Feedback

This is the 20132014 edition of the eCalendar. For the most recent publication, click here.  

Minor Neuroscience (25 credits)

Offered by: Science     Degree: Bachelor of Science

Program Requirements

This Minor is intended to provide students with a basic understanding of how the nervous system functions. The Minor is composed of 25 credits: 13 required and 12 complementary. For the 12 complementary credits, at least 6 must be at the 400 or 500 level and not from the student's home department. All course selections for the Minor must be approved by the program’s adviser, Wendy Brett (Email: wendy [dot] brett [at] mcgill [dot] ca; Office: Dawson Hall, Rm 405). A maximum of 6 credits can be counted for both the student's primary program and for the Minor in Neuroscience.

Required Courses (13 credits)

Note: Students who have successfully completed an equivalent of CHEM 212 in CEGEP or elsewhere prior to starting at McGill must replace these credits with a 3-credit elective course to satisfy the total credit requirement for the Neuroscience Minor.

  • BIOL 200 Molecular Biology (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : The physical and chemical properties of the cell and its components in relation to their structure and function. Topics include: protein structure, enzymes and enzyme kinetics; nucleic acid replication, transcription and translation; the genetic code, mutation, recombination, and regulation of gene expression.

    Terms: Fall 2013

    Instructors: Thomas E Bureau, Richard D W Roy, Francesco Fagotto, Monique Zetka (Fall)

    • Fall
    • 3 hours lecture, 1 hour optional tutorial
    • Prerequisite: BIOL 112 or equivalent
    • Corequisite: CHEM 212 or equivalent
  • CHEM 212 Introductory Organic Chemistry 1 (4 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.

    Terms: Fall 2013, Winter 2014, Summer 2014

    Instructors: Youla S Tsantrizos, Laura Pavelka, Michel Daoust, Jean-Marc Gauthier, Mitchell Huot (Fall) Michel Daoust, Mitchell Huot, Laura Pavelka, Jean-Philip Lumb, Jean-Marc Gauthier (Winter) Laura Pavelka, Michel Daoust, Mitchell Huot (Summer)

    • Fall, Winter, Summer
    • Prerequisite: CHEM 110 or equivalent.
    • Corequisite: CHEM 120 or equivalent.
    • Restriction: Not open to students who are taking or have taken CHEM 211 or equivalent
    • Each lab section is limited enrolment
    • Note: Some CEGEP programs provide equivalency for this course. For more information, please see the Department of Chemistry's Web page (http://www.chemistry.mcgill.ca/advising/outside/equivalent.htm).
  • NSCI 200 Introduction to Neuroscience 1 (3 credits)

    Offered by: Physiology (Faculty of Science)

    Overview

    Neuroscience : An introduction to how nerve cells generate action potentials, communicate with one another at synapses, develop synaptic connections, early brain development, and the construction of specific neural circuits.

    Terms: Fall 2013

    Instructors: Edward Ruthazer, Alyson Elise Fournier, Keith Murai (Fall)

    • Fall
    • Prerequisites: BIOL 112, CHEM 110, CHEM 120, PHYS 101 or PHYS 131, and PHYS 102 or PHYS 142. Pre-/Co-requisite BIOL 200, CHEM 212 or permission of instructor.
    • Restrictions: Not open to students who are taking or have taken PHGY 209.
  • NSCI 201 Introduction to Neuroscience 2 (3 credits)

    Offered by: Psychology (Faculty of Science)

    Overview

    Neuroscience : An introduction to how the nervous system acquires and integrates information and uses it to produce behaviour.

    Terms: Winter 2014

    Instructors: Evan Balaban (Winter)

    • Winter
    • Prerequisite: NSCI 200 or PSYC 211 or permission of instructor.
    • Restriction: Not open to students who have taken PSYC 308.

Complementary Courses (12 credits)

12 credits selected as follows:

- At least 6 of the 12 credits have to be at the 400 or 500 level.

- At least 6 of the 400- or 500-level credits have to be from outside the student's home department.

0-6 credits from the following list of 200- and 300-level courses:

Notes:
* Students may select ANAT 212 or BIOC 212 or BIOL 201.

