Quick Links

Major Computer Science and Biology (73 credits)

Note: This is the 20102011 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.

Offered by: Computer Science     Degree: Bachelor of Science

Program Requirements

This program will train students in the fundamentals of biology - with a focus on molecular biology - and will give them computational and mathematical skills needed to manage, analyze, and model large biological datasets. Two integrative features of the program are a three-credit joint independent studies course, and a one-credit seminar.

Students may complete this program with a maximum of 73 credits or a minimum of 69 credits. This depends upon the student's choice of required courses and whether or not the student is exempt from taking COMP 202.

Advising notes for U0 students:
It is highly recommended that Freshman BIOL, CHEM, MATH, and PHYS courses be selected with an adviser to ensure they meet the core requirements of the COMP-BIO program.

Required Courses (49 credits)

Required Mathematics and Statistics Courses

6 credits from the following:

  • MATH 222 Calculus 3 (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.

    Terms: Fall 2010, Winter 2011, Summer 2011

    Instructors: Wilbur Jonsson, Neville G F Sancho (Fall) Wilbur Jonsson (Winter)

    • Prerequisite: MATH 141. Familiarity with vector geometry or Corequisite: MATH 133
    • Restriction: Not open to students who have taken CEGEP course 201-303 or MATH 150, MATH 151 or MATH 227
  • MATH 223 Linear Algebra (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Review of matrix algebra, determinants and systems of linear equations. Vector spaces, linear operators and their matrix representations, orthogonality. Eigenvalues and eigenvectors, diagonalization of Hermitian matrices. Applications.

    Terms: Fall 2010, Winter 2011

    Instructors: James G Loveys, Hongnian Huang (Fall) James G Loveys (Winter)

    • Fall and Winter
    • Prerequisite: MATH 133 or equivalent
    • Restriction: Not open to students in Mathematics programs nor to students who have taken or are taking MATH 236, MATH 247 or MATH 251. It is open to students in Faculty Programs

Required Computer Science Courses

12-16 credits from:
* Students who have sufficient knowledge in a programming language are not required to take COMP 202.
** Students take either COMP 462 or COMP 561.

  • COMP 202 Introduction to Computing 1 (3 credits) *

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Overview of components of microcomputers, the internet design and implementation of programs using a modern high-level language, an introduction to modular software design and debugging. Programming concepts are illustrated using a variety of application areas.

    Terms: Fall 2010, Winter 2011, Summer 2011

    Instructors: Mathieu Petitpas, Maja Frydrychowicz (Fall) Maja Frydrychowicz, Daniel Pomerantz (Winter) Daniel Pomerantz (Summer)

    • 3 hours
    • Prerequisite: a CEGEP level mathematics course
    • Restrictions: COMP 202 and COMP 208 cannot both be taken for credit. COMP 202 is intended as a general introductory course, while COMP 208 is intended for students interested in scientific computation. COMP 202 cannot be taken for credit with or after COMP 250
  • COMP 206 Introduction to Software Systems (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Comprehensive overview of programming in C, use of system calls and libraries, debugging and testing of code; use of developmental tools like make, version control systems.

    Terms: Fall 2010, Winter 2011

    Instructors: Joseph P Vybihal (Fall) Joseph P Vybihal, Gregory L Dudek (Winter)

    • 3 hours
    • Prerequisite: COMP 202 or COMP 250
  • COMP 250 Introduction to Computer Science (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : An introduction to the design of computer algorithms, including basic data structures, analysis of algorithms, and establishing correctness of programs. Overview of topics in computer science.

    Terms: Fall 2010, Winter 2011

    Instructors: Doina Precup (Fall) Michael Langer (Winter)

    • 3 hours
    • Prerequisites: Familiarity with a high level programming language and CEGEP level Math.
    • Restrictions: COMP 203 and COMP 250 are considered to be equivalent from a prerequisite point of view, and cannot both be taken for credit.
  • COMP 251 Data Structures and Algorithms (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Design and analysis of algorithms. Complexity of algorithms. Data structures. Introduction to graph algorithms and their analysis.

