1 The Faculty

1.1 Location
Macdonald Engineering Building
817 Sherbrooke Street West
Montreal, QC H3A 2K6
Canada
Website: www.mcgill.ca/engineering
Faculty of Engineering Student Affairs Office: Macdonald Engineering Building, Room 378
Telephone: (514) 398-7257

1.2 Administrative Officers
John E. Gruzeliski; B.Sc., M.Sc.(Queen's), Ph.D.(Tor.), Eng. Dean
Jim Nicoll; B.A.Sc., M.A.Sc., Ph.D.(Windsor), P. Eng. Associate Dean (Student Affairs)
David L. Frost; B.A.Sc.(U.B.C.), M.S., Ph.D.(Caltech), P.Eng. Associate Dean (Academic)
Juan H. Vera; B.Mat.(Chile), Ing.Quim.(U.T.E.), M.S. (Berkeley), Dr.Ing.(Santa Maria), Ing. Associate Dean (Research)
David Covo; B.Sc.(Arch.), B.Arch.(McG.), M.R.A.I.C., O.A.Q. Director, School of Architecture
David F. Brown; B.A.(Bishop's), M.U.P.(McG.), Ph.D. (Sheffield) Director, School of Urban Planning
Richard J. Munz; B.A.Sc., M.A.Sc.(Wat.), Ph.D.(McG.), Eng. Chair, Department of Chemical Engineering
Denis Mitchell; B.A.Sc., M.A.Sc., Ph.D.(Tor.), F.A.C.I., Eng. Chair, Department of Civil Engineering and Applied Mechanics
David A. Lowther; B.Sc.(London), Ph.D.(C.N.A.A.), P.Eng. Chair, Department of Electrical and Computer Engineering
Arun K. Misra; B.Tech.(I.I.T., Kharagpur), Ph.D.(U.B.C.), P. Eng. Chair, Department of Mechanical Engineering
Robin A.L. Drew; B.Tech.(Bradford), Ph.D.(Newcastle) Chair, Department of Mining, Metals and Materials Engineering
Jonathan Rousham Building Administrator
Steve Yue; B.Sc., Ph.D.(Leeds) Secretary of Faculty
Ida Godefroy Assistant to the Dean
Judy Pharo Faculty Student Advisor
Nancy Czemmel Records Student Affairs Officer
Debbie Morzajew Manager, EMF
Suse Vodopivec Banner SIS Trainer

1.3 Historical Note
The Faculty of Engineering began in 1871 as the Department of Practical and Applied Science in the Faculty of Arts with degree programs in Civil Engineering and Surveying, Mining Engineering and Assaying, and Practical Chemistry. Diploma courses had been offered from 1859, and by 1871 the staff and enrolments had increased sufficiently to justify
the creation of the Department. Continued growth led to the formation of the Faculty of Applied Science in 1878. By 1910 there were ten degree programs offered, including Architecture and Railroad Engineering. Subsequent changes in the overall pattern of the University led to the creation of the Faculty of Engineering in 1931 with a departmental structure very similar in name to that which exists at present.

1.4 The Faculty Today

The Faculty currently includes five engineering departments and two schools:

The Departments

- Chemical Engineering
- Civil Engineering and Applied Mechanics
- Electrical and Computer Engineering
- Mechanical Engineering
- Mining, Metals and Materials Engineering

The Schools

- Architecture
- Urban Planning

The Faculty serves approximately 2300 undergraduate students and 700 graduate students in a wide variety of academic programs. Undergraduate programs leading to professional bachelor degrees are offered in all Engineering Departments. These programs are designed to qualify the graduates for immediate employment in a wide range of industries and for membership in the appropriate professional bodies. Additionally, a non-professional undergraduate degree is offered in the School of Architecture for those who plan to work in related fields not requiring professional qualification. The curricula are structured to provide suitable preparation for those who plan to continue their education in post-graduate studies either at McGill or elsewhere. The professional degrees in Architecture and Urban Planning are offered at the Master’s level and are described in the Graduate and Postdoctoral Studies Calendar.

