td>
<td>Parasitology Research Seminar</td>
</tr>
<tr>
<td>PARA 635</td>
<td>(3)</td>
<td>Cell Biology and Infection</td>
</tr>
<tr>
<td>PARA 655</td>
<td>(3)</td>
<td>Host-Parasite Interactions</td>
</tr>
</tbody>
</table>

Complementary Courses (6 credits)

6 credits from the following courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BINF 621</td>
<td>(3)</td>
<td>Bioinformatics: Molecular Biology</td>
</tr>
<tr>
<td>BMDE 652</td>
<td>(3)</td>
<td>Bioinformatics: Proteomics</td>
</tr>
<tr>
<td>BTEC 555</td>
<td>(3)</td>
<td>Structural Bioinformatics</td>
</tr>
<tr>
<td>COMP 618</td>
<td>(3)</td>
<td>Bioinformatics: Functional Genomics</td>
</tr>
<tr>
<td>PHGY 603</td>
<td>(3)</td>
<td>Systems Biology and Biophysics</td>
</tr>
</tbody>
</table>
Additional courses at the 500 or 600 level may be required at the discretion of the candidate's supervisory committee.

11.8.7 Master of Science (M.Sc.); Parasitology (Thesis) — Environment (46 credits)

Thesis Courses (26 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARA 687</td>
<td>10</td>
<td>Thesis Research 1</td>
</tr>
<tr>
<td>PARA 688</td>
<td>10</td>
<td>Thesis Research 2</td>
</tr>
<tr>
<td>PARA 691</td>
<td>6</td>
<td>Thesis Research 5</td>
</tr>
</tbody>
</table>

Required Courses (14 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVR 610</td>
<td>3</td>
<td>Foundations of Environmental Policy</td>
</tr>
<tr>
<td>ENVR 650</td>
<td>1</td>
<td>Environmental Seminar 1</td>
</tr>
<tr>
<td>ENVR 651</td>
<td>1</td>
<td>Environmental Seminar 2</td>
</tr>
<tr>
<td>ENVR 652</td>
<td>1</td>
<td>Environmental Seminar 3</td>
</tr>
<tr>
<td>PARA 600</td>
<td>4</td>
<td>Thesis Proposal for M.Sc</td>
</tr>
<tr>
<td>PARA 606</td>
<td>2</td>
<td>Parasitology Seminar</td>
</tr>
<tr>
<td>PARA 607</td>
<td>2</td>
<td>Parasitology Research Seminar</td>
</tr>
</tbody>
</table>

Complementary Courses (6 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARA 635</td>
<td>3</td>
<td>Cell Biology and Infection</td>
</tr>
<tr>
<td>PARA 655</td>
<td>3</td>
<td>Host-Parasite Interactions</td>
</tr>
</tbody>
</table>

3 credits from one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVR 519</td>
<td>3</td>
<td>Global Environmental Politics</td>
</tr>
<tr>
<td>ENVR 544</td>
<td>3</td>
<td>Environmental Measurement and Modelling</td>
</tr>
<tr>
<td>ENVR 620</td>
<td>3</td>
<td>Environment and Health of Species</td>
</tr>
<tr>
<td>ENVR 622</td>
<td>3</td>
<td>Sustainable Landscapes</td>
</tr>
<tr>
<td>ENVR 630</td>
<td>3</td>
<td>Civilization and Environment</td>
</tr>
<tr>
<td>ENVR 680</td>
<td>3</td>
<td>Topics in Environment 4</td>
</tr>
</tbody>
</table>

or other graduate course recommended by the Advisory Committee and approved by the Environment Option Committee.

Note: Other course work in related subjects may be required, depending upon the candidate's background and research orientation.

11.8.8 Doctor of Philosophy (Ph.D.); Parasitology

Thesis

A thesis for the doctoral degree must constitute original scholarship and must be a distinct contribution to knowledge. It must show familiarity with previous work in the field and must demonstrate ability to plan and carry out research, organize results, and defend the approach and conclusions in a scholarly manner. The research presented must meet current standards of the discipline; as well, the thesis must clearly demonstrate how the research advances knowledge in the field. Finally, the thesis must be written in compliance with norms for academic and scholarly expression and for publication in the public domain.