    Terms: Fall 2010, Winter 2011

    Instructors: Clark Verbrugge (Fall) Claude Crepeau (Winter)

    • 3 hours
    • Prerequisite: COMP 250 or COMP 203.
    • Restrictions: Not open to students who have taken or are taking COMP 252.
  • COMP 462 Computational Biology Methods (3 credits) **

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Application of computer science techniques to problems arising in biology and medicine, techniques for modeling evolution, aligning molecular sequences, predicting structure of a molecule and other problems from computational biology.

    Terms: Fall 2010

    Instructors: Jerome Waldispuhl (Fall)

    • 3 hours
    • Prerequisites: COMP 251 and MATH 323
    • Restriction: Not open to students who have taken COMP 562. Not open to students who are taking or have taken COMP 561.
  • COMP 561 Computational Biology Methods and Research (4 credits) **

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Application of computer science techniques to problems arising in biology and medicine, techniques for modeling evolution, aligning molecular sequences, predicting structure of a molecule and other problems from computational biology. An in-depth exploration of key research areas.

    Terms: Fall 2010

    Instructors: Jerome Waldispuhl (Fall)

    • 4 hours
    • Prerequisites: COMP 251, MATH 323
    • Restrictions: Not open to students who have taken COMP 562. Not open to students who are taking or have taken COMP 462.
    • Note: Additional work will consist of assignments and of a substantial final project that will require to put in practice the concepts covered in the course.

Required Biology Courses

20 credits from:

  • BIOL 200 Molecular Biology (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : The physical and chemical properties of the cell and its components in relation to their structure and function. Topics include: protein structure, enzymes and enzyme kinetics; nucleic acid replication, transcription and translation; the genetic code, mutation, recombination, and regulation of gene expression.

    Terms: Fall 2010

    Instructors: Richard D W Roy, Gregory G Brown, Francesco Fagotto, Monique Zetka (Fall)

    • Fall
    • 3 hours lecture, 1 hour optional tutorial
    • Prerequisite: BIOL 112 or equivalent
    • Corequisite: CHEM 212 or equivalent
  • BIOL 201 Cell Biology and Metabolism (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : This course introduces the student to our modern understanding of cells and how they work. Major topics to be covered include: photosynthesis, energy metabolism and metabolic integration; plasma membrane including secretion, endocytosis and contact mediated interactions between cells; cytoskeleton including cell and organelle movement; the nervous system; hormone signaling; the cell cycle.

    Terms: Winter 2011

    Instructors: Robert Levine, Kathryn Hewitt, Gary Brouhard (Winter)

    • Winter
    • 3 hours lecture, 1 hour optional tutorial
    • Prerequisite: BIOL 200.
    • Restriction: Not open to students who have taken or are taking ANAT 212 or BIOC 212
  • BIOL 202 Basic Genetics (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Introduction to basic principles, and to modern advances, problems and applications in the genetics of higher and lower organisms with examples representative of the biological sciences.

    Terms: Winter 2011, Summer 2011

    Instructors: Daniel J Schoen, Mario Chevrette, Tamara Western (Winter) David Dankort, Tamara Western (Summer)

    • Winter, Summer
    • 3 hours lecture, 1 hour optional tutorial
    • Prerequisite: BIOL 200.
    • Restriction: Not open to students who have taken or are taking CELL 204.
  • BIOL 215 Introduction to Ecology and Evolution (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : An introduction to the fundamental processes of ecology and evolution that bear on the nature and diversity of organisms and the processes that govern their assembly into ecological communities and their roles in ecosystem function.

    Terms: Fall 2010

    Instructors: Neil Price, Hans Carl Larsson, Catherine Potvin (Fall)

    • Fall
    • 3 hours lecture
    • Prerequisite: BIOL 111
    • Restriction: Not open to students who have taken ENVR 202
  • BIOL 301 Cell and Molecular Laboratory (4 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : An introduction to laboratory techniques with a focus on methods used to investigate fundamental questions in modern cell and molecular biology. Techniques including gene cloning, DNA and protein isolation and manipulation are covered, along with functional analysis of genes and proteins, basic bioinformatics, and computer-based experimental design and data analysis.

