2010-2011
Students entering the Core Science Component in Mathematics are normally expected to have completed the courses below or their equivalents. Otherwise, they will be required to make up any deficiencies in these courses over and above the 45 credits required for the program.
Mathematics & Statistics (Sci) : Systems of linear equations, matrices, inverses, determinants; geometric vectors in three dimensions, dot product, cross product, lines and planes; introduction to vector spaces, linear dependence and independence, bases; quadratic loci in two and three dimensions.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Djivede Kelome, William J Anderson, James G Loveys, Shahab Shahabi, Adam Clay (Fall) Djivede Kelome, William J Anderson (Winter) Karol Palka (Summer)
Prerequisite: a course in functions
Restriction: Not open to students who have taken MATH 221 or CEGEP objective 00UQ or equivalent.
Restriction Note B: Not open to students who have taken or are taking MATH 123, MATH 130 or MATH 131, except by permission of the Department of Mathematics and Statistics.
Mathematics & Statistics (Sci) : Review of functions and graphs. Limits, continuity, derivative. Differentiation of elementary functions. Antidifferentiation. Applications.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Stephen W Drury, Sidney Trudeau, Shahab Shahabi (Fall) Axel W Hundemer (Winter)
3 hours lecture, 1 hour tutorial
Prerequisite: High School Calculus
Restriction: Not open to students who have taken MATH 120, MATH 139 or CEGEP objective 00UN or equivalent
Restriction: Not open to students who have taken or are taking MATH 122 or MATH 130 or MATH 131, except by permission of the Department of Mathematics and Statistics
Each Tutorial section is enrolment limited
Mathematics & Statistics (Sci) : The definite integral. Techniques of integration. Applications. Introduction to sequences and series.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Sidney Trudeau (Fall) Neville G F Sancho, Stephen W Drury, Sidney Trudeau (Winter)
Restriction: Not open to students who have taken MATH 121 or CEGEP objective 00UP or equivalent
Restriction Note B: Not open to students who have taken or are taking MATH 122 or MATH 130 or MATH 131, except by permission of the Department of Mathematics and Statistics.
Each Tutorial section is enrolment limited
The following informal guidelines should be discussed with the student's adviser. Where appropriate, Honours courses may be substituted for equivalent Major courses. Students planning to pursue graduate studies are encouraged to make such substitutions.
Students interested in computer science are advised to choose courses from the following: MATH 317, MATH 318, MATH 327, MATH 328, MATH 335, MATH 340, MATH 407, MATH 417 and to complete the Computer Science Minor.
Students interested in probability and statistics are advised to take MATH 204, MATH 324, MATH 407, MATH 423, MATH 447, MATH 523, MATH 525.
Students interested in applied mathematics should take MATH 317, MATH 319, MATH 324, MATH 326, MATH 327, MATH 407, MATH 417.
Students considering a career in secondary school teaching are advised to take MATH 318, MATH 328, MATH 338, MATH 339, MATH 346, MATH 348.
Students interested in careers in business, industry or government are advised to select courses from the following list:
MATH 317, MATH 319, MATH 327, MATH 329, MATH 407, MATH 417, MATH 423, MATH 430, MATH 447, MATH 523, MATH 525.
* Students may select either MATH 249 or MATH 316 but not both.
** Students who have successfully completed a course equivalent to MATH 222 with a grade of C or better may omit MATH 222, but must replace it with three credits of elective courses.
Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Wilbur Jonsson, Neville G F Sancho (Fall) Wilbur Jonsson (Winter)
Mathematics & Statistics (Sci) : Sets, functions and relations. Methods of proof. Complex numbers. Divisibility theory for integers and modular arithmetic. Divisibility theory for polynomials. Rings, ideals and quotient rings. Fields and construction of fields from polynomial rings. Groups, subgroups and cosets; group actions on sets.