** Students may select either BIOL 306 or PHGY 314.

  • ANAT 212 Molecular Mechanisms of Cell Function (3 credits) *

    Offered by: Anatomy and Cell Biology (Faculty of Science)

    Overview

    Anatomy & Cell Biology : An introductory course describing the biochemistry and molecular biology of selected key functions of animal cells, including: gene expression; mitochondrial production of metabolic energy; cellular communication with the extra-cellular environment; and regulation of cell division.

    Terms: Winter 2014

    Instructors: Arnim Pause, Maxime Bouchard, Jason Young (Winter)

    • Winter
    • Prerequisite: BIOL 200
    • Restriction: This course is also listed as BIOC 212. Not open to students who have taken or are taking BIOC 212 or BIOL 201
  • BIOC 212 Molecular Mechanisms of Cell Function (3 credits) *

    Offered by: Biochemistry (Faculty of Science)

    Overview

    Biochemistry : An introductory course describing the biochemistry and molecular biology of selected key functions of animal cells, including: gene expression; mitochondrial production of metabolic energy; cellular communication with the extra-cellular environment; and regulation of cell division.

    Terms: Winter 2014

    Instructors: Arnim Pause, Maxime Bouchard, Christine E Laberge (Winter)

    • Winter
    • Prerequisite: BIOL 200
    • Restrictions: A non-terminal course intended to be followed by BIOC 311; BIOC 312 in the U2 year. Not open to students who have taken or are taking BIOL 201 or ANAT 212.
  • BIOL 201 Cell Biology and Metabolism (3 credits) *

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : This course introduces the student to our modern understanding of cells and how they work. Major topics to be covered include: photosynthesis, energy metabolism and metabolic integration; plasma membrane including secretion, endocytosis and contact mediated interactions between cells; cytoskeleton including cell and organelle movement; the nervous system; hormone signaling; the cell cycle.

    Terms: Winter 2014

    Instructors: Gary Brouhard, Gregory G Brown (Winter)

    • Winter
    • 3 hours lecture, 1 hour optional tutorial
    • Prerequisite: BIOL 200.
    • Restriction: Not open to students who have taken or are taking ANAT 212 or BIOC 212
  • BIOL 202 Basic Genetics (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Introduction to basic principles, and to modern advances, problems and applications in the genetics of higher and lower organisms with examples representative of the biological sciences.

    Terms: Winter 2014, Summer 2014

    Instructors: Daniel J Schoen, Mario Chevrette, David Hipfner (Winter) David Dankort, David Hipfner (Summer)

    • Winter, Summer
    • 3 hours lecture, 1 hour optional tutorial
    • Prerequisite: BIOL 200.
    • Restriction: Not open to students who have taken or are taking LSCI 204.
  • BIOL 300 Molecular Biology of the Gene (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : A survey of current knowledge and approaches in the area of regulation of gene expression, post-transcriptional control of gene expression, and signal transduction.

    Terms: Fall 2013

    Instructors: Frieder Schöck, Kenneth E M Hastings, Paul Lasko (Fall)

    • Fall
    • 3 hours lecture
    • Prerequisites: BIOL 200 and one of BIOL 201 or ANAT/BIOC 212.
  • BIOL 306 Neural Basis of Behaviour (3 credits) **

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Neural mechanisms of animal behaviour; neuroethology; cellular neurophysiology, integrative networks within nervous systems; neural control of movement; processing of sensory information.

    Terms: Fall 2013

    Instructors: Alanna Watt, Joseph Alan Dent, Gerald Pollack (Fall)

    • Fall
    • 3 hours lecture
    • Prerequisites: PHYS 102 or PHYS 142 or CEGEP Physics and one of the following: BIOL 201, ANAT 212, BIOC 212 or NSCI 200
    • Restriction: Not open to students who have taken PSYC 308.
  • BIOL 320 Evolution of Brain and Behaviour (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Functional and comparative approach to neuroanatomy, examining how species changes in brain organization contribute to evolutionary changes in behaviour.

    Terms: Winter 2014

    Instructors: Sarah Woolley, Jon Sakata (Winter)

    • Winter
    • 2 hours of lecture and 1 hour of conference (mandatory)
    • Prerequisite: NSCI 201 or BIOL 306
  • BIOL 389 Laboratory in Neurobiology (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Methods of neurobiological research, including extracellular and intracellular recordings, electrical stimulation, and the study of neuro-behavioural problems.