Required Courses (10 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARA 635</td>
<td>3</td>
<td>Cell Biology and Infection</td>
</tr>
<tr>
<td>PARA 655</td>
<td>3</td>
<td>Host-Parasite Interactions</td>
</tr>
</tbody>
</table>
* Note: In the first year of the doctoral program, the candidates must successfully complete a written thesis proposal and make an oral presentation on their proposed research to fulfill PARA 700, the comprehensive component.

Depending upon the candidate's background, other course work may be required.

11.8.9 Doctor of Philosophy (Ph.D.); Parasitology — Bioinformatics

Thesis
A thesis for the doctoral degree must constitute original scholarship and must be a distinct contribution to knowledge. It must show familiarity with previous work in the field and must demonstrate ability to plan and carry out research, organize results, and defend the approach and conclusions in a scholarly manner. The research presented must meet current standards of the discipline; as well, the thesis must clearly demonstrate how the research advances knowledge in the field. Finally, the thesis must be written in compliance with norms for academic and scholarly expression and for publication in the public domain.

Required Courses (13 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 616D1</td>
<td>1.5</td>
<td>Bioinformatics Seminar</td>
</tr>
<tr>
<td>COMP 616D2</td>
<td>1.5</td>
<td>Bioinformatics Seminar</td>
</tr>
<tr>
<td>PARA 635</td>
<td>3</td>
<td>Cell Biology and Infection</td>
</tr>
<tr>
<td>PARA 655</td>
<td>3</td>
<td>Host-Parasite Interactions</td>
</tr>
<tr>
<td>PARA 700</td>
<td>0</td>
<td>Thesis Proposal for Ph.D</td>
</tr>
<tr>
<td>PARA 710</td>
<td>2</td>
<td>Parasitology Ph.D. Seminar 1</td>
</tr>
<tr>
<td>PARA 711</td>
<td>2</td>
<td>Parasitology Ph.D. Seminar 2</td>
</tr>
</tbody>
</table>

Complementary Courses (6 credits)

6 credits chosen from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BINF 621</td>
<td>3</td>
<td>Bioinformatics: Molecular Biology</td>
</tr>
<tr>
<td>BMDE 652</td>
<td>3</td>
<td>Bioinformatics: Proteomics</td>
</tr>
<tr>
<td>BTEC 555</td>
<td>3</td>
<td>Structural Bioinformatics</td>
</tr>
<tr>
<td>COMP 618</td>
<td>3</td>
<td>Bioinformatics: Functional Genomics</td>
</tr>
<tr>
<td>PHGY 603</td>
<td>3</td>
<td>Systems Biology and Biophysics</td>
</tr>
</tbody>
</table>

Additional courses at the 500, 600, or 700 level may be required at the discretion of the candidate's supervisory committee.

11.8.10 Doctor of Philosophy (Ph.D.); Parasitology — Environment

Thesis
A thesis for the doctoral degree must constitute original scholarship and must be a distinct contribution to knowledge. It must show familiarity with previous work in the field and must demonstrate ability to plan and carry out research, organize results, and defend the approach and conclusions in a scholarly manner. The research presented must meet current standards of the discipline; as well, the thesis must clearly demonstrate how the research advances knowledge in the field. Finally, the thesis must be written in compliance with norms for academic and scholarly expression and for publication in the public domain.

Required Courses (14 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVR 610</td>
<td>3</td>
<td>Foundations of Environmental Policy</td>
</tr>
<tr>
<td>ENVR 650</td>
<td>1</td>
<td>Environmental Seminar 1</td>
</tr>
<tr>
<td>ENVR 651</td>
<td>1</td>
<td>Environmental Seminar 2</td>
</tr>
<tr>
<td>ENVR 652</td>
<td>1</td>
<td>Environmental Seminar 3</td>
</tr>
</tbody>
</table>
Complementary Courses (6 credits)

One of the following courses:

- PARA 635 (3) Cell Biology and Infection
- PARA 655 (3) Host-Parasite Interactions

One course chosen from the following:

- ENVR 519 (3) Global Environmental Politics
- ENVR 544 (3) Environmental Measurement and Modelling
- ENVR 620 (3) Environment and Health of Species
- ENVR 622 (3) Sustainable Landscapes
- ENVR 630 (3) Civilization and Environment
- ENVR 680 (3) Topics in Environment 4

Or another graduate course recommended by the Advisory Committee and approved by the Environment Option Committee.

