2010-2011
Note: This is the 2010–2011 edition of the eCalendar. For the most recent publication, click here.
This program is built on a selection of mathematics and biology courses that recognizes mathematical biology as a field of research, with 3 streams within biology: Ecology and Evolutionary Ecology, Molecular Evolution, and Neurosciences.
Before selecting this program, students should have completed the following 28 - 32 credits of science courses or their equivalents.
* PHYS 102 is required only for students following the Molecular Evolution Stream or Neurosciences Stream of this program. It need not necessarily be taken in U0.
Biology (Sci) : An introduction to the phylogeny, structure, function and adaptation of unicellular organisms, plants and animals in the biosphere.
Terms: Fall 2010
Instructors: Irene Gregory-Eaves, Rajinder S Dhindsa, Claire Seizilles de Mazancourt (Fall)
Fall
2 hours lecture and 3 hours laboratory
Restriction: Not open to students who have taken CEGEP objective 00UK or equivalent; or BIOL 115.
This course serves as an alternative to CEGEP objective code 00UK
May require departmental approval.
Open to all students wishing introductory biology.
Attendance at first lab is mandatory to confirm registration in the course.
This class will use a Student Response System (clicker) which can be obtained from the Bookstore.
Biology (Sci) : The cell: ultrastructure, division, chemical constituents and reactions. Bioenergetics: photosynthesis and respiration. Principles of genetics, the molecular basis of inheritance and biotechnology.
Terms: Winter 2011
Instructors: Joseph Alan Dent, Jacalyn Vogel (Winter)
Chemistry : A study of the fundamental principles of atomic structure, radiation and nuclear chemistry, valence theory, coordination chemistry, and the periodic table.
Terms: Fall 2010
Instructors: Ian Sydney Butler, Ariel Fenster, Ashok K Kakkar, Jean-Marc Gauthier (Fall)
Fall
Prerequisites/corequisites: College level mathematics and physics or permission of instructor; CHEM 120 is not a prerequisite
Each lab section is limited enrolment
Chemistry : A study of the fundamental principles of physical chemistry.
Terms: Winter 2011
Instructors: Jean-Marc Gauthier, Ariel Fenster, Anthony Mittermaier, Bradley Siwick (Winter)
Winter
Prerequisites/corequisites: College level mathematics and physics, or permission of instructor: CHEM 110 is not a prerequisite
Each lab section is limited enrolment
Mathematics & Statistics (Sci) : Systems of linear equations, matrices, inverses, determinants; geometric vectors in three dimensions, dot product, cross product, lines and planes; introduction to vector spaces, linear dependence and independence, bases; quadratic loci in two and three dimensions.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Djivede Kelome, William J Anderson, James G Loveys, Shahab Shahabi, Adam Clay (Fall) Djivede Kelome, William J Anderson (Winter) Karol Palka (Summer)
Prerequisite: a course in functions
Restriction: Not open to students who have taken MATH 221 or CEGEP objective 00UQ or equivalent.
Restriction Note B: Not open to students who have taken or are taking MATH 123, MATH 130 or MATH 131, except by permission of the Department of Mathematics and Statistics.
Mathematics & Statistics (Sci) : Review of functions and graphs. Limits, continuity, derivative. Differentiation of elementary functions. Antidifferentiation. Applications.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Stephen W Drury, Sidney Trudeau, Shahab Shahabi (Fall) Axel W Hundemer (Winter)
3 hours lecture, 1 hour tutorial
Prerequisite: High School Calculus
Restriction: Not open to students who have taken MATH 120, MATH 139 or CEGEP objective 00UN or equivalent
Restriction: Not open to students who have taken or are taking MATH 122 or MATH 130 or MATH 131, except by permission of the Department of Mathematics and Statistics
Each Tutorial section is enrolment limited
Mathematics & Statistics (Sci) : The definite integral. Techniques of integration. Applications. Introduction to sequences and series.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Sidney Trudeau (Fall) Neville G F Sancho, Stephen W Drury, Sidney Trudeau (Winter)
Restriction: Not open to students who have taken MATH 121 or CEGEP objective 00UP or equivalent
Restriction Note B: Not open to students who have taken or are taking MATH 122 or MATH 130 or MATH 131, except by permission of the Department of Mathematics and Statistics.