    Terms: Winter 2014

    Instructors: Rudiger Krahe, Joseph Alan Dent, Alanna Watt (Winter)

    • Winter
    • 1 hour lecture; 5 hours laboratory
    • Prerequisites: BIOL 306 or NSCI 200 or PHGY 311 or NEUR 310 or permission
  • LING 390 Neuroscience of Language (3 credits)

    Offered by: Linguistics (Faculty of Arts)

    Overview

    Linguistics : The neurobiological study of the human language faculty. Theoretical and experimental approaches to neurolinguistics, focusing on linguistic capacity in the healthy and damaged brain.

    Terms: Winter 2014

    Instructors: There are no professors associated with this course for the 2013-2014 academic year.

    • Fall
    • Prerequisite: An introductory course in Linguistics, Psychology or Neuroscience at the 200 level or above.
  • NEUR 310 Cellular Neurobiology (3 credits)

    Offered by: Neurology and Neurosurgery (Faculty of Science)

    Overview

    Neurology and Neurosurgery : A survey of the functional organization of nerve cells, signalling in the nervous system, and principles of neural development. Topics include cell polarity, neurotransmitters, neurotrophins, receptors and second messengers, cell lineage, guidance of axon outgrowth, and nerve regeneration. Emphasis will be placed on analysis of neurons at the molecular level.

    Terms: Winter 2014

    Instructors: Jean-Francois Cloutier, David S Ragsdale, Timothy E Kennedy (Winter)

    • Winter
    • 2 lectures each week
    • Prerequisites or Corequisites: BIOL 201, or PHGY 209, or PHGY 210; and one of ANAT 321, ANAT 322, BIOL 306, PHGY 311.
  • PHGY 311 Channels, Synapses & Hormones (3 credits)

    Offered by: Physiology (Faculty of Science)

    Overview

    Physiology : In-depth presentation of experimental results and hypotheses on cellular communication in the nervous system and the endocrine system.

    Terms: Fall 2013

    Instructors: Ellis Cooper, Per Jesper Sjostrom, Reza Sharif Naeini (Fall)

    • Fall
    • 3 hours of lectures per week; 1-3 hours optional lab/demonstration/tutorial arranged for a maximum of 3 afternoons per term
    • Prerequisite: PHGY 209 or permission of the instructor.
  • PHGY 314 Integrative Neuroscience (3 credits) **

    Offered by: Physiology (Faculty of Science)

    Overview

    Physiology : In depth presentation of experimental results and hypotheses underlying our current understanding of how single neurons and ensembles of neurons encode sensory information, generate movement, and control cognitive functions such as emotion, learning, and memory, during voluntary behaviours.

    Terms: Fall 2013

    Instructors: Kathleen E Cullen, Reza Sharif Naeini, Christopher Pack (Fall)

    • Fall
    • 3 hours of lectures per week
    • Prerequisites: PHGY 209
  • PSYC 302 The Psychology of Pain (3 credits)

    Offered by: Psychology (Faculty of Science)

    Overview

    Psychology : An introduction to pain research and theory, with emphasis on the interactions of psychological, cultural and physiological factors in pain perception. The role of these factors in clinical pain and its management by pharmacological and non-pharmacological means will be discussed.

    Terms: This course is not scheduled for the 2013-2014 academic year.

    Instructors: There are no professors associated with this course for the 2013-2014 academic year.

    • Fall
    • 3 lectures
    • Prerequisite: any of the following: NSCI 201, PSYC 211, PSYC 212 or permission of instructor.
    • Restriction: Not open to students who are taking or have taken PSYC 505.
  • PSYC 311 Human Cognition and the Brain (3 credits)

    Offered by: Psychology (Faculty of Science)

    Overview

    Psychology : The course is an introduction to the field studying how human cognitive processes, such as perception, attention, language, learning and memory, planning and organization, are related to brain processes. The material covered is primarily based on studies of the effects of different brain lesions on cognition and studies of brain activity in relation to cognitive processes with modern functional neuroimaging methods.