Terms: Fall 2010
Instructors: Heekyoung Hahn (Fall)
Fall
3 hours lecture; 1 hour tutorial
Prerequisite: MATH 133 or equivalent
Mathematics & Statistics (Sci) : Linear equations over a field. Introduction to vector spaces. Linear mappings. Matrix representation of linear mappings. Determinants. Eigenvectors and eigenvalues. Diagonalizable operators. Cayley-Hamilton theorem. Bilinear and quadratic forms. Inner product spaces, orthogonal diagonalization of symmetric matrices. Canonical forms.
Terms: Winter 2011
Instructors: Heekyoung Hahn (Winter)
Winter
Prerequisite: MATH 235
Mathematics & Statistics (Sci) : A rigorous presentation of sequences and of real numbers and basic properties of continuous and differentiable functions on the real line.
Terms: Fall 2010
Instructors: Reem Adel Yassawi (Fall)
Fall
Prerequisite: MATH 141
Mathematics & Statistics (Sci) : Infinite series; series of functions; power series. The Riemann integral in one variable. A rigorous development of the elementary functions.
Terms: Winter 2011
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Winter
Prerequisite: MATH 242
Mathematics & Statistics (Sci) : Functions of a complex variable; Cauchy-Riemann equations; Cauchy's theorem and consequences. Taylor and Laurent expansions. Residue calculus; evaluation of real integrals; integral representation of special functions; the complex inversion integral. Conformal mapping; Schwarz-Christoffel transformation; Poisson's integral formulas; applications.
Terms: Winter 2011
Instructors: Robert Seiringer (Winter)
Mathematics & Statistics (Sci) : Derivative as a matrix. Chain rule. Implicit functions. Constrained maxima and minima. Jacobians. Multiple integration. Line and surface integrals. Theorems of Green, Stokes and Gauss.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Wilbur Jonsson (Fall) Wilbur Jonsson (Winter) Charles Roth (Summer)
Mathematics & Statistics (Sci) : First order ordinary differential equations including elementary numerical methods. Linear differential equations. Laplace transforms. Series solutions.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Neville G F Sancho (Fall) Jian-Jun Xu (Winter)
Mathematics & Statistics (Sci) : Algebra of complex numbers, Cauchy-Riemann equations, complex integral, Cauchy's theorems. Taylor and Laurent series, residue theory and applications.
Terms: Fall 2010
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Mathematics & Statistics (Sci) : Sample space, events, conditional probability, independence of events, Bayes' Theorem. Basic combinatorial probability, random variables, discrete and continuous univariate and multivariate distributions. Independence of random variables. Inequalities, weak law of large numbers, central limit theorem.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: William J Anderson (Fall) Vahid Partovi Nia (Winter)
18 credits selected from the following list, with at least 6 credits selected from:
Mathematics & Statistics (Sci) : Error analysis. Numerical solutions of equations by iteration. Interpolation. Numerical differentiation and integration. Introduction to numerical solutions of differential equations.
Terms: Fall 2010
Instructors: Peter Bartello (Fall)
Mathematics & Statistics (Sci) : Sampling distributions, point and interval estimation, hypothesis testing, analysis of variance, contingency tables, nonparametric inference, regression, Bayesian inference.
Terms: Fall 2010, Winter 2011
Instructors: Masoud Asgharian-Dastenaei (Fall) William J Anderson (Winter)
Fall and Winter
Prerequisite: MATH 323 or equivalent
Restriction: Not open to students who have taken or are taking MATH 357
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.
Mathematics & Statistics (Sci) : Computational aspects of modern algebra. Computing in groups: algorithms, algorithmic problems in groups, finitely generated abelian groups, free groups and automata, finitely presented groups. Computing in rings: elementary notions of ring theory, ideals of polynomial rings in several variables, Groebner bases, elements of field theory.
Terms: This course is not scheduled for the 2010-2011 academic year.
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Mathematics & Statistics (Sci) : Review of mathematical writing, proof techniques, graph theory and counting. Mathematical logic. Graph connectivity, planar graphs and colouring. Probability and graphs. Introductory group theory, isomorphisms and automorphisms of graphs. Enumeration and listing.