11.9 Plant Science

11.9.1 Location

Department of Plant Science
Macdonald Campus
21,111 Lakeshore Road
Sainte-Anne-de-Bellevue QC H9X 3V9
Canada

Telephone: 514-398-7838
Email: gradstudies.macdonald@mcgill.ca
Website: www.mcgill.ca/plant

11.9.2 About Plant Science

The Department offers an M.Sc. and Ph.D. in Plant Science with options in Bioinformatics, Environment, or Neotropical Environment, and provides for study in all fields of plant science. Research facilities—both field and laboratory—are available for investigations in plant breeding, crop physiology, crop management, crop quality, plant ecology, the epidemiology and biology of plant diseases, epigenetics, biosystematics, recombinant DNA technology, mycology, weed biology, tissue culture, plant biochemistry, and bioinformatics. Facilities include: the Horticultural Research Centre, the Emile A. Lods Agronomy Research Centre, greenhouses, growth cabinets, the McGill University Herbarium, the Applied Biotechnology laboratory, the CT Scanning laboratory, and a Level 2 Quarantine Facility.

An advisory committee is named for each student and has the responsibility of developing the program of study appropriate to the student's background and area of specialization.

section 11.9.5: Master of Science (M.Sc.); Plant Science (Thesis) (45 credits)

This M.Sc. in Plant Science requires approximately two years for completion. Overall, the program consists of two graduate-level courses, seminars, and a research project leading to a thesis. The courses and the research project are chosen and defined with the help of an advisory committee. Subsequent career paths are varied, but include work with government agencies, the private sector, or further graduate studies in a related field.
section 11.9.6: Master of Science (M.Sc.); Plant Science (Thesis) — Bioinformatics (48 credits)

This M.Sc. in Plant Science requires approximately two years for completion. Overall, the program consists of two graduate-level courses, seminars, and a research project leading to a thesis. The courses and the research project are chosen and defined with the help of an advisory committee. The goal of the Bioinformatics option is to train students to become researchers in the interdisciplinary field of bioinformatics, which lies at the intersection of biological/medical sciences and mathematics/computer science/engineering. This option has an added emphasis on bioinformatics, including additional seminars. Subsequent career paths are varied, but include work with government agencies, the private sector, or further graduate studies in a related field.

section 11.9.7: Master of Science (M.Sc.); Plant Science (Thesis) — Environment (48 credits)

This M.Sc. in Plant Science requires approximately two years for completion. Overall, the program consists of two graduate-level courses, seminars, and a research project leading to a thesis. The courses and the research project are chosen and defined with the help of an advisory committee. Subsequent career paths are varied, but include work with government agencies, the private sector, or further graduate studies in a related field. This option has an added emphasis on environmental sciences, including additional courses and seminars. The Environment graduate option is aimed at students who wish to take an interdisciplinary approach in their graduate research on environmental issues and who wish to benefit from interactions with students from a wide range of disciplines.

section 11.9.8: Master of Science (M.Sc.); Plant Science (Thesis) — Neotropical Environment (48 credits)

This M.Sc. in Plant Science requires approximately two years for completion. Overall, the program consists of two graduate-level courses, seminars, and a research project leading to a thesis. The courses and the research project are chosen and defined with the help of an advisory committee. Subsequent career paths are varied, but include work with government agencies, the private sector, or further graduate studies in a related field. This option has an added emphasis on neotropical environments, including additional courses and seminars. Part of the program takes place in Panama.

section 11.9.9: Master of Science, Applied (M.Sc.A.); Plant Science (Non-Thesis) (45 credits)