The academic programs are divided into required and complementary sections. The required courses emphasize those basic principles which permit graduates to keep abreast of progress in technology throughout their careers. Exposure to current technology is provided by the wide variety of complementary courses which allow students to pursue in depth a particular interest. For program details refer to section 4 “Academic Programs”. An internship program involving a paid 8- to 16-month industrial work experience is available to Engineering and Science students. Generally students will enter the internship program before starting their final year of undergraduate studies. Details can be found in section 2.9 “IYES: Internship Year for Engineering and Science”. In addition, CO-OP programs are offered in Mining Engineering and in Metals and Materials Engineering.

Post-graduate programs leading to Master’s and Doctoral degrees are offered in all sectors of the Faculty. Numerous areas of specialization are available in each of the departments and schools. All post-graduate programs including the professional degree programs in Architecture and in Urban Planning are described in the Graduate and Postdoctoral Studies Calendar.

1.5 Special Facilities and Related Programs

1.5.1 Engineering Microcomputing Facility

In addition to the services provided by the Computing Center, the Faculty, in conjunction with its departments and schools, maintains specialized computing and information resources in support of teaching and research. These vary from desktop PCs distributed throughout the Engineering complex to very high performance scientific workstations found in the research laboratories. Each unit organizes and maintains facilities that are designed around specific roles, e.g. CAD/CAM, microelectronic design, software engineering, circuit simulation, process control, polymers, structural mechanics, metal processing, etc., in addition to systems dedicated to administrative support.

The role of the Faculty is to provide access to computing resources on a 24-hour basis and to provide services that are not covered by individual units. The Faculty works in close cooperation with the McGill Computing Centre which provides remote access to the Faculty network.

1.5.2 Agricultural and Biosystems Engineering

The Faculty of Engineering cooperates with the Faculty of Agricultural and Environmental Sciences in providing courses of instruction for a curriculum in agricultural and biosystems engineering to meet requirements for a professional degree awarded in the Faculty of Agricultural and Environmental Sciences. The second term of the penultimate year of the program is given by the Faculty of Engineering on the Downtown Campus. Details of the curriculum can be found under the Department of Agricultural and Biosystems Engineering, see page 306.

Some of the courses offered by the Department of Agricultural and Biosystems Engineering (Subject Code ABEN) may be of interest to students in the Faculty of Engineering.

1.5.3 Department of Biomedical Engineering

Lyman Duff Medical Sciences Building
3775 University Street
Montreal, QC H3A 2B4

Telephone: (514) 398-8278

Engineering undergraduates who are interested in the biomedical applications of engineering techniques should contact the Chair of their department or the graduate Chair of Biomedical Engineering. Some of the courses offered by the Department (Subject Code BMDE) may be of interest to Engineering students, and may be approved as complementary courses. A partial list follows (see the Graduate and Postdoctoral Studies Calendar, accessible at www.mcgill.ca, for others):

- BMDE 501 Selected Topics in Biomedical Engineering
- BMED 503 Biomedical Instrumentation
- BMED 519 Biomedical Signals and Systems.

1.6 Library Facilities

2 General Information

2.1 Admission Requirements

The Faculty of Engineering offers programs leading to the degrees of B.Eng. and B.Sc.(Arch.). Enrolment in some programs is limited.

Specific information on admissions requirements for Quebec students, students from provinces of Canada other than Quebec, and applicants from outside of Canada can be found in “Admission Requirements” on page 13.

2.2 Exchange Programs

The Faculty of Engineering participates in a number of exchange programs that provide undergraduates with an opportunity to study at Ecole Polytechnique and other Quebec universities, and at selected colleges and universities in the United States, Mexico and Europe. Applicants must have completed at least one year of study and have maintained an average of 3.00 or better. Further information may be obtained from the Faculty of Engineering Student Affairs Office, or the Exchange Officer, Admissions, Recruitment and Registrar’s Office.
2.3 Transfer Credits
In certain cases, credit may be granted for courses passed with a grade of C or better at other universities, up to a maximum of 45 credits for Engineering and 42 credits for Architecture. For further information, please see ‘Transfer Credits’ on page 34.