Each Tutorial section is enrolment limited
Physics : An introductory course in physics without calculus, covering mechanics (kinematics, dynamics, energy, and rotational motion), oscillations and waves, sound, light, and geometrical optics.
Terms: Fall 2010
Instructors: Kenneth J Ragan (Fall)
Fall
3 hours lectures; 2 hours laboratory; tutorial sessions
Restriction: Not open to students taking or having taken PHYS 131, CEGEP objective 00UR or equivalent
Laboratory sections have limited enrolment
Physics : Electric field and potential. D.C. circuits and measurements. Capacitance. Magnetic field and induction. A.C. circuits Semiconductor devices and their application. Electromagnetic waves.
Terms: Winter 2011
Instructors: Zaven Altounian (Winter)
* If a student has already taken CHEM 212 or its equivalent, the credits can be made up with a complementary course in consultation with the program Adviser.
** Students who have sufficient knowledge in a programming language should take COMP 250 (3) Introduction to Computer Science rather than COMP 202.
*** Students may take either MATH 223 or MATH 247.
Biology (Sci) : The physical and chemical properties of the cell and its components in relation to their structure and function. Topics include: protein structure, enzymes and enzyme kinetics; nucleic acid replication, transcription and translation; the genetic code, mutation, recombination, and regulation of gene expression.
Terms: Fall 2010
Instructors: Richard D W Roy, Gregory G Brown, Francesco Fagotto, Monique Zetka (Fall)
Biology (Sci) : This course introduces the student to our modern understanding of cells and how they work. Major topics to be covered include: photosynthesis, energy metabolism and metabolic integration; plasma membrane including secretion, endocytosis and contact mediated interactions between cells; cytoskeleton including cell and organelle movement; the nervous system; hormone signaling; the cell cycle.
Terms: Winter 2011
Instructors: Robert Levine, Kathryn Hewitt, Gary Brouhard (Winter)
Biology (Sci) : An introduction to the fundamental processes of ecology and evolution that bear on the nature and diversity of organisms and the processes that govern their assembly into ecological communities and their roles in ecosystem function.
Terms: Fall 2010
Instructors: Neil Price, Hans Carl Larsson, Catherine Potvin (Fall)
Biology (Sci) : Principles of population, community, and ecosystem dynamics: population growth and regulation, species interactions, dynamics of competitive interactions and of predator/prey systems; evolutionary dynamics.
Terms: Fall 2010
Instructors: Frederic Guichard (Fall)
Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Michel Daoust, Youla S Tsantrizos, Nicolas Moitessier (Fall) Michel Daoust, Ariel Fenster, Ralf Schirrmacher (Winter) Michel Daoust, Ariel Fenster (Summer)
Fall, Winter, Summer
Prerequisite: CHEM 110 or equivalent.
Corequisite: CHEM 120 or equivalent.
Restriction: Not open to students who are taking or have taken CHEM 211 or equivalent
Each lab section is limited enrolment
Note: Some CEGEP programs provide equivalency for this course. For more information, please see the Department of Chemistry’s Web page (http://www.chemistry.mcgill.ca/advising/outside/equivalent.htm).
Computer Science (Sci) : Overview of components of microcomputers, the internet design and implementation of programs using a modern high-level language, an introduction to modular software design and debugging. Programming concepts are illustrated using a variety of application areas.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Mathieu Petitpas, Maja Frydrychowicz (Fall) Maja Frydrychowicz, Daniel Pomerantz (Winter) Daniel Pomerantz (Summer)
3 hours
Prerequisite: a CEGEP level mathematics course
Restrictions: COMP 202 and COMP 208 cannot both be taken for credit. COMP 202 is intended as a general introductory course, while COMP 208 is intended for students interested in scientific computation. COMP 202 cannot be taken for credit with or after COMP 250
Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Wilbur Jonsson, Neville G F Sancho (Fall) Wilbur Jonsson (Winter)
Mathematics & Statistics (Sci) : Review of matrix algebra, determinants and systems of linear equations. Vector spaces, linear operators and their matrix representations, orthogonality. Eigenvalues and eigenvectors, diagonalization of Hermitian matrices. Applications.