    Terms: Fall 2010, Winter 2011

    Instructors: Nam Sung Moon, Paul Harrison, Huanquan Zheng (Fall) Nam Sung Moon, Paul Harrison, Huanquan Zheng (Winter)

    • Fall or Winter
    • 1 hour lecture and one 6-hour laboratory
    • Prerequisites: PHYS 102 or PHYS 142, BIOL 200, BIOL 201 or ANAT/BIOC 212, and BIOL 202. BIOL 206 recommended.
    • Restrictions: Not open to students who have taken or are taking BIOC 300. Requires departmental approval.
    • For approval email anne-marie [dot] sdicu [at] mcgill [dot] ca. Specify your ID number as well as the term and lab day.
  • CHEM 212 Introductory Organic Chemistry 1 (4 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.

    Terms: Fall 2010, Winter 2011, Summer 2011

    Instructors: Michel Daoust, Youla S Tsantrizos, Nicolas Moitessier (Fall) Michel Daoust, Ariel Fenster, Ralf Schirrmacher (Winter) Michel Daoust, Ariel Fenster (Summer)

    • Fall, Winter, Summer
    • Prerequisite: CHEM 110 or equivalent.
    • Corequisite: CHEM 120 or equivalent.
    • Restriction: Not open to students who are taking or have taken CHEM 211 or equivalent
    • Each lab section is limited enrolment
    • Note: Some CEGEP programs provide equivalency for this course. For more information, please see the Department of Chemistry’s Web page (http://www.chemistry.mcgill.ca/advising/outside/equivalent.htm).

Required Joint Courses

7 credits from:

  • BIOL 495 Integrative Computing in Biology (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Integrates biological concepts with relevant computer science approaches, including topics and concepts in biology that are enabled through computational biology.

    Terms: This course is not scheduled for the 2010-2011 academic year.

    Instructors: There are no professors associated with this course for the 2010-2011 academic year.

    • Fall
    • 3 hours lecture
    • Prerequisite: COMP 251 and at least 9 credits of Biology courses at the 200-level or higher.
    • Limited to students enrolled in the Computer Science and Biology joint major or with consent of the instructor.
  • COMP 401 Project in Biology and Computer Science (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : A research project applying computational approaches to a biological problem.

    Terms: Fall 2010, Winter 2011

    Instructors: Derek Ruths (Fall) Jerome Waldispuhl (Winter)

    • 3 hours
    • Prerequisite: BIOL 495 or permission of instructor.
    • The project is co-supervised by professors in Biology and Computer Science.
  • COMP 499 Undergraduate Bioinformatics Seminar (1 credit)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Introduction to current research topics in bioinformatics through a series of seminars by invited researchers.

    Terms: Fall 2010, Winter 2011

    Instructors: Michael Trevor Hallett (Fall) Michael Trevor Hallett (Winter)

    • 1 hour
    • Corequisite(s): BIOL 495
    • Restriction(s): Registration in the Computer Science and Biology joint major

Complementary Courses (27 credits)

6 credits, ONE of the following pairs of courses as follows:
MATH 203 and MATH 204 or MATH 323 and MATH 324 or BIOL 309 and BIOL 373.

  • BIOL 309 Mathematical Models in Biology (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Application of finite difference and differential equations to problems in cell and developmental biology, ecology and physiology. Qualitative, quantitative and graphical techniques are used to analyze mathematical models and to compare theoretical predictions with experimental data.

    Terms: Fall 2010

    Instructors: Leon Glass (Fall)

    • Fall
    • 3 hours lecture
    • Prerequisite: one year of calculus. An additional course in calculus is recommended
  • BIOL 373 Biometry (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Elementary statistical methods in biology. Introduction to the analysis of biological data with emphasis on the assumptions behind statistical tests and models. Use of statistical techniques typically available on computer packages.

    Terms: Fall 2010

    Instructors: Claire Seizilles de Mazancourt, Catherine Potvin (Fall)

    • Fall
    • 2 hours lecture and 2 hours laboratory
    • Prerequisite: MATH 112 or equivalent
    • You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.
  • MATH 203 Principles of Statistics 1 (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Examples of statistical data and the use of graphical means to summarize the data. Basic distributions arising in the natural and behavioural sciences. The logical meaning of a test of significance and a confidence interval. Tests of significance and confidence intervals in the one and two sample setting (means, variances and proportions).