This M.Sc. in Plant Science requires about 18 months or four to five terms for completion. Overall, the program consists of graduate-level courses, seminars, and a research project. The courses and the research project are chosen and defined with the help of an advisory committee. Subsequent career paths are varied, but include work with government agencies, the private sector, or further graduate studies in a related field.

section 11.9.10: Doctor of Philosophy (Ph.D.); Plant Science

This Ph.D. in Plant Science requires approximately three years for completion. Overall, the program consists of seminars and a research project leading to a thesis. Students must also complete a comprehensive examination within their first year of study. The research project is defined with the help of an advisory committee. Subsequent career paths are varied, but include work with government agencies, universities, or the private sector.

section 11.9.11: Doctor of Philosophy (Ph.D.); Plant Science — Bioinformatics

This Ph.D. in Plant Science requires approximately three years for completion. Overall, the program consists of seminars and a research project leading to a thesis. Students must also complete a comprehensive examination within their first year of study. The research project is defined with the help of an advisory committee. Subsequent career paths are varied, but include work with government agencies, universities, or the private sector. This option has an added emphasis on bioinformatics, including additional courses and seminars. The goal of the Bioinformatics option is to train students to become researchers in the interdisciplinary field of bioinformatics, which lies at the intersection of biological/medical sciences and mathematics/computer science/engineering.

section 11.9.12: Doctor of Philosophy (Ph.D.); Plant Science — Environment

This Ph.D. in Plant Science requires approximately three years for completion. Overall, the program consists of seminars and a research project leading to a thesis. Students must also complete a comprehensive examination within their first year of study. The research project is defined with the help of an advisory committee. Subsequent career paths are varied, but include work with government agencies, universities, or the private sector. This option has an added emphasis on environmental sciences, including additional courses and seminars. The Environment graduate option is aimed at students who wish to take an interdisciplinary approach in their graduate research on environmental issues and who wish to benefit from interactions with students from a wide range of disciplines.

section 11.9.13: Doctor of Philosophy (Ph.D.); Plant Science — Neotropical Environment

This Ph.D. in Plant Science requires approximately three years for completion. Overall, the program consists of seminars and a research project leading to a thesis. Students must also complete a comprehensive examination within their first year of study. The research project is defined with the help of an advisory committee. Subsequent career paths are varied, but include work with government agencies, universities, or the private sector. This option has an added emphasis on neotropical environments, including additional courses and seminars. Part of the program takes place in Panama.

section 11.9.14: Graduate Certificate in Bioinformatics (15 credits)

The Graduate Certificate in Bioinformatics is a new cross-disciplinary program that teaches students the foundations of bioinformatics thinking, methodology, and applications through hands-on experience with computers and bioinformatics tools. The program introduces students to many areas of application such as medicine, agriculture, and chemistry. Required courses include basic UNIX skills, genomics data, common bioinformatics software, relational databases, and web resources. The Certificate is completed in one term (Winter) after which graduates may go on to pursue successful careers in the biomedical, biotechnology, and biosciences fields.
11.9.3 Plant Science Admission Requirements and Application Procedures

11.9.3.1 Admission Requirements

General
The minimum cumulative grade point average (CGPA) is 3.0/4.0 (second class – upper division) or a GPA of 3.2/4.0 during the last two years of full-time university study. High grades are expected in courses considered by the academic unit to be preparatory to the graduate program.

Ph.D.
Ph.D. candidates are required to have an M.Sc. degree in an area related to the chosen field of specialization for the Ph.D. program. Outstanding M.Sc. students may be permitted to transfer to the second year of the Ph.D. program following one year of study.

Qualifying Students
Some applicants whose academic degrees and standing entitle them to serious consideration for admission to graduate studies, but who are considered inadequately prepared in the subject selected may be admitted to a Qualifying program if they have met the Graduate and Postdoctoral Studies minimum CGPA of 3.0/4.0. The course(s) to be taken in a Qualifying program will be prescribed by the academic unit concerned. Qualifying students are registered in graduate studies, but not as candidates for a degree. Only one Qualifying year is permitted. Successful completion of a qualifying program does not guarantee admission to a degree program.