Terms: Fall 2010, Winter 2011
Instructors: James G Loveys, Hongnian Huang (Fall) James G Loveys (Winter)
Mathematics & Statistics (Sci) : A rigorous presentation of sequences and of real numbers and basic properties of continuous and differentiable functions on the real line.
Terms: Fall 2010
Instructors: Reem Adel Yassawi (Fall)
Fall
Prerequisite: MATH 141
Mathematics & Statistics (Sci) : Infinite series; series of functions; power series. The Riemann integral in one variable. A rigorous development of the elementary functions.
Terms: Winter 2011
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Winter
Prerequisite: MATH 242
Mathematics & Statistics (Sci) : Matrix algebra, determinants, systems of linear equations. Abstract vector spaces, inner product spaces, Fourier series. Linear transformations and their matrix representations. Eigenvalues and eigenvectors, diagonalizable and defective matrices, positive definite and semidefinite matrices. Quadratic and Hermitian forms, generalized eigenvalue problems, simultaneous reduction of quadratic forms. Applications.
Terms: Winter 2011
Instructors: Axel W Hundemer (Winter)
Mathematics & Statistics (Sci) : First order ordinary differential equations including elementary numerical methods. Linear differential equations. Laplace transforms. Series solutions.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Neville G F Sancho (Fall) Jian-Jun Xu (Winter)
Mathematics & Statistics (Sci) : Sample space, events, conditional probability, independence of events, Bayes' Theorem. Basic combinatorial probability, random variables, discrete and continuous univariate and multivariate distributions. Independence of random variables. Inequalities, weak law of large numbers, central limit theorem.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: William J Anderson (Fall) Vahid Partovi Nia (Winter)
For the 39 credits, students complete 21 credits of BINF, BIOL, NEUR, PHGY, PSYC courses including one of three Streams (Ecology and Evolutionary Ecology, Molecular Evolution, Neurosciences) and 18 credits of MATH courses.
Note: Students selecting a BIOL course count this toward their 21 credits of BINF, BIOL, NEUR, PHGY, PSYC courses while students selecting a MATH course count this toward their 18 credits of MATH courses.
3 credits from the following Math or Biology Research courses:
Biology (Sci) : Independent research project.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Fall, Winter or Summer
Prerequisite: BIOL 206 or BIOL 301 or other suitable laboratory course.
Restrictions: Open only to Biology students. Not open to students who have taken BIOL 477.
Projects must be arranged individually with a staff member of the Biology Department and a form from Nancy Nelson, Room W4/13, Stewart Building, must be completed prior to registration.
Biology (Sci) : Independent research project.
Terms: Fall 2010, Winter 2011
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Fall, Winter or Summer
Prerequisite: BIOL 206 or BIOL 301 or other suitable laboratory course.
Restrictions: Open only to Biology students. Not open to students who have taken BIOL 478.
Projects must be arranged individually with a staff member of the Biology Department and a form from Nancy Nelson, Room W4/13, Stewart Building, must be completed prior to registration.
Mathematics & Statistics (Sci) : A supervised project.
Terms: Fall 2010, Winter 2011
Instructors: Axel W Hundemer, Djivede Kelome (Fall) Djivede Kelome (Winter)
Prerequisite: Students must have 21 completed credits of the required mathematics courses in their program, including all required 200 level mathematics courses.
Requires departmental approval.
15 - 18 credits of MATH courses chosen from Sequence 1 or 2 and from "Remaining Math Courses" as follows:
12 credits from the following courses:
* Students may take either MATH 317 or MATH 327
** Students may take either MATH 326 or MATH 437
Mathematics & Statistics (Sci) : Derivative as a matrix. Chain rule. Implicit functions. Constrained maxima and minima. Jacobians. Multiple integration. Line and surface integrals. Theorems of Green, Stokes and Gauss.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Wilbur Jonsson (Fall) Wilbur Jonsson (Winter) Charles Roth (Summer)
Mathematics & Statistics (Sci) : Error analysis. Numerical solutions of equations by iteration. Interpolation. Numerical differentiation and integration. Introduction to numerical solutions of differential equations.