Terms: Winter 2011
Instructors: Adrian Roshan Vetta (Winter)
the remainder of the 18 credits to be selected from:
Mathematics & Statistics (Sci) : The concept of degrees of freedom and the analysis of variability. Planning of experiments. Experimental designs. Polynomial and multiple regressions. Statistical computer packages (no previous computing experience is needed). General statistical procedures requiring few assumptions about the probability model.
Terms: Winter 2011
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Winter
Prerequisite: MATH 203 or equivalent. No calculus prerequisites
Restriction: This course is intended for students in all disciplines. For extensive course restrictions covering statistics courses see Section 3.6.1 of the Arts and of the Science sections of the calendar regarding course overlaps.
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.
Mathematics & Statistics (Sci) : Propositional calculus, truth-tables, switching circuits, natural deduction, first order predicate calculus, axiomatic theories, set theory.
Terms: Fall 2010
Instructors: James G Loveys (Fall)
Fall
Restriction: Not open to students who are taking or have taken PHIL 210
Mathematics & Statistics (Sci) : First order equations, geometric theory; second order equations, classification; Laplace, wave and heat equations, Sturm-Liouville theory, Fourier series, boundary and initial value problems.
Terms: Winter 2011
Instructors: Gantumur Tsogtgerel (Winter)
Mathematics & Statistics (Sci) : Review of Euclidean geometry. Local theory of plane and space curves: the Frenet formulas. Local theory of surfaces: the first and second fundamental forms, the shape operator, the mean and Gaussian curvatures, surfaces of revolution with prescribed curvature, ruled and developable surfaces. Geodesic curves on surfaces of revolution. The Gauss-Codazzi equations, rigidity.
Terms: This course is not scheduled for the 2010-2011 academic year.
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Mathematics & Statistics (Sci) : Linear systems of differential equations, linear stability theory. Nonlinear systems: existence and uniqueness, numerical methods, one and two dimensional flows, phase space, limit cycles, Poincare-Bendixson theorem, bifurcations, Hopf bifurcation, the Lorenz equations and chaos.
Terms: Fall 2010
Instructors: Antony Raymond Humphries (Fall)
Mathematics & Statistics (Sci) : An overview of numerical methods for linear algebra applications and their analysis. Problem classes include linear systems, least squares problems and eigenvalue problems.
Terms: Winter 2011
Instructors: Antony Raymond Humphries (Winter)
Mathematics & Statistics (Sci) : Calculability on an infinite abacus is compared with recursive functions and Turing machines. Categorial, context-free, generative and transformational grammars are studied for formal and natural languages, with some emphasis on English and French morphology. Machines for generating and recognizing sentences are discussed.
Terms: This course is not scheduled for the 2010-2011 academic year.
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Winter
Mathematics & Statistics (Sci) : Simple and compound interest, annuities certain, amortization schedules, bonds, depreciation.
Terms: Winter 2011
Instructors: Neville G F Sancho (Winter)
Winter
Prerequisite: MATH 141
Mathematics & Statistics (Sci) : Egyptian, Babylonian, Greek, Indian and Arab contributions to mathematics are studied together with some modern developments they give rise to, for example, the problem of trisecting the angle. European mathematics from the Renaissance to the 18th century is discussed in some detail.
Terms: Fall 2010
Instructors: Niky Kamran (Fall)
Fall
Mathematics & Statistics (Sci) : A continuation of MATH 338. Topics are chosen mainly from 19th and 20th century mathematics, with some emphasis on philosophical and foundational problems. Sample topics are: progress in number theory, construction of the number system, infinity according to Cantor, logic and foundations from Aristotle to Cohen, Gödel's incompleteness theorem, calculability and programs, formalism versus intuitionism, abstract mathematics and categories.
Terms: This course is not scheduled for the 2010-2011 academic year.
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Mathematics & Statistics (Sci) : Divisibility. Congruences. Quadratic reciprocity. Diophantine equations. Arithmetical functions.
Terms: Winter 2011
Instructors: Henri Darmon (Winter)
Mathematics & Statistics (Sci) : Selected topics - the particular selection may vary from year to year. Topics include: isometries in the plane, symmetry groups of frieze and ornamental patterns, equidecomposibility, non-Euclidean geometry and problems in discrete geometry.