Financial Aid – Financial aid is very limited and highly competitive. It is suggested that students give serious consideration to their financial planning before submitting an application. Normally, a student will not be accepted unless adequate financial support can be provided by the student and/or the student’s supervisor. Academic units cannot guarantee financial support via teaching assistantships or other funds.

11.9.3.2 Application Procedures

McGill’s online application form for graduate program candidates is available at www.mcgill.ca/gradapplicants/apply. See Application Procedures for detailed application procedures.

11.9.3.2.1 Additional Requirements

The items and clarifications below are additional requirements set by this department:

- Acceptance to all programs depends on a staff member agreeing to serve as the student’s supervisor and the student obtaining financial support.
- The GRE is not required, but it is highly recommended.

11.9.3.3 Application Deadlines

The application deadlines listed here are set by the Department of Plant Science and may be revised at any time. Applicants must verify all deadlines and documentation requirements well in advance on the appropriate McGill departmental website; please consult the list at www.mcgill.ca/gps/contact/graduate-program.

<table>
<thead>
<tr>
<th>Canadian</th>
<th>International</th>
<th>Special/Exchange/Visiting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall: May 31</td>
<td>Fall: March 15</td>
<td>Fall: Same as Canadian/International</td>
</tr>
<tr>
<td>Winter: Oct. 15</td>
<td>Winter: Aug. 31</td>
<td>Winter: Same as Canadian/International</td>
</tr>
<tr>
<td>Summer: N/A</td>
<td>Summer: N/A</td>
<td>Summer: N/A</td>
</tr>
</tbody>
</table>

Admission to graduate studies is competitive; accordingly, late and/or incomplete applications are considered only as time and space permit. International applicants are advised to apply well in advance of these dates because immigration procedures may be lengthy.

11.9.4 Plant Science Faculty

Chair
P. Seguin

Emeritus Professor
D.J. Buszard; B.Sc.(Bath), Ph.D.(Lond.)

Professors
P. Dutilleul; L.Sc., D.Sc.(Louvain)
D.L. Smith; B.Sc., M.Sc.(Acad.), Ph.D.(Guelph)
A.K. Watson; B.Sc.(Agr.), M.Sc.(Br. Col.), Ph.D.(Sask.)

Associate Professors

J. Bede; B.Sc.(Calg.), M.Sc., Ph.D.(Tor.)
S. deBlois; B.Sc.(Agr.)(McG.), M.Sc., Ph.D.(Montr.)
D.J. Donnelly; B.Sc.(Agr.)(McG.), M.Sc.(Br. Col.), Ph.D.(S. Fraser)
S. Jabaji; B.Sc.(Beirut), M.Sc.(Guelph), Ph.D.(Wat.)
A.C. Kushalappa; B.Sc., M.Sc.(B'Lore), Ph.D.(Flor.)
P. Seguin; B.Sc.(Agr.), M.Sc.(McG.), Ph.D.(Minn.)
M. Stromvik; B.A., M.Sc.(Stockholm), Ph.D.(Ill.)
M. Waterway; B.A., M.Sc.(Grand Rapids), M.S.(Wisc.), Ph.D.(Cornell)

Assistant Professors

J.-B. Charron; B.Sc.(Montr.), M.Sc., Ph.D.(UQAM)
V. Gravel; B.Sc.(Agr.), M.Sc., Ph.D.(Laval)
J. Singh; B.Sc.(Agr.), M.Sc.(Punjab), Ph.D.(Syd.)