Terms: Fall 2010
Instructors: Peter Bartello (Fall)
Mathematics & Statistics (Sci) : First order equations, geometric theory; second order equations, classification; Laplace, wave and heat equations, Sturm-Liouville theory, Fourier series, boundary and initial value problems.
Terms: Winter 2011
Instructors: Gantumur Tsogtgerel (Winter)
Mathematics & Statistics (Sci) : Linear systems of differential equations, linear stability theory. Nonlinear systems: existence and uniqueness, numerical methods, one and two dimensional flows, phase space, limit cycles, Poincare-Bendixson theorem, bifurcations, Hopf bifurcation, the Lorenz equations and chaos.
Terms: Fall 2010
Instructors: Antony Raymond Humphries (Fall)
Mathematics & Statistics (Sci) : An overview of numerical methods for linear algebra applications and their analysis. Problem classes include linear systems, least squares problems and eigenvalue problems.
Terms: Winter 2011
Instructors: Antony Raymond Humphries (Winter)
Mathematics & Statistics (Sci) : The formulation and treatment of realistic mathematical models describing biological phenomena through such qualitative and quantitative mathematical techniques as local and global stability theory, bifurcation analysis and phase plane analysis. Numerical simulation. Concrete and detailed examples will be drawn from molecular, cellular and population biology and mammalian physiology.
Terms: Fall 2010
Instructors: Michael C Mackey (Fall)
9 credits from the following:
Mathematics & Statistics (Sci) : Sampling distributions, point and interval estimation, hypothesis testing, analysis of variance, contingency tables, nonparametric inference, regression, Bayesian inference.
Terms: Fall 2010, Winter 2011
Instructors: Masoud Asgharian-Dastenaei (Fall) William J Anderson (Winter)
Fall and Winter
Prerequisite: MATH 323 or equivalent
Restriction: Not open to students who have taken or are taking MATH 357
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.
Mathematics & Statistics (Sci) : Least-squares estimators and their properties. Analysis of variance. Linear models with general covariance. Multivariate normal and chi-squared distributions; quadratic forms. General linear hypothesis: F-test and t-test. Prediction and confidence intervals. Transformations and residual plot. Balanced designs.
Terms: Fall 2010
Instructors: Abbas Khalili Mahmoudabadi (Fall)
Mathematics & Statistics (Sci) : Conditional probability and conditional expectation, generating functions. Branching processes and random walk. Markov chains, transition matrices, classification of states, ergodic theorem, examples. Birth and death processes, queueing theory.
Terms: Winter 2011
Instructors: Dana Louis Addario-Berry (Winter)
Remaining 3-9 credits of MATH courses may be chosen from any of the two preceding sequences and/or from the following list:
Mathematics & Statistics (Sci) : The concept of degrees of freedom and the analysis of variability. Planning of experiments. Experimental designs. Polynomial and multiple regressions. Statistical computer packages (no previous computing experience is needed). General statistical procedures requiring few assumptions about the probability model.
Terms: Winter 2011
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Winter
Prerequisite: MATH 203 or equivalent. No calculus prerequisites
Restriction: This course is intended for students in all disciplines. For extensive course restrictions covering statistics courses see Section 3.6.1 of the Arts and of the Science sections of the calendar regarding course overlaps.
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.
Mathematics & Statistics (Sci) : Review of mathematical writing, proof techniques, graph theory and counting. Mathematical logic. Graph connectivity, planar graphs and colouring. Probability and graphs. Introductory group theory, isomorphisms and automorphisms of graphs. Enumeration and listing.
Terms: Winter 2011
Instructors: Adrian Roshan Vetta (Winter)
Mathematics & Statistics (Sci) : Modern discrete data analysis. Exponential families, orthogonality, link functions. Inference and model selection using analysis of deviance. Shrinkage (Bayesian, frequentist viewpoints). Smoothing. Residuals. Quasi-likelihood. Sliced inverse regression. Contingency tables: logistic regression, log-linear models. Censored data. Applications to current problems in medicine, biological and physical sciences. GLIM, S, software.
