2010-2011
Note: This is the 2010–2011 edition of the eCalendar. For the most recent publication, click here.
This joint program in Physics and Geophysics provides a firm basis for graduate work in geophysics and related fields as well as a sound preparation for those who wish to embark on a career directly after the B.Sc.
Students entering Physics programs from the Freshman Program must have successfully completed the courses below or their equivalents. Quebec students must have completed the DEC with appropriate science and mathematics courses.
Chemistry : A study of the fundamental principles of atomic structure, radiation and nuclear chemistry, valence theory, coordination chemistry, and the periodic table.
Terms: Fall 2010
Instructors: Ian Sydney Butler, Ariel Fenster, Ashok K Kakkar, Jean-Marc Gauthier (Fall)
Fall
Prerequisites/corequisites: College level mathematics and physics or permission of instructor; CHEM 120 is not a prerequisite
Each lab section is limited enrolment
Chemistry : A study of the fundamental principles of physical chemistry.
Terms: Winter 2011
Instructors: Jean-Marc Gauthier, Ariel Fenster, Anthony Mittermaier, Bradley Siwick (Winter)
Winter
Prerequisites/corequisites: College level mathematics and physics, or permission of instructor: CHEM 110 is not a prerequisite
Each lab section is limited enrolment
Physics : The basic laws and principles of Newtonian mechanics; oscillations and waves.
Terms: Fall 2010
Instructors: Kenneth J Ragan (Fall)
Physics : The basic laws of electricity and magnetism; geometrical and physical optics.
Terms: Winter 2011
Instructors: Yoichi Miyahara (Winter)
Winter
3 hours lectures, 3 hours laboratory in alternate weeks; tutorial sessions
Prerequisite: PHYS 131.
Corequisite: MATH 141 or higher level calculus course.
Restriction: Not open to students taking or having taken PHYS 102, CEGEP objective 00UR or equivalent
Laboratory sections have limited enrolment
One of:
Biology (Sci) : An introduction to the phylogeny, structure, function and adaptation of unicellular organisms, plants and animals in the biosphere.
Terms: Fall 2010
Instructors: Irene Gregory-Eaves, Rajinder S Dhindsa, Claire Seizilles de Mazancourt (Fall)
Fall
2 hours lecture and 3 hours laboratory
Restriction: Not open to students who have taken CEGEP objective 00UK or equivalent; or BIOL 115.
This course serves as an alternative to CEGEP objective code 00UK
May require departmental approval.
Open to all students wishing introductory biology.
Attendance at first lab is mandatory to confirm registration in the course.
This class will use a Student Response System (clicker) which can be obtained from the Bookstore.
Biology (Sci) : The cell: ultrastructure, division, chemical constituents and reactions. Bioenergetics: photosynthesis and respiration. Principles of genetics, the molecular basis of inheritance and biotechnology.
Terms: Winter 2011
Instructors: Joseph Alan Dent, Jacalyn Vogel (Winter)
MATH 133 and either MATH 140/141 or MATH 150/151.
Mathematics & Statistics (Sci) : Systems of linear equations, matrices, inverses, determinants; geometric vectors in three dimensions, dot product, cross product, lines and planes; introduction to vector spaces, linear dependence and independence, bases; quadratic loci in two and three dimensions.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Djivede Kelome, William J Anderson, James G Loveys, Shahab Shahabi, Adam Clay (Fall) Djivede Kelome, William J Anderson (Winter) Karol Palka (Summer)
Prerequisite: a course in functions
Restriction: Not open to students who have taken MATH 221 or CEGEP objective 00UQ or equivalent.
Restriction Note B: Not open to students who have taken or are taking MATH 123, MATH 130 or MATH 131, except by permission of the Department of Mathematics and Statistics.
Mathematics & Statistics (Sci) : Review of functions and graphs. Limits, continuity, derivative. Differentiation of elementary functions. Antidifferentiation. Applications.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Stephen W Drury, Sidney Trudeau, Shahab Shahabi (Fall) Axel W Hundemer (Winter)
3 hours lecture, 1 hour tutorial
Prerequisite: High School Calculus
Restriction: Not open to students who have taken MATH 120, MATH 139 or CEGEP objective 00UN or equivalent
Restriction: Not open to students who have taken or are taking MATH 122 or MATH 130 or MATH 131, except by permission of the Department of Mathematics and Statistics
Each Tutorial section is enrolment limited
Mathematics & Statistics (Sci) : The definite integral. Techniques of integration. Applications. Introduction to sequences and series.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Sidney Trudeau (Fall) Neville G F Sancho, Stephen W Drury, Sidney Trudeau (Winter)
Restriction: Not open to students who have taken MATH 121 or CEGEP objective 00UP or equivalent
Restriction Note B: Not open to students who have taken or are taking MATH 122 or MATH 130 or MATH 131, except by permission of the Department of Mathematics and Statistics.