Faculty Lecturers

C. Begg; B.Sc.(Agr.(McG.)), M.Sc.(Sask.), Ph.D.(McG.)
S. Lussier; B.Sc.(Agr.)(McG.)
D. Wees; B.Sc.(Agr.), M.Sc.(McG.)

Associate Members

G. Brown (Department of Biology)
T.A. Johns (School of Dietetics and Human Nutrition)

Adjunct Professors

A. Bertrand
S. Jenni
S. Khanizadeh

11.9.5 Master of Science (M.Sc.); Plant Science (Thesis) (45 credits)

Thesis Courses (39 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLNT 664</td>
<td>12</td>
</tr>
<tr>
<td>PLNT 665</td>
<td>12</td>
</tr>
<tr>
<td>PLNT 666</td>
<td>15</td>
</tr>
</tbody>
</table>

M.Sc. Thesis 1

M.Sc. Thesis 2

M.Sc. Thesis 3

Required Invitational Seminar

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLNT 690</td>
<td>0</td>
</tr>
</tbody>
</table>

Research Horizons in Plant Science 1

Complementary Courses (6 credits)

Two graduate-level courses

Additional courses may be required at the discretion of the candidate's supervisory committee.

11.9.6 Master of Science (M.Sc.); Plant Science (Thesis) — Bioinformatics (48 credits)

Thesis Courses (39 credits)
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLNT 664</td>
<td>12</td>
<td>M.Sc. Thesis 1</td>
</tr>
<tr>
<td>PLNT 665</td>
<td>12</td>
<td>M.Sc. Thesis 2</td>
</tr>
<tr>
<td>PLNT 666</td>
<td>15</td>
<td>M.Sc. Thesis 3</td>
</tr>
</tbody>
</table>

Required Invitational Seminar

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLNT 690</td>
<td>0</td>
<td>Research Horizons in Plant Science 1</td>
</tr>
</tbody>
</table>

Required Courses (3 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 616D1</td>
<td>1.5</td>
<td>Bioinformatics Seminar</td>
</tr>
<tr>
<td>COMP 616D2</td>
<td>1.5</td>
<td>Bioinformatics Seminar</td>
</tr>
<tr>
<td>PLNT 691</td>
<td>0</td>
<td>Research Horizons in Plant Science 2</td>
</tr>
</tbody>
</table>

Complementary Courses (6 credits)

Chosen from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BINF 511</td>
<td>3</td>
<td>Bioinformatics for Genomics</td>
</tr>
<tr>
<td>BINF 621</td>
<td>3</td>
<td>Bioinformatics: Molecular Biology</td>
</tr>
<tr>
<td>BMDE 652</td>
<td>3</td>
<td>Bioinformatics: Proteomics</td>
</tr>
<tr>
<td>BTEC 555</td>
<td>3</td>
<td>Structural Bioinformatics</td>
</tr>
<tr>
<td>COMP 618</td>
<td>3</td>
<td>Bioinformatics: Functional Genomics</td>
</tr>
<tr>
<td>PHGY 603</td>
<td>3</td>
<td>Systems Biology and Biophysics</td>
</tr>
</tbody>
</table>

Additional courses at the 500 or 600 level may be required at the discretion of the candidate's advisory committee.

11.9.7 Master of Science (M.Sc.); Plant Science (Thesis) — Environment (48 credits)

Thesis Courses (39 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLNT 664</td>
<td>12</td>
<td>M.Sc. Thesis 1</td>
</tr>
<tr>
<td>PLNT 665</td>
<td>12</td>
<td>M.Sc. Thesis 2</td>
</tr>
<tr>
<td>PLNT 666</td>
<td>15</td>
<td>M.Sc. Thesis 3</td>
</tr>
</tbody>
</table>

Required Invitational Seminar

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLNT 690</td>
<td>0</td>
<td>Research Horizons in Plant Science 1</td>
</tr>
</tbody>
</table>

Required Courses (6 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVR 610</td>
<td>3</td>
<td>Foundations of Environmental Policy</td>
</tr>
<tr>
<td>ENVR 650</td>
<td>1</td>
<td>Environmental Seminar 1</td>
</tr>
<tr>
<td>ENVR 651</td>
<td>1</td>
<td>Environmental Seminar 2</td>
</tr>
<tr>
<td>ENVR 652</td>
<td>1</td>
<td>Environmental Seminar 3</td>
</tr>
</tbody>
</table>

Complementary Courses (3 credits)

Chosen from one of the following courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVR 519</td>
<td>3</td>
<td>Global Environmental Politics</td>
</tr>
</tbody>
</table>
ENVR 544 (3) Environmental Measurement and Modelling
ENVR 620 (3) Environment and Health of Species
ENVR 622 (3) Sustainable Landscapes
ENVR 630 (3) Civilization and Environment
ENVR 680 (3) Topics in Environment 4

or other graduate course recommended by the Advisory Committee and approved by the Environment Option Committee.