    Terms: Fall 2013, Summer 2014

    Instructors: Michalakis Petrides (Fall) Michalakis Petrides (Summer)

    • Fall
    • 2 lectures; 1 conference
  • PSYC 315 Computational Psychology (3 credits)

    Offered by: Psychology (Faculty of Science)

    Overview

    Psychology : Application of computational methods to the simulation of psychological phenomena. Comparison of natural and artificial intelligence. Symbolic and neural network techniques. Methods for evaluating simulations.

    Terms: This course is not scheduled for the 2013-2014 academic year.

    Instructors: There are no professors associated with this course for the 2013-2014 academic year.

    • Fall
    • Prerequisite: Permission of instructor.
    • Restriction: Not open to U0 or U1 students.
  • PSYC 317 Genes and Behaviour (3 credits)

    Offered by: Psychology (Faculty of Science)

    Overview

    Psychology : Focuses on current techniques employed to study which genes influence behaviour, and how they do so.

    Terms: Fall 2013

    Instructors: Jeffrey Mogil (Fall)

    • Fall
    • Pre-requisite: PSYC 211 or PSYC 308 or BIOL 306 or PHGY 314 or permission of instructor.
  • PSYC 318 Behavioural Neuroscience 2 (3 credits)

    Offered by: Psychology (Faculty of Science)

    Overview

    Psychology : The physiological bases of motivational states, with respect to feeding, drinking, sexual behavior, drug use, and aggression. Physiological bases of learning and memory.

    Terms: Winter 2014

    Instructors: Wayne Steven Sossin, Carole Abi Farah (Winter)

    • Winter
    • 2 lectures, 1 conference
    • Prerequisite: PSYC 308 or PSYC 311 or BIOL 306 or PHGY 314
  • PSYC 342 Hormones and Behaviour (3 credits)

    Offered by: Psychology (Faculty of Science)

    Overview

    Psychology : The role of hormones in organization of CNS function, as effectors of behaviour, in expression of behaviours and in mental illness.

    Terms: Summer 2014

    Instructors: Jens Pruessner (Summer)

    • Winter
    • 2 lectures
    • Prerequisite: BIOL 111, BIOL 112, BIOL 115 or equivalent

6-12 credits from the following list of 400- and 500-level courses, and not from the student’s home department:

*** Students may select either BIOL 514 or PSYC 514.

  • BIOL 514 Neurobiology Learning and Memory (3 credits) ***

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Properties of nerve cells that are responsible for learning and memory. Recent advances in the understanding of neurophysiological, biochemical and structural processes relevant to neural plasticity. Emphasis on a few selected model systems involving both vertebrate and invertebrate animals.

    Terms: Winter 2014

    Instructors: Karim Nader (Winter)

    • Winter
    • Prerequisite: BIOL 306 or PHGY 311 or NEUR 310 or NSCI 201 or permission of instructor
    • Restriction: Not open to students who have taken or are taking BIOL 531 or PSYC 514
  • BIOL 530 Advances in Neuroethology (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Neural mechanisms underlying behaviour in vertebrate and invertebrate organisms.

    Terms: Winter 2014

    Instructors: Rudiger Krahe, Sarah Woolley (Winter)

    • Winter
    • 3 hours seminar
    • Prerequisite: BIOL 306 or NSCI 200 or NSCI 201 or PHGY 311 or permission of instructor.
  • BIOL 532 Developmental Neurobiology Seminar (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Discussions of all aspects of nervous system development including pattern formation, cell lineage, pathfinding and targeting by growing axons, and neural regeneration. The basis for these discussions will be recent research papers and other assigned readings.

    Terms: Winter 2014

    Instructors: Donald Van Meyel, Artur Kania, Alyson Elise Fournier (Winter)

    • Winter
    • 1 hour lecture, 2 hours seminar
    • Prerequisites: BIOL 303 or BIOL 306 or permission of instructor
  • BIOL 588 Advances in Molecular/Cellular Neurobiology (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Discussion of fundamental molecular mechanisms underlying the general features of cellular neurobiology. An advanced course based on lectures and on a critical review of primary research papers.

    Terms: This course is not scheduled for the 2013-2014 academic year.

    Instructors: There are no professors associated with this course for the 2013-2014 academic year.