    Terms: Fall 2010, Winter 2011, Summer 2011

    Instructors: Abbas Khalili Mahmoudabadi, Jose Andres Correa (Fall)

    • No calculus prerequisites
    • Restriction: This course is intended for students in all disciplines. For extensive course restrictions covering statistics courses see Section 3.6.1 of the Arts and of the Science sections of the calendar regarding course overlaps.
    • You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar. Students should consult http://www.mcgill.ca/student-records/transfercredits/ for information regarding transfer credits for this course.
  • MATH 204 Principles of Statistics 2 (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : The concept of degrees of freedom and the analysis of variability. Planning of experiments. Experimental designs. Polynomial and multiple regressions. Statistical computer packages (no previous computing experience is needed). General statistical procedures requiring few assumptions about the probability model.

    Terms: Winter 2011

    Instructors: There are no professors associated with this course for the 2010-2011 academic year.

    • Winter
    • Prerequisite: MATH 203 or equivalent. No calculus prerequisites
    • Restriction: This course is intended for students in all disciplines. For extensive course restrictions covering statistics courses see Section 3.6.1 of the Arts and of the Science sections of the calendar regarding course overlaps.
    • You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.
  • MATH 323 Probability (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Sample space, events, conditional probability, independence of events, Bayes' Theorem. Basic combinatorial probability, random variables, discrete and continuous univariate and multivariate distributions. Independence of random variables. Inequalities, weak law of large numbers, central limit theorem.

    Terms: Fall 2010, Winter 2011, Summer 2011

    Instructors: William J Anderson (Fall) Vahid Partovi Nia (Winter)

    • Prerequisites: MATH 141 or equivalent.
    • Restriction: Intended for students in Science, Engineering and related disciplines, who have had differential and integral calculus
    • Restriction: Not open to students who have taken or are taking MATH 356
  • MATH 324 Statistics (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Sampling distributions, point and interval estimation, hypothesis testing, analysis of variance, contingency tables, nonparametric inference, regression, Bayesian inference.

    Terms: Fall 2010, Winter 2011

    Instructors: Masoud Asgharian-Dastenaei (Fall) William J Anderson (Winter)

    • Fall and Winter
    • Prerequisite: MATH 323 or equivalent
    • Restriction: Not open to students who have taken or are taking MATH 357
    • You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.

At least 21 credits selected from the following blocks, with the following requirements:

- at least 9 credits from each of the following two blocks
- at least 9 credits at the 400 level or above
- at least 3 credits at the 400 level or above from each block

Computer Science Block

Note: All COMP courses at the 400 level (except 401, 462, and 499) and all courses at the 500 level (except 561).

  • COMP 273 Introduction to Computer Systems (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Number representations, combinational and sequential digital circuits, MIPS instructions and architecture datapath and control, caches, virtual memory, interrupts and exceptions, pipelining.

    Terms: Fall 2010, Winter 2011

    Instructors: Joseph P Vybihal (Fall) Kaleem Siddiqi (Winter)

    • 3 hours
    • Corequisite: COMP 206.
  • COMP 302 Programming Languages and Paradigms (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Programming language design issues and programming paradigms. Binding and scoping, parameter passing, lambda abstraction, data abstraction, type checking. Functional and logic programming.

    Terms: Fall 2010, Winter 2011

    Instructors: Brigitte Pientka (Fall) Jesse Doherty (Winter)

    • 3 hours
    • Prerequisite: COMP 250 or COMP 203
  • COMP 303 Software Development (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Principles, mechanisms, techniques, and tools for object-oriented software development: encapsulation, design patterns, unit testing, etc.

    Terms: Fall 2010

    Instructors: Martin Robillard (Fall)

    • Winter
    • 3 hours
    • Prerequisites: COMP 206, COMP 250.
    • Corequisite: COMP 302.
    • The course involves a significant project
  • COMP 304 Object-Oriented Design (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : The object model, objects and classes, verification and testing, object-oriented analysis, unified modeling language and design patterns.