Terms: Winter 2011
Instructors: David Stephens (Winter)
Mathematics & Statistics (Sci) : Distribution free procedures for 2-sample problem: Wilcoxon rank sum, Siegel-Tukey, Smirnov tests. Shift model: power and estimation. Single sample procedures: Sign, Wilcoxon signed rank tests. Nonparametric ANOVA: Kruskal-Wallis, Friedman tests. Association: Spearman's rank correlation, Kendall's tau. Goodness of fit: Pearson's chi-square, likelihood ratio, Kolmogorov-Smirnov tests. Statistical software packages used.
Terms: Fall 2010
Instructors: Christian Genest (Fall)
Mathematics & Statistics (Sci) : Simple random sampling, domains, ratio and regression estimators, superpopulation models, stratified sampling, optimal stratification, cluster sampling, sampling with unequal probabilities, multistage sampling, complex surveys, nonresponse.
Terms: This course is not scheduled for the 2010-2011 academic year.
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
18 to 21 credits of BIOL, NEUR, PHGY, PHYS, PSYC courses including one of three Streams.
Note: Some courses in the Streams may have prerequisites.
At least 15 credits selected as follows:
3 credits of:
Biology (Sci) : Introduction to modern methods used in organismal biology, including ecological sampling, experimental methods and statistics, taxonomic and phylogenetic analysis of biodiversity, experimental behavioural ecology, microbiological methods, and library search procedures.
Terms: Fall 2010
Instructors: Andrew Gonzalez, Eleanor MacLean, Daniel J Schoen (Fall)
Fall
1.5 hours lecture, 4 hours laboratory and local field trip in week 2.
Prerequisite: BIOL 111 or equivalent
3 credits from the following field courses or any other field course with permission:
Biology (Sci) : Field studies of ferns, fern allies, conifers and flowering plants; the use of keys for species identification.
Terms: Summer 2011
Instructors: Martin J Lechowicz, Isabelle Aubin (Summer)
Biology (Sci) : Methods of sampling natural populations. Testing hypotheses in nature.
Terms: Fall 2010
Instructors: Martin J Lechowicz, Patrick Leighton, Thomas Davies (Fall)
Fall
Note: Preregistration in March and April. See Course web page: http://biology.mcgill.ca/undergrad/C331A/index.htm. Meets 12-days just before the fall term, with a project report early in the fall term.
The field portion of this course is given at the University's Gault Nature Reserve in Mont St. Hilaire over a two-week period in August. In the fall, students prepare a report based on projects carried out during this field portion. This course has an additional fee of $532 which includes room and board and handouts. The Department of Biology subsidizes a portion of the cost for this activity
Biology (Sci) : Relevant to agriculture, forestry, fisheries and conservation of natural resources. Field component taught at the University's Bellairs Research Institute in Barbados, for two weeks in early May. The course is organized in a series of small-group field projects of 2-3 days each. Interested students should check the course website, attend the full information session and fill out an application form.
Terms: Winter 2011
Instructors: Frederic Guichard, Neil Price (Winter)
Winter, Summer
Prerequisites: BIOL 206; and BIOL 215 or both ENVR 200 and ENVR 202; and permission of the instructor.
Students must register for both BIOL 334D1 and BIOL 334D2.
No credit will be given for this course unless both BIOL 334D1 and BIOL 334D2 are successfully completed in consecutive terms
BIOL 334D1 and BIOL 334D2 together are equivalent to BIOL 334
Biology (Sci) : Relevant to agriculture, forestry, fisheries and conservation of natural resources. Field component taught at the University's Bellairs Research Institute in Barbados, for two weeks in early May. The course is organized in a series of small-group field projects of 2-3 days each. Interested students should check the course website, attend the full information session and fill out an application form.
Terms: Summer 2011
Instructors: Frederic Guichard, Neil Price (Summer)
Winter, Summer
Prerequisites: BIOL 206; and BIOL 215 or both ENVR 200 and ENVR 202; and permission of the instructor.
Students must register for both BIOL 334D1 and BIOL 334D2.
No credit will be given for this course unless both BIOL 334D1 and BIOL 334D2 are successfully completed in consecutive terms
Biology (Sci) : A study of the physical, chemical and biological properties of lakes and other inland waters, with emphasis on their functioning as systems.