Each Tutorial section is enrolment limited
Mathematics & Statistics (Sci) : Functions, limits and continuity, differentiation, L'Hospital's rule, applications, Taylor polynomials, parametric curves, functions of several variables.
Terms: Fall 2010
Instructors: Charles Roth (Fall)
Fall
3 hours lecture, 2 hours tutorial
Students with no prior exposure to vector geometry are advised to take MATH 133 concurrently. Intended for students with high school calculus who have not received six advanced placement credits
Restriction: Not open to students who have taken CEGEP objective 00UN or equivalent
Restriction Note B: Not open to students who have taken or are taking MATH 122 or MATH 130 or MATH 131, except by permission of the Department of Mathematics and Statistics
MATH 150 and MATH 151 cover the material of MATH 139, MATH 140, MATH 141, MATH 222
Mathematics & Statistics (Sci) : Integration, methods and applications, infinite sequences and series, power series, arc length and curvature, multiple integration.
Terms: Winter 2011
Instructors: Charles Roth (Winter)
Winter
3 hours lecture; 2 hours tutorial
Each Tutorial section is enrolment limited
Prerequisite: MATH 150
Restriction: Not open to students who have taken CEGEP objective 00UP or equivalent
Restriction: Not open to students who have taken or are taking MATH 122 or MATH 130 or MATH 131, except by permission of the Department of Mathematics and Statistics
Restriction: Not open to students who have taken MATH 152
Earth & Planetary Sciences : Primary igneous and sedimentary structures, attitudes of planes and lines, stress and strain, fracturing of rocks, faulting, homogeneous strain, description and classification of folds, foliation and lineation, orthographic and stereographic projections.
Terms: Winter 2011
Instructors: Andrew J Hynes (Winter)
Winter
2 hours lectures, 3 hours laboratory
Earth & Planetary Sciences : Crystal chemistry and identification of the principal rock-forming and ore minerals. Elementary crystallography. Optional 2-day field trip.
Terms: Fall 2010
Instructors: Jeanne Paquette (Fall)
Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Wilbur Jonsson, Neville G F Sancho (Fall) Wilbur Jonsson (Winter)
Mathematics & Statistics (Sci) : Review of matrix algebra, determinants and systems of linear equations. Vector spaces, linear operators and their matrix representations, orthogonality. Eigenvalues and eigenvectors, diagonalization of Hermitian matrices. Applications.
Terms: Fall 2010, Winter 2011
Instructors: James G Loveys, Hongnian Huang (Fall) James G Loveys (Winter)
Mathematics & Statistics (Sci) : Derivative as a matrix. Chain rule. Implicit functions. Constrained maxima and minima. Jacobians. Multiple integration. Line and surface integrals. Theorems of Green, Stokes and Gauss.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Wilbur Jonsson (Fall) Wilbur Jonsson (Winter) Charles Roth (Summer)
Physics : Translational motion under Newton's laws; forces, momentum, work/energy theorem. Special relativity; Lorentz transforms, relativistic mechanics, mass/energy equivalence. Topics in rotational dynamics. Noninertial frames.
Terms: Fall 2010
Instructors: Hong Guo (Fall)
Physics : The laws of thermodynamics and their consequences. Thermodynamics of P-V-T systems and simple heat engines. Free, driven, and damped harmonic oscillators. Coupled systems and normal modes. Fourier methods. Wave motion and dispersion. The wave equation.
Terms: Winter 2011
Instructors: Dominic Ryan (Winter)
Physics : Introductory laboratory work and data analysis as related to mechanics, optics and thermodynamics. Introduction to computers as they are employed for laboratory work, for data analysis and for numerical computation. Previous experience with computers is an asset, but is not required.
Terms: Fall 2010
Instructors: Bradley Siwick (Fall)
Physics : Advanced laboratory work and data analysis as related to mechanics, optics and thermodynamics. Computers will be employed routinely for data analysis and for numerical computation, and, particularly, to facilitate the use of Fourier methods.