    Terms: This course is not scheduled for the 2010-2011 academic year.

    Instructors: There are no professors associated with this course for the 2010-2011 academic year.

    • 3 hours
    • Prerequisites: COMP 206, COMP 251, COMP 302
  • COMP 310 Operating Systems (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Control and scheduling of large information processing systems. Operating system software - resource allocation, dispatching, processors, access methods, job control languages, main storage management. Batch processing, multiprogramming, multiprocessing, time sharing.

    Terms: Fall 2010, Winter 2011

    Instructors: Carl Tropper (Fall) Andraws Swidan (Winter)

    • 3 hours
    • Prerequisite: COMP 273
  • COMP 330 Theoretical Aspects: Computer Science (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Mathematical models of computers, finite automata, Turing machines, counter machines, push-down machines, computational complexity.

    Terms: Fall 2010

    Instructors: Hamed Hatami (Fall)

    • 3 hours
    • Prerequisite: COMP 251.
  • COMP 335 Software Engineering Methods (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : This course in software engineering teaches basic concepts and methods for software development. The focus is on engineering and analysing requirements, design and code. Small software development exercises will be given where students would learn how to apply different methods.

    Terms: This course is not scheduled for the 2010-2011 academic year.

    Instructors: There are no professors associated with this course for the 2010-2011 academic year.

    • 3 hours
    • Corequisite: COMP 302
  • COMP 350 Numerical Computing (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Computer representation of numbers, IEEE Standard for Floating Point Representation, computer arithmetic and rounding errors. Numerical stability. Matrix computations and software systems. Polynomial interpolation. Least-squares approximation. Iterative methods for solving a nonlinear equation. Discretization methods for integration and differential equations.

    Terms: Fall 2010

    Instructors: Xiao-Wen Chang (Fall)

    • 3 hours
    • Prerequisites: MATH 222 and MATH 223 and one of: COMP 202, COMP 208, COMP 250; or equivalents.
  • COMP 360 Algorithm Design Techniques (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : A study of techniques for the design and analysis of algorithms.

    Terms: Fall 2010, Winter 2011

    Instructors: Adrian Roshan Vetta (Fall) The Phuong Nguyen (Winter)

    • 3 hours
    • Prerequisite: Either COMP 251 or COMP 252, and either MATH 240 or MATH 235 or MATH 363.
    • Restriction: Not open to students who have taken or are taking COMP 362.
  • MATH 240 Discrete Structures 1 (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Mathematical foundations of logical thinking and reasoning. Mathematical language and proof techniques. Quantifiers. Induction. Elementary number theory. Modular arithmetic. Recurrence relations and asymptotics. Combinatorial enumeration. Functions and relations. Partially ordered sets and lattices. Introduction to graphs, digraphs and rooted trees.

    Terms: Fall 2010

    Instructors: Frederick Shepherd (Fall)

    • Fall
    • Corequisite: MATH 133.
    • Restriction: For students in any Computer Science program. Others only with the instructor's permission. Not open to students who have taken or are taking MATH 235.

Biology Block

  • BIOL 300 Molecular Biology of the Gene (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : A survey of current knowledge and approaches in the area of regulation of gene expression, post-transcriptional control of gene expression, and signal transduction.

    Terms: Fall 2010

    Instructors: Laura Nilson, Monique Zetka (Fall)

    • Fall
    • 3 hours lecture, optional tutorials
    • Prerequisites: BIOL 200 and one of BIOL 201 or ANAT/BIOC 212.
  • BIOL 309 Mathematical Models in Biology (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Application of finite difference and differential equations to problems in cell and developmental biology, ecology and physiology. Qualitative, quantitative and graphical techniques are used to analyze mathematical models and to compare theoretical predictions with experimental data.

    Terms: Fall 2010

    Instructors: Leon Glass (Fall)

    • Fall
    • 3 hours lecture
    • Prerequisite: one year of calculus. An additional course in calculus is recommended
  • BIOL 310 Biodiversity and Ecosystems (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Ecological bases of the natural causes and consequences of current global environmental changes, including how biodiversity and ecosystem processes are defined and measured, how they vary in space and time, how they are affected by physical and biological factors, and how they affect each other and human societies.