    • Fall
    • 1.5 hours lecture, 1.5 hours seminar
    • Prerequisite: BIOL 300 and BIOL 306 or permission
  • PHGY 425 Analyzing Physiological Systems (3 credits)

    Offered by: Physiology (Faculty of Science)

    Overview

    Physiology : An introduction to quantitative analysis of physiological data, both to the mode of thinking and to a set of tools that allows accurate predictions of biological systems. Examples will range from oscillating genetic networks to understanding higher brain function. Modelling and data analysis through examples and exercises will be emphasized.

    Terms: Fall 2013

    Instructors: Erik Cook, Mladen I Glavinovic, Maurice Chacron (Fall)

    • Prerequisite: PHGY 311, PHGY 314, BIOL 200 or permission from instructor.
    • Note: Enrolment limited to 20 students.
  • PHGY 451 Advanced Neurophysiology (3 credits)

    Offered by: Physiology (Faculty of Science)

    Overview

    Physiology : Topics of current interest in neurophysiology including the development of neurons and synapses, physiology of ionic channels, presynaptic and postsynaptic events in synaptic transmission and neuronal interactions in CNS function.

    Terms: Fall 2013

    Instructors: Ellis Cooper, Monroe W Cohen, Charles W Bourque (Fall)

    • Fall
    • 3 hours lecture
    • Prerequisite: PHGY 311 or equivalent
    • Restriction: Departmental approval required
  • PHGY 520 Ion Channels (3 credits)

    Offered by: Physiology (Faculty of Science)

    Overview

    Physiology : A discussion of the principal theories and interesting new developments in the study of ion channels. Based on a textbook, computer exercises and critical reading and presentation of research papers. Topics include: Properties of voltage-and ligand-gated channels, single channel analysis, structure and function of ion channels.

    Terms: Winter 2014

    Instructors: Reza Sharif Naeini, Charles W Bourque, David S Ragsdale, Ellis Cooper (Winter)

    • Winter
    • Offered in even numbered years
    • 1 1/2 hour lecture, 1 1/2 hour seminar
    • Prerequisite: PHGY 311
    • Priority to Graduate and Honours students; others by permission of instructors.
  • PHGY 524 Chronobiology (3 credits)

    Offered by: Physiology (Faculty of Science)

    Overview

    Physiology : An introduction to the field of chronobiology. The aim is to provide basic instruction on different types of biological rhythms, with particular focus on circadian rhythms.

    Terms: Fall 2013

    Instructors: Nicolas Cermakian, Daniel Bernard, Kai-Florian Storch (Fall)

    • Prerequisites: PHGY 209 and PHGY 210 (or NSCI 200 and NSCI 201), and a relevant 300-level course (PHGY 311, or PHGY 314, or PSYC 318, or BIOC 311, or other, with permission of course coordinator).
    • Restriction: Course for senior undergraduate (U3) and graduate students
  • PHGY 556 Topics in Systems Neuroscience (3 credits)

    Offered by: Physiology (Faculty of Science)

    Overview

    Physiology : Topics of current interest in systems neurophysiology and behavioural neuroscience including: the neural representation of sensory information and motor behaviours, models of sensory motor integration, and the computational analysis of problems in motor control and perception. Students will be expected to present and critically discuss journal articles in class.

    Terms: Winter 2014

    Instructors: Kathleen E Cullen, Daniel E Guitton, Erik Cook (Winter)

    • Winter
    • Restriction: Permission of the instructor required.
    • Restriction: Not open to students who have taken PHGY 456
  • PSYC 410 Special Topics in Neuropsychology (3 credits)

    Offered by: Psychology (Faculty of Science)

    Overview

    Psychology : Developments in cognitive neuroscience and cognitive neuropsychiatry via readings from primary sources. Topics include the neural bases of memory, emotion, social cognition and neuropsychiatric diseases. Integrating knowledge from studies in clinical populations and functional neuroimaging studies.