2.4 Advanced Credit Examinations
Prior to their first registration, the Faculty of Engineering offers the opportunity for students entering the Faculty from a Quebec CEGEP program to receive advanced credit in MATH 260 Intermediate Calculus upon successful completion of the Advanced Credit Examination. The examination covers material that has a similarity to the syllabus of the CEGEP Calculus III course. For specific date(s) and time(s) of the examination, please refer to the Faculty of Engineering Website at www.mcgill.ca/engineering.

In all engineering programs, students who are successful in the MATH 260 Intermediate Calculus examination will automatically have the number of credits required for the completion of their program reduced by three.

2.5 Registration
Students who are currently registered and intend to return to the same degree program in the following academic session are required to register following procedures outlined in this Calendar, see ‘Registration’ on page 27. It is mandatory for all returning students to see a Departmental Academic Advisor in their Department for course confirmation during the first two weeks of the fall term and, if changes are being made, during the first two weeks of the winter term.

Information regarding course registration is sent to new students at the time of admission. All new students must see a Departmental Academic Advisor during the advising period.

2.5.1 Registration for Continuing Education Courses
Students wishing to take a course(s) via the Centre of Continuing Education for credit must register through the Student Affairs Office. A complete Course Authorization Form will be required. Students must refer to the Centre of Continuing Education Calendar and Timetable for course information and deadlines. For further information, contact the Student Affairs Office.

2.5.2 Course Withdrawal
Students may withdraw from a course without academic penalty provided they do so within the appropriate deadlines of the term. Beyond this time their names will appear on the mark reports and, in the event that they do not take the examination, they will be given a J grade.

2.6 Advising
All students are required to seek academic advising about their programs from the Department in which they study. Additional information may be obtained by calling:

- General Information (514) 398-7257
- Architecture (514) 398-6702
- Chemical Engineering (514) 398-4494
- Civil Engineering (514) 398-6860
- Electrical and Computer Engineering (514) 398-7344
- Mechanical Engineering (514) 398-8070
- Metals and Materials Engineering (514) 398-4755 ext. 4365
- Mining Engineering (514) 398-4755 ext. 0573
- Urban Planning (514) 398-4075

2.7 Student Activities
The campus offers a wide variety of extra-curricular activities for students. All are encouraged to participate. Many of these are organized within the Faculty under the auspices of the Engineering Undergraduate Society (EUS), or the Architectural Student Association (ASA). Both of these organizations publish handbooks describing their operations and the activities of various Faculty clubs and societies. All undergraduate students automatically become members of the EUS or the ASA, as appropriate.

2.8 Scholarships and Bursaries
Scholarships, bursaries and loans are open to students in the Faculty of Engineering. Students should consult the Undergraduate Scholarships and Awards Calendar available on the Web at www.mcgill.ca or from the Admissions, Recruitment and Registrar’s Office. Specific information concerning these awards may be obtained from the Faculty Student Advisor, Faculty of Engineering Student Affairs Office.

2.9 IYES: Internship Year for Engineering and Science
Employers value experience. The IYES Program allows students to gain professional work experience during the course of their undergraduate studies while at the same time earning a salary within the average range of those for entry-level professional positions. Other benefits include:

- improved chance of obtaining a job upon graduation and at a higher starting salary;
- the opportunity to test a choice of career and assess the pertinence of post-graduate study before making a long-term commitment;
- the opportunity to develop communication skills and to acquire a business perspective that cannot be learned in school and is unlikely to be gained from a summer job.