Terms: Fall 2010
Instructors: Irene Gregory-Eaves (Fall)
Fall
2 hours lecture; 2 weekends at field station equivalent to 3 hours laboratory per week
Prerequisites: BIOL 206 and BIOL 215 or permission of instructor.
This course, involving two field weekends, has an additional fee of $225, which includes room and board and transportation. The fee is refundable during the period where a student can drop the course with full refund. The Department of Biology subsidizes a portion of the cost for this activity.
At least 9 credits chosen from the following list, of which 6 credits must be at the 400-level or above:
Biology (Sci) : Introduction to basic principles, and to modern advances, problems and applications in the genetics of higher and lower organisms with examples representative of the biological sciences.
Terms: Winter 2011, Summer 2011
Instructors: Daniel J Schoen, Mario Chevrette, Tamara Western (Winter) David Dankort, Tamara Western (Summer)
Biology (Sci) : This course will show how the theory of evolution by natural selection provides the basis for understanding the whole of biology. The first half of the course describes the process of selection, while the second deals with evolution in the long term.
Terms: Fall 2010
Instructors: Graham Bell (Fall)
Biology (Sci) : Ecological bases of the natural causes and consequences of current global environmental changes, including how biodiversity and ecosystem processes are defined and measured, how they vary in space and time, how they are affected by physical and biological factors, and how they affect each other and human societies.
Terms: Winter 2011
Instructors: Michel Loreau, Claire Seizilles de Mazancourt, Thomas Davies (Winter)
Biology (Sci) : This course presents evolutionary genetics within an ecological context. The course covers theoretical topics together with relevant data from natural populations of plants and animals.
Terms: This course is not scheduled for the 2010-2011 academic year.
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Fall
2 hours lecture, 1 hour seminar
Prerequisite: BIOL 202
Biology (Sci) : Study of theoretical ecology and of mathematical tools available to explore the dynamical behaviour of model populations, communities and ecosystems. Models addressing major ecological theories including population stability, community dynamics and ecosystem functioning, epidemic and disturbance dynamics, spatial models, game theory.
Terms: Winter 2011
Instructors: Frederic Guichard, Claire Seizilles de Mazancourt (Winter)
Biology (Sci) : Mathematical models of game theory and evolutionary dynamics; classical models and current research.
Terms: This course is not scheduled for the 2010-2011 academic year.
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Biology (Sci) : Theoretical foundations for a new ecological synthesis that merges the perspectives of population, community, evolutionary and ecosystem ecology. Focus on theory in interaction with experimental and empirical work, and covers current topics at the interface between community and ecosystem ecology.
Terms: Winter 2011
Instructors: Michel Loreau (Winter)
Winter
1.5 hours lecture, 1.5 hours seminar
Prerequisite: BIOL 434 or permission of instructor.
Biology (Sci) : Evolutionary ecology is the study of evolutionary change in natural populations. General predictive approaches in evolutionary ecology, including population genetics, quantitative genetics, optimality, and game theory will be examined. Emphasis will be placed on the mathematical underpinnings of each approach, particularly as they relate to classic and contemporary problems.
Terms: This course is not scheduled for the 2010-2011 academic year.
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
At least 16 credits selected as follows:
Biology (Sci) : Introduction to basic principles, and to modern advances, problems and applications in the genetics of higher and lower organisms with examples representative of the biological sciences.
Terms: Winter 2011, Summer 2011
Instructors: Daniel J Schoen, Mario Chevrette, Tamara Western (Winter) David Dankort, Tamara Western (Summer)
Biology (Sci) : An introduction to laboratory techniques with a focus on methods used to investigate fundamental questions in modern cell and molecular biology. Techniques including gene cloning, DNA and protein isolation and manipulation are covered, along with functional analysis of genes and proteins, basic bioinformatics, and computer-based experimental design and data analysis.
Terms: Fall 2010, Winter 2011
Instructors: Nam Sung Moon, Paul Harrison, Huanquan Zheng (Fall) Nam Sung Moon, Paul Harrison, Huanquan Zheng (Winter)
Fall or Winter
1 hour lecture and one 6-hour laboratory
Prerequisites: PHYS 102 or PHYS 142, BIOL 200, BIOL 201 or ANAT/BIOC 212, and BIOL 202. BIOL 206 recommended.