    Terms: Fall 2013

    Instructors: Amir Raz (Fall)

    • Fall
    • 2 lectures
    • Prerequisites: PSYC 311 or PSYC 308. Knowledge of basic neuropsychology at the level covered in PSYC 311 is assumed
  • PSYC 427 Sensorimotor Behaviour (3 credits)

    Offered by: Psychology (Faculty of Science)

    Overview

    Psychology : A systematic examination of the sensorimotor system, drawing on models and data from both behavioural and physiological studies. Topics include: cortical motor areas, cerebellum, basal ganglia, spinal mechanisms, motor unit properties and force production, prioception, muscle properties.

    Terms: Winter 2014

    Instructors: David J Ostry (Winter)

    • Winter
    • 2 lectures
    • Prerequisite: PSYC 308 or permission of instructor
  • PSYC 444 Sleep Mechanisms and Behaviour (3 credits)

    Offered by: Psychology (Faculty of Science)

    Overview

    Psychology : This course covers basic biological mechanisms, possible functions and behavioural aspects of sleep. Additional topics include: disorders of sleep, their effects on behaviour and cognition, and treatment approaches; as well as medical, neurological and psychiatric disorders, and drugs, that affect sleep.

    Terms: Fall 2013

    Instructors: Maria Pompeiano (Fall)

    • Fall
    • Prerequisites: One of PSYC 211, NSCI 201, PHGY 209 AND one of PSYC 311, PSYC 317, PSYC 318, PSYC 342 or permission of instructor.
  • PSYC 470 Memory and Brain (3 credits)

    Offered by: Psychology (Faculty of Science)

    Overview

    Psychology : Memory systems are studied with an emphasis on the neural computations that occur at various stages of the processing stream, focusing on the hippocampus, amygdala, basal ganglia, cerebellum and cortex. The data reviewed is obtained from human, non-human primates and rodents, with single unit recording, neuroimaging and brain damaged subjects.

    Terms: Winter 2014

    Instructors: Maria Rajah (Winter)

    • Winter
    • 3 hour lectures
    • Prerequisites: PSYC 308 and PSYC 318 or PHGY 311 or BIOL 306
  • PSYC 501 Auditory Perception (3 credits)

    Offered by: Psychology (Faculty of Science)

    Overview

    Psychology : Auditory perception and its neural correlates, covering acoustics, auditory anatomy and neurobiology, and the neural correlates of perception of loudness, pitch, spatial location, frequency specificity, musical, speech sounds, and segregation of component sounds in multi-sound environments in both humans and animals.

    Terms: Fall 2013

    Instructors: Evan Balaban (Fall)

    • Fall
    • 2 lectures
    • Prerequisite: Undergraduate courses in perception or sound or neuroscience and permission of instructor.
    • Restrictions: For U3 and graduate students.
  • PSYC 506 Cognitive Neuroscience of Attention (3 credits)

    Offered by: Psychology (Faculty of Science)

    Overview

    Psychology : An introduction to cognitive properties and neural mechanisms of human attention. The material will include an overview of the history of attention research, contemporary theories of attention, the varieties of attention, behavioral and neuroimaging experimental methods, the nature of attentional dysfunctions, and the links between attention and other cognitive functions including memory and consciousness.

    Terms: Fall 2013

    Instructors: Jelena Ristic (Fall)

    • Fall
    • Prerequisites: PSYC 213 and PSYC 311, and one of PSYC 305 OR BIOL 373, or permission of instructor.
    • Restrictions: Open only to Psychology, Cognitive Science and Neuroscience students. Not open to students who have taken PSYC 365.
  • PSYC 514 Neurobiology of Learning and Memory (3 credits) ***

    Offered by: Psychology (Faculty of Science)

    Overview

    Psychology : Properties of nerve cells that are responsible for learning and memory. Recent advances in the understanding of neurophysiological, biochemical and structural processes relevant to neural plasticity. Emphasis on a few selected model systems involving both vertebrate and invertebrate animals.

    Terms: Winter 2014

    Instructors: Karim Nader (Winter)

    • Winter
    • Prerequisite: BIOL 306 or PHGY 311 or NSCI 201 or NEUR 310 or permission of the instructor
    • Restriction: Not open to students who have taken or are taking BIOL 531 or BIOL 514
  • PSYC 522 Neurochemistry and Behaviour (3 credits)

    Offered by: Psychology (Faculty of Science)

    Overview

    Psychology : Anatomical, biochemical and physiological aspects of neurotransmitter systems in the brain, current theories of the function of these systems in normal and abnormal behaviour, and the actions of psychotropic drugs.