Employment through the IYES Program typically begins in January or May and continues for 8, 12 or 16 months, including a 4-month probationary training period. Employers choose the most suitable students for their organization through the application, interview and ranking process. While employed by the participating companies, students work on assignments related to their field of study. Students switch to the Internship Program from the regular program when they accept an Internship placement. Successful completion of an 8 to 16-month internship will qualify the student to graduate with the Internship Program designation, which will be noted on the student's permanent record.

STUDENT ELIGIBILITY
All students participating in this program must:

- have a good academic record (satisfactory standing),
- be registered full time in their program,
- have between 15 and 45 credits remaining to complete their undergraduate studies in the following areas of Engineering or Science:
 - Atmospheric Science
 - Biotechnology
 - Chemical Engineering
 - Chemistry
 - Civil Engineering
 - Computer Engineering
 - Computer Science
 - Electrical Engineering
 - Environmental Studies
 - Mathematics and Statistics
 - Mechanical Engineering
 - Physics

- remain a degree candidate while on internship,
- return to complete studies at McGill (internship students will receive an automatic extension for the completion of their studies). Students are not allowed to complete their undergraduate degree during the internship period.

In addition, it is recommended that the student be able to demonstrate strong leadership and communication skills.

COST

- There is no application fee.
- Every student hired through the Program will be assessed a fee of $800. Students will be billed this amount approximately one month after starting their internship.
- Participating companies are invited to match the student's contribution in the form of a tax deductible donation to IYES.

Further information can be obtained from the Internet www.mecc.mcgill.ca or by sending an e-mail to info@mecc.mcgill.ca.
2.10 Calculators in Faculty Tests and Examinations

The use of calculators during tests and examinations is at the discretion of the course instructor. If a calculator is permitted in the examination, the Faculty requires that the students use a Faculty Standard Calculator, i.e., the CASIO fx-991 or the Sharp EL-566L, R, V(VB) and G only. These calculators are non-programmable, inexpensive, available through local dealers, e.g., EUS General Store in McConnell Engineering Building, and have many features of interest to Engineering students. Any model fx-991 or EL-546 is acceptable, regardless of the letter suffix which appears after the model number. All Engineering students are expected to own one of the two Faculty Standard Calculators.

3 Academic Requirements

3.1 Degree Requirements

In order to obtain a Bachelor's degree, students must complete one of the departmental programs described in section 4 “Academic Programs”.

3.1.1 Entrance Requirements

The degree programs in the Faculty of Engineering are designed for students who have completed a general and basic science program. This basic science requirement consists of two terms of calculus, chemistry, physics, one term of vectors, matrices and analytical geometry and one term of humanities or social sciences. Students entering the Faculty of Engineering from Quebec complete these courses at the CEGEP and enter a seven-term program.

Students entering from outside Quebec with a high school diploma generally enter an eight-term program and complete the basic science requirements at McGill.

Students who have completed Advanced Placement Exams, Advanced Levels, the International Baccalaureate, the French Baccalaureate, or McGill placement and/or advanced credit examinations may receive exemptions and/or credits for all or part of the basic science requirements. Similarly, students who have completed courses at other universities or colleges may receive exemptions and/or credits.

3.1.2 Basic Science Requirements for Students Entering from Outside Quebec

Generally, students admitted to Engineering from outside Quebec are required to complete the basic science requirements outlined below, in addition to the departmental programs described in section 4 “Academic Programs”.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 110</td>
<td>4</td>
<td>General Chemistry 1</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>4</td>
<td>General Chemistry 2</td>
</tr>
<tr>
<td>MATH 140</td>
<td>3</td>
<td>Calculus 1</td>
</tr>
<tr>
<td>or MATH 139</td>
<td>4</td>
<td>Calculus 1</td>
</tr>
<tr>
<td>or MATH 150</td>
<td>4</td>
<td>Calculus A</td>
</tr>
<tr>
<td>MATH 141</td>
<td>4</td>
<td>Calculus 2</td>
</tr>
<tr>
<td>or MATH 151</td>
<td>4</td>
<td>Calculus B</td>
</tr>
<tr>
<td>MATH 133</td>
<td>3</td>
<td>Vectors, Matrices and Geometry</td>
</tr>
<tr>
<td>PHYS 131</td>
<td>4</td>
<td>Mechanics and Waves</td>
</tr>
<tr>
<td>PHYS 142</td>
<td>4</td>
<td>Electromagnetism and Optics</td>
</tr>
</tbody>
</table>