Terms: Winter 2011
Instructors: Dominic Ryan, Edith M Engelberg (Winter)
Winter
6 hours of laboratory and classroom work
Prerequisite: PHYS 257
Earth & Planetary Sciences : Physical properties of Earth and the processes associated with its existence as inferred from astronomy, geodesy, seismology, geology, terrestrial magnetism and thermal evolution.
Terms: Fall 2010
Instructors: Olivia Jensen (Fall)
Fall
3 hours lectures
Prerequisite: MATH 222
Earth & Planetary Sciences : Rheology of the Earth, mechanics of the crust and mantle and core, convection in the mantle, evolution and kinematics and deformations of the oceanic and continental plates, thermal evolution of the Earth, the unifying theory of plate tectonics.
Terms: This course is not scheduled for the 2010-2011 academic year.
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Winter
3 hours lectures
Prerequisites: EPSC 320, Calculus 3 or equivalent
Mathematics & Statistics (Sci) : First order ordinary differential equations including elementary numerical methods. Linear differential equations. Laplace transforms. Series solutions.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Neville G F Sancho (Fall) Jian-Jun Xu (Winter)
Mathematics & Statistics (Sci) : First order equations, geometric theory; second order equations, classification; Laplace, wave and heat equations, Sturm-Liouville theory, Fourier series, boundary and initial value problems.
Terms: Winter 2011
Instructors: Gantumur Tsogtgerel (Winter)
Physics : Introduction to modern techniques of measurement. The use of computers in performing and analysing experiments. Data reduction, statistical methods, report writing. Extensive use of computers is made in this laboratory; therefore some familiarity with computers and computing is an advantage.
Terms: Winter 2011
Instructors: Michael Hilke (Winter)
Winter
6 hours
Prerequisite: PHYS 241 or permission of instructor
Physics : The electrostatic field and scalar potential. Dielectric properties of matter. Energy in the electrostatic field. Methods for solving problems in electrostatics. The magnetic field. Induction and inductance. Energy in the magnetic field. Magnetic properties of matter. Maxwell's equations. The dipole approximation.
Terms: Fall 2010
Instructors: Robert Rutledge (Fall)
Earth & Planetary Sciences : Seismic wave theory; body waves, surface waves and free oscillations; seismicity and earthquakes; seismology and Earth's internal structure.
Terms: Winter 2011
Instructors: Olivia Jensen (Winter)
Earth & Planetary Sciences : The gravity field of the Earth and planets, body and orbital dynamics of the Earth, moon and planets, tidal interactions of the Earth-moon-sun system, deformation of the Earth under static and dynamic loads, the magnetic field of the Earth and planets: the magnetosphere, the external radiation belts, magnetohydrodynamic models of the core dynamo, geochemical convection in the core, fluid dynamic motions of the outer core, dynamics of the inner core.
Terms: This course is not scheduled for the 2010-2011 academic year.
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Physics : Forced and damped oscillators, Newtonian mechanics in three dimensions, rotational motion, Lagrangian mechanics, small vibrations, normal modes. Introduction to Hamiltonian mechanics.
Terms: Winter 2011
Instructors: Guillaume Gervais (Winter)
Physics : The physical properties of fluids. The kinematics and dynamics of flow. The effects of viscosity and turbulence. Applications of fluid mechanics in biophysics, geophysics and engineering.
Terms: This course is not scheduled for the 2010-2011 academic year.
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Physics : Introductory equilibrium statistical mechanics. Quantum states, probabilities, ensemble averages. Entropy, temperature, Boltzmann factor, chemical potential. Photons and phonons. Fermi-Dirac and Bose-Einstein distributions; applications.
Terms: Winter 2011
Instructors: Richard Harris (Winter)
Physics : Maxwell's equations. The wave equation. The electromagnetic wave, reflection, refraction, polarization. Guided waves. Transmission lines and wave guides. Vector potential. Radiation. The elemental dipole; the half-wave dipole; vertical dipole; folded dipoles; Yagi antennas. Accelerating charged particles.
Terms: Winter 2011
Instructors: Michael Hilke (Winter)
Physics : de Broglie waves, Bohr atom. Schroedinger equation, wave functions, observables. One dimensional potentials. Schroedinger equation in three dimensions. Angular momentum, hydrogen atom. Spin, experimental consequences.
Terms: Fall 2010
Instructors: Walter Reisner (Fall)