    Terms: Winter 2014

    Instructors: Maria Pompeiano (Winter)

    • Winter
    • 2 lectures
    • Prerequisites: any two of the following NSCI 201, PSYC 311, PSYC 318, ANAT 321, PHGY 314, BIOL 306
    • Restrictions: Not open to students who have taken or are taking PHAR 562
  • PSYC 526 Advances in Visual Perception (3 credits)

    Offered by: Psychology (Faculty of Science)

    Overview

    Psychology : We examine in detail the structure of the visual system, and its function as reflected in the perceptual abilities and behaviour of the organism. Parallels are also drawn with other sensory systems to demonstrate general principles of sensory coding.

    Terms: Winter 2014

    Instructors: Frederick A A Kingdom, Kathleen T Mullen (Winter)

    • Winter
    • 2 lectures
  • PSYC 532 Cognitive Science (3 credits)

    Offered by: Psychology (Faculty of Science)

    Overview

    Psychology : The multi-disciplinary study of intelligent systems. Problems in vision, memory, categorization, choice, problem solving, cognitive development, syntax, language acquisition, and rationality. Rule-based and connectionist approaches.

    Terms: This course is not scheduled for the 2013-2014 academic year.

    Instructors: There are no professors associated with this course for the 2013-2014 academic year.

    • Fall
    • Prerequisites: Admission to the Cognitive Science Minor or permission of instructor. Students should ideally have some cognitive science background in at least two disciplines
  • PSYT 455 Neurochemistry (3 credits)

    Offered by: Psychiatry (Faculty of Science)

    Overview

    Psychiatry : Covers biochemical mechanisms underlying central nervous system function. Introduces basic neuroanatomy, CNS cell types and morphology, neuronal excitability, chemically mediated transmission, glial function. Biochemistry of specific neurotransmitters, endocrine effects on brain, brain energy metabolism and cerebral ischemia (stroke). With examples, where relevant, of biochemical processes disrupted in human CNS disease.

    Terms: Winter 2014

    Instructors: Ana Cecilia Flores Parkman, Naguib Mechawar, Tak Pan Wong (Winter)

    • Winter
    • Prerequisites: BIOC 311, BIOC 312 or permission of instructor
    • Restriction: Not open to students who have taken BIOC 455
  • PSYT 500 Advances: Neurobiology of Mental Disorders (3 credits)

    Offered by: Psychiatry (Faculty of Science)

    Overview

    Psychiatry : Current theories on the neurobiological basis of most well known mental disorders (e.g. schizophrenia, depression, anxiety, dementia). Methods and strategies in research on genetic, physiological and biochemical factors in mental illness will be discussed. Discussion will also focus on the rationale for present treatment approaches and on promising new approaches.

    Terms: Winter 2014

    Instructors: Lalit K Srivastava, Carl Ernst, Tak Pan Wong (Winter)

    • Winter
    • 3 hours
    • Prerequisite (Undergraduate): BIOC 212 and BIOC 311, or BIOC 312, or BIOL 200 and BIOL 201, or PHGY 311, or PSYC 308 and an upper-level biological science course with permission of the instructors, or equivalent. Basic knowledge of cellular and molecular biology is required.
    • Restriction: Open to U3 and graduate students only.
    • Restriction: Graduate Studies: strongly recommended for M.Sc. students in Psychiatry.
  • PSYT 505 Neurobiology of Schizophrenia (3 credits)

    Offered by: Psychiatry (Faculty of Medicine)

    Overview

    Psychiatry : Multidisciplinary issues on pathogenesis and pathophysiology of schizophrenia from molecular genetics to cognitive psychology, including current theories of the disorder based on up-to-date evidence from recent research.

    Terms: This course is not scheduled for the 2013-2014 academic year.

    Instructors: There are no professors associated with this course for the 2013-2014 academic year.

    • Office hours: After class or by appointment
    • Prerequisites: PSYC 308, BIOL 306, PHGY 314 or permission of instructor
    • Restriction: Open to U3 and M.Sc. students.
Faculty of Science—2013-2014 (last updated Aug. 21, 2013) (disclaimer)