    Terms: Winter 2011

    Instructors: Michel Loreau, Claire Seizilles de Mazancourt, Thomas Davies (Winter)

    • Winter
    • 3 hours lecture
    • one-day field trip to Mont St-Hilaire
    • Prerequisite: BIOL 215; or ENVR 200 and ENVR 202; MATH 112 or equivalent; or permission of the instructor
  • BIOL 313 Eukaryotic Cell Biology (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Cell biology of eukaryotes focusing on the assembly and function of cellular structures, the regulation of transcription; the dynamics of the cytoskeleton and its motors; mechanics of cell division; cell cycle and checkpoints; nuclear dynamics; chromosome structure and behaviour and experimental techniques.

    Terms: Winter 2011

    Instructors: Monique Zetka, Francesco Fagotto (Winter)

    • Winter
    • 3 hours lecture and 1 hour optional tutorial
    • Prerequisites: BIOL 200 and BIOL 201 or ANAT 212/BIOC 212 and BIOL 202.
  • BIOL 435 Natural Selection (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Explains how the selection of undirected variation accounts for some of the leading features of the natural world. Its main focus is evolutionary change and adaptation, but it will also include material from ecological, economic, biochemical and computer systems. It emphasizes experimental studies of evolution.

    Terms: This course is not scheduled for the 2010-2011 academic year.

    Instructors: There are no professors associated with this course for the 2010-2011 academic year.

    • Fall
    • 3 hours of lecture
    • Prerequisite: BIOL 304 or permission of instructor.
  • BIOL 518 Advanced Topics in Cell Biology (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Conserved processes in Eukaryotic organisms, including the cytoskeleton, the cell cycle, complex traits/disease, global analysis/bioinformatics, and innovative studies/techniques in cell biology.

    Terms: Winter 2011

    Instructors: Gary Brouhard, Jacalyn Vogel (Winter)

    • Winter
    • 2 hours seminar
    • Prerequisite: BIOL 313 and permission
  • BIOL 568 Topics on the Human Genome (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Cellular and molecular approaches to characterization of the human genome.

    Terms: Winter 2011

    Instructors: Christina Haston (Winter)

    • Winter
    • 3 hours lecture
    • Prerequisites BIOL 202, BIOL 300, BIOL 370, or permission.
  • BIOL 569 Developmental Evolution (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : The influence of developmental mechanisms on evolution. This course draws on recent examples from plants and invertebrate and vertebrate animals. Topics include homology, modularity, dissociation, co-option, evolutionary novelty, evolution of cis-regulation and gene regulatory networks, developmental constraint and evolvability, heterochrony, phenotypic plasticity, and canalization.

    Terms: This course is not scheduled for the 2010-2011 academic year.

    Instructors: There are no professors associated with this course for the 2010-2011 academic year.

    • Winter
    • 3 hours lecture
    • Prerequisites: BIOL 303 and BIOL 304; or permission of instructor.
  • BIOL 572 Molecular Evolution (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Evolutionary change in DNA and proteins and its implications for cellular, organismal, and population/species evolution.

    Terms: This course is not scheduled for the 2010-2011 academic year.

    Instructors: There are no professors associated with this course for the 2010-2011 academic year.

    • Fall
    • 3 hours lecture/seminar
    • Prerequisite: BIOL 300
  • BIOL 583 Advanced Biometry (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Advanced techniques in biometry surveying a broad number of statistical tools including: philosophy of scientific inference, experimental design and advanced linear models, generalized linear models (esp. logistic regression), modern regression techniques (quantile, local, etc), temporal and spatial statistics, and multivariate techniques.

    Terms: This course is not scheduled for the 2010-2011 academic year.

    Instructors: There are no professors associated with this course for the 2010-2011 academic year.

    • Winter
    • Prerequisite: BIOL 373 or permission of instructor.
    • Note: You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.
Faculty of Science—2010-2011 (last updated Jan. 19, 2011) (disclaimer)