Calculus courses MATH 150/MATH 151 are designed for students who have completed a course in high school calculus. Students who complete the Calculus sequence MATH 150/ MATH 151 will receive exemption with credit from MATH 260 (Intermediate Calculus), in the regular Engineering program.

In the event that the student has some prior calculus, but is not sufficiently confident to proceed with MATH 150/MATH 151, the appropriate sequence is MATH 140/MATH 141.

If a student has no previous calculus exposure, MATH 150/ MATH 151 may be replaced with MATH 139/MATH 141.

Students who are uncertain as to which calculus course sequence is appropriate for them should contact Ms. Pharo, Faculty Student Advisor in the Faculty of Engineering Student Affairs Office (514) 398-7256.

Students who successfully complete one, or more, McGill Placement Tests will obtain credit for the equivalent(s), i.e., CHEM 110, CHEM 120, MATH 140, MATH 141, MATH 133, PHYS 131, PHYS 142. Details are provided on the Faculty Website at www.mcgill.ca/engineering.

Students entering with advanced standing credits (Advanced Placements, Advanced Levels, International Baccalaureate examinations, McGill Placement Tests) are required to meet with the Faculty Student Advisor, Faculty of Engineering Student Affairs Office, to finalize their program of studies. (This must be done prior to meeting with the Departmental Advisor.) An information session will be held prior to the advising sessions to process these advanced credits. Information is available on the Faculty Website at www.mcgill.ca/engineering.

3.1.3 Architecture – Basic Science Requirements for Students Entering from Outside Quebec

Generally, students admitted to Architecture from outside Quebec are required to complete the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 110</td>
<td>4</td>
<td>General Chemistry 1</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>4</td>
<td>General Chemistry 2</td>
</tr>
<tr>
<td>MATH 139</td>
<td>4</td>
<td>Calculus 1</td>
</tr>
<tr>
<td>or MATH 140</td>
<td>3</td>
<td>Calculus 1</td>
</tr>
<tr>
<td>MATH 141</td>
<td>4</td>
<td>Calculus 2</td>
</tr>
<tr>
<td>MATH 133</td>
<td>3</td>
<td>Vectors, Matrices and Geometry</td>
</tr>
<tr>
<td>PHYS 131</td>
<td>4</td>
<td>Mechanics and Waves</td>
</tr>
<tr>
<td>PHYS 142</td>
<td>4</td>
<td>Electromagnetism and Optics</td>
</tr>
</tbody>
</table>

Students may write McGill Placement Tests to obtain credit for CHEM 110, CHEM 120, MATH 140, MATH 141, MATH 133, PHYS 131 and PHYS 142, in the event that they have studied similar material previously. Details on the advanced placement examinations are provided in Welcome to McGill. Information is also available on the Faculty Website at www.mcgill.ca/engineering.

3.2 Degrees and Requirements for Professional Registration

Non-Professional:

Bachelor of Science (Architecture)

The first professional degree in architecture is the Master of Architecture I. The description of the M.Arch. I program can be found in the Graduate and Postdoctoral Studies Calendar.

Professional:

Bachelor of Engineering
Bachelor of Engineering (Honours)
Bachelor of Software Engineering

The B.Eng. programs are accredited by the Accreditation Board of the Canadian Council of Professional Engineers and fulfill the academic requirements for admission to the provincial engineering professional organizations. All students are encouraged to seek professional registration after graduation. To become a Professional Engineer, a graduate must pass an examination on legal aspects as well as on the principles of professional practice, and acquire two to four years of engineering experience, depending on the province. Only persons duly