Additional courses may be required at the discretion of the candidate's Supervisory Committee.

11.9.8 Master of Science (M.Sc.); Plant Science (Thesis) — Neotropical Environment (48 credits)

Candidates must participate in the STRI seminar series when in residence in Panama, and in the MSE-Panama Symposium Presentation in Montreal.

Thesis Courses (39 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLNT 664</td>
<td>12</td>
<td>M.Sc. Thesis 1</td>
</tr>
<tr>
<td>PLNT 665</td>
<td>12</td>
<td>M.Sc. Thesis 2</td>
</tr>
<tr>
<td>PLNT 666</td>
<td>15</td>
<td>M.Sc. Thesis 3</td>
</tr>
</tbody>
</table>

Required Invitational Seminar

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLNT 690</td>
<td>0</td>
<td>Research Horizons in Plant Science 1</td>
</tr>
</tbody>
</table>

Required Courses (6 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 640</td>
<td>3</td>
<td>Tropical Biology and Conservation</td>
</tr>
<tr>
<td>ENVR 610</td>
<td>3</td>
<td>Foundations of Environmental Policy</td>
</tr>
</tbody>
</table>

Elective Courses (3 credits)

3 credits at the 500 level or higher, on environmental issues to be chosen in consultation with and approved by the student's supervisor AND the Neotropical Environment Options Director.

Additional courses may be required at the discretion of the candidate's supervisory committee.

11.9.9 Master of Science, Applied (M.Sc.A.); Plant Science (Non-Thesis) (45 credits)

N.B. this program is under revision. Please contact Ms. Carolyn Bowes for information.

11.9.10 Doctor of Philosophy (Ph.D.); Plant Science

Students who have taken their M.Sc. degree at McGill University will be required to spend one term in study at another research institution.

Thesis

A thesis for the doctoral degree must constitute original scholarship and must be a distinct contribution to knowledge. It must show familiarity with previous work in the field and must demonstrate ability to plan and carry out research, organize results, and defend the approach and conclusions in a scholarly manner. The research presented must meet current standards of the discipline; as well, the thesis must clearly demonstrate how the research advances knowledge in the field. Finally, the thesis must be written in compliance with norms for academic and scholarly expression and for publication in the public domain.

Required Invitational Seminar
Research Horizons in Plant Science 1 (PLNT 690) 0 Required Courses

* Must be taken within one year of registering

Doctoral Comprehensive Examination (PLNT 701) 0 Complementary Courses

Any courses at the 500 or 600 level deemed necessary for the chosen area of specialization.

11.9.11 Doctor of Philosophy (Ph.D.); Plant Science — Bioinformatics

Thesis
A thesis for the doctoral degree must constitute original scholarship and must be a distinct contribution to knowledge. It must show familiarity with previous work in the field and must demonstrate ability to plan and carry out research, organize results, and defend the approach and conclusions in a scholarly manner. The research presented must meet current standards of the discipline; as well, the thesis must clearly demonstrate how the research advances knowledge in the field. Finally, the thesis must be written in compliance with norms for academic and scholarly expression and for publication in the public domain.

Required Invitational Seminar

PLNT 690 (0) Research Horizons in Plant Science 1

Required Courses (3 credits)

* Must be taken within one year of registering.

COMP 616D1 (1.5) Bioinformatics Seminar
COMP 616D2 (1.5) Bioinformatics Seminar
PLNT 701* (0) Doctoral Comprehensive Examination

Complementary Courses (6 credits)

Two courses to be chosen from the following:

BINF 511 (3) Bioinformatics for Genomics
BINF 621 (3) Bioinformatics: Molecular Biology
BMDE 652 (3) Bioinformatics: Proteomics
BTEC 555 (3) Structural Bioinformatics
COMP 618 (3) Bioinformatics: Functional Genomics
PHGY 603 (3) Systems Biology and Biophysics

Additional courses at the 500 or 600 level may be required at the discretion of the candidate's advisory committee.