Terms: Summer 2011
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Prerequisite: MATH 133 or equivalent or permission of instructor.
Mathematics & Statistics (Sci) : Seminar in Mathematical Problem Solving. The problems considered will be of the type that occur in the Putnam competition and in other similar mathematical competitions.
Terms: Fall 2010
Instructors: James G Loveys (Fall)
Prerequisite: Enrolment in a math related program or permission of the instructor. Requires departmental approval.
Prerequisite: Enrolment in a math related program or permission of the instructor.
Mathematics & Statistics (Sci) : Sequential decision problems, resource allocation, transportation problems, equipment replacement, integer programming, network analysis, inventory systems, project scheduling, queuing theory calculus of variations, markovian decision processes, stochastic path problems, reliability, discrete and continuous control processes.
Terms: This course is not scheduled for the 2010-2011 academic year.
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Mathematics & Statistics (Sci) : A supervised project.
Terms: Fall 2010, Winter 2011
Instructors: Axel W Hundemer, Djivede Kelome (Fall) Djivede Kelome (Winter)
Prerequisite: Students must have 21 completed credits of the required mathematics courses in their program, including all required 200 level mathematics courses.
Requires departmental approval.
Mathematics & Statistics (Sci) : An introductory course in optimization by linear algebra, and calculus methods. Linear programming (convex polyhedra, simplex method, duality, multi-criteria problems), integer programming, and some topics in nonlinear programming (convex functions, optimality conditions, numerical methods). Representative applications to various disciplines.
Terms: This course is not scheduled for the 2010-2011 academic year.
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Mathematics & Statistics (Sci) : Least-squares estimators and their properties. Analysis of variance. Linear models with general covariance. Multivariate normal and chi-squared distributions; quadratic forms. General linear hypothesis: F-test and t-test. Prediction and confidence intervals. Transformations and residual plot. Balanced designs.
Terms: Fall 2010
Instructors: Abbas Khalili Mahmoudabadi (Fall)
Mathematics & Statistics (Sci) : Introduction to concepts of price and hedge derivative securities. The following concepts will be studied in both concrete and continuous time: filtrations, martingales, the change of measure technique, hedging, pricing, absence of arbitrage opportunities and the Fundamental Theorem of Asset Pricing.
Terms: This course is not scheduled for the 2010-2011 academic year.
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Mathematics & Statistics (Sci) : Conditional probability and conditional expectation, generating functions. Branching processes and random walk. Markov chains, transition matrices, classification of states, ergodic theorem, examples. Birth and death processes, queueing theory.
Terms: Winter 2011
Instructors: Dana Louis Addario-Berry (Winter)
Mathematics & Statistics (Sci) : Modern discrete data analysis. Exponential families, orthogonality, link functions. Inference and model selection using analysis of deviance. Shrinkage (Bayesian, frequentist viewpoints). Smoothing. Residuals. Quasi-likelihood. Sliced inverse regression. Contingency tables: logistic regression, log-linear models. Censored data. Applications to current problems in medicine, biological and physical sciences. GLIM, S, software.
Terms: Winter 2011
Instructors: David Stephens (Winter)
Mathematics & Statistics (Sci) : Distribution free procedures for 2-sample problem: Wilcoxon rank sum, Siegel-Tukey, Smirnov tests. Shift model: power and estimation. Single sample procedures: Sign, Wilcoxon signed rank tests. Nonparametric ANOVA: Kruskal-Wallis, Friedman tests. Association: Spearman's rank correlation, Kendall's tau. Goodness of fit: Pearson's chi-square, likelihood ratio, Kolmogorov-Smirnov tests. Statistical software packages used.
Terms: Fall 2010
Instructors: Christian Genest (Fall)
Mathematics & Statistics (Sci) : Simple random sampling, domains, ratio and regression estimators, superpopulation models, stratified sampling, optimal stratification, cluster sampling, sampling with unequal probabilities, multistage sampling, complex surveys, nonresponse.
Terms: This course is not scheduled for the 2010-2011 academic year.
Instructors: There are no professors associated with this course for the 2010-2011 academic year.