Restrictions: Not open to students who have taken or are taking BIOC 300. Requires departmental approval.
For approval email anne-marie [dot] sdicu [at] mcgill [dot] ca. Specify your ID number as well as the term and lab day.
At least 9 credits selected from:
Bioinformatics : Bioinformatics methods and reasoning in relation to genomics, proteomics and metabolomics strategies with an emphasis on functional genomics data. The course will cover introduction to UNIX, Perl programming, data processing and integration, file parsing, relational database design and implementation, angled towards solutions relevant for genomics.
Terms: This course is not scheduled for the 2010-2011 academic year.
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Prerequisite: Understanding of cell and molecular biology (equivalent to a cell or molecular biology course) or permission from instructor.
Biology (Sci) : Conserved processes in Eukaryotic organisms, including the cytoskeleton, the cell cycle, complex traits/disease, global analysis/bioinformatics, and innovative studies/techniques in cell biology.
Terms: Winter 2011
Instructors: Gary Brouhard, Jacalyn Vogel (Winter)
Winter
2 hours seminar
Prerequisite: BIOL 313 and permission
Biology (Sci) : The influence of developmental mechanisms on evolution. This course draws on recent examples from plants and invertebrate and vertebrate animals. Topics include homology, modularity, dissociation, co-option, evolutionary novelty, evolution of cis-regulation and gene regulatory networks, developmental constraint and evolvability, heterochrony, phenotypic plasticity, and canalization.
Terms: This course is not scheduled for the 2010-2011 academic year.
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Biology (Sci) : Evolutionary change in DNA and proteins and its implications for cellular, organismal, and population/species evolution.
Terms: This course is not scheduled for the 2010-2011 academic year.
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Fall
3 hours lecture/seminar
Prerequisite: BIOL 300
Biology (Sci) : 'Post-genomic' bioinformatics. Concepts behind large-scale computational analysis and comparison of genomes/proteomes (and beyond), and the implications for our understanding of the basic processes of molecular and cell biology and the evolution of those processes.
Terms: This course is not scheduled for the 2010-2011 academic year.
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
At least 15 credits selected as follows:
Biology (Sci) : Neural mechanisms of animal behaviour; neuroethology; cellular neurophysiology, integrative networks within nervous systems; neural control of movement; processing of sensory information.
Terms: Fall 2010
Instructors: Gerald Pollack, Joseph Alan Dent (Fall)
At least 12 credits selected from:
Biology (Sci) : Methods of neurobiological research, including extracellular and intracellular recordings, electrical stimulation, and the study of neuro-behavioural problems.
Terms: Winter 2011
Instructors: Gerald Pollack, Louis St-Amant, Joseph Alan Dent (Winter)
Physiology : In depth presentation of experimental results and hypotheses underlying our current understanding of how single neurons and ensembles of neurons encode sensory information, generate movement, and control cognitive functions such as emotion, learning, and memory, during voluntary behaviours.
Terms: Fall 2010
Instructors: Douglas Watt, Julio Martinez Trujillo, Melissa Vollrath (Fall)
Fall
3 hours of lectures per week
Prerequisites: PHGY 209
Physiology : An introduction to quantitative analysis of physiological data, both to the mode of thinking and to a set of tools that allows accurate predictions of biological systems. Examples will range from oscillating genetic networks to understanding higher brain function. Modelling and data analysis through examples and exercises will be emphasized.
Terms: Fall 2010
Instructors: Erik Cook, Mladen I Glavinovic, Maurice Chacron (Fall)
Psychology : A systematic examination of the sensorimotor system, drawing on models and data from both behavioural and physiological studies. Topics include: cortical motor areas, cerebellum, basal ganglia, spinal mechanisms, motor unit properties and force production, prioception, muscle properties.
Terms: Winter 2011
Instructors: David J Ostry (Winter)
Winter
2 lectures
Prerequisite: PSYC 308 or permission of instructor
For the remaining BINF, BIOL, NEUR, PHGY, PSYC complementary course credits, if any, students top up their credits to the necessary 21 with any course listed in the above streams in Biology or any other course in Biology with the approval of the program coordinator.