11.9.12 Doctor of Philosophy (Ph.D.); Plant Science — Environment

Thesis
A thesis for the doctoral degree must constitute original scholarship and must be a distinct contribution to knowledge. It must show familiarity with previous work in the field and must demonstrate ability to plan and carry out research, organize results, and defend the approach and conclusions in a scholarly manner. The research presented must meet current standards of the discipline; as well, the thesis must clearly demonstrate how the research advances knowledge in the field. Finally, the thesis must be written in compliance with norms for academic and scholarly expression and for publication in the public domain.

Required Invitational Seminar

PLNT 690 (0) Research Horizons in Plant Science 1
Required Courses (6 credits)
* Must be taken within the first year of registering

- ENVR 610 (3) Foundations of Environmental Policy
- ENVR 650 (1) Environmental Seminar 1
- ENVR 651 (1) Environmental Seminar 2
- ENVR 652 (1) Environmental Seminar 3
- PLNT 701* (0) Doctoral Comprehensive Examination

Coursework
Course requirements are specified by the staff in the discipline, but are flexible and depend largely on the student's background, immediate interests, and ultimate objectives.

Complementary Courses (3 credits)
One course chosen from the following:

- ENVR 519 (3) Global Environmental Politics
- ENVR 544 (3) Environmental Measurement and Modelling
- ENVR 620 (3) Environment and Health of Species
- ENVR 622 (3) Sustainable Landscapes
- ENVR 630 (3) Civilization and Environment
- ENVR 680 (3) Topics in Environment 4

or other graduate course recommended by the Advisory Committee and approved by the Environment Option Committee.

11.9.13 Doctor of Philosophy (Ph.D.); Plant Science — Neotropical Environment

Students who have taken their M.Sc. degree at McGill University will be required to spend one term in study at another research institution. The required thesis for this Ph.D. degree must display original scholarship expressed in proper literate style and must be a distinct contribution to knowledge.

Candidates must participate in the STRI seminar series when in residence in Panama, and in the MSE-Panama Symposium Presentation in Montreal.

Thesis
A thesis for the doctoral degree must constitute original scholarship and must be a distinct contribution to knowledge. It must show familiarity with previous work in the field and must demonstrate ability to plan and carry out research, organize results, and defend the approach and conclusions in a scholarly manner. The research presented must meet current standards of the discipline; as well, the thesis must clearly demonstrate how the research advances knowledge in the field. Finally, the thesis must be written in compliance with norms for academic and scholarly expression and for publication in the public domain.

Required Invitational Seminar
- PLNT 690 (0) Research Horizons in Plant Science 1

Required Courses (6 credits)
* Must be taken within one year of registering.

- BIOL 640 (3) Tropical Biology and Conservation
- ENVR 610 (3) Foundations of Environmental Policy
- PLNT 701* (0) Doctoral Comprehensive Examination

Elective Courses (3 credits)
3 credits at the 500 level or higher, on environmental issues to be chosen in consultation with and approved by the student's supervisor AND the Neotropical Environment Options Director.

11.9.14 Graduate Certificate in Bioinformatics (15 credits)

Required Courses (9 credits)

- BINF 511 (3) Bioinformatics for Genomics
- BINF 660 (3) Advances in Bioinformatics
- BTEC 555 (3) Structural Bioinformatics

Complementary Courses (6 credits)

- ANSC 565 (3) Applied Information Systems
- BMDE 652 (3) Bioinformatics: Proteomics
- COMP 616D1 (1.5) Bioinformatics Seminar
- COMP 616D2 (1.5) Bioinformatics Seminar
- COMP 616N1 (1.5) Bioinformatics Seminar
- COMP 616N2 (1.5) Bioinformatics Seminar
- COMP 618 (3) Bioinformatics: Functional Genomics
- GLIS 673 (3) Bioinformatics Resources
- HGEN 663 (3) Beyond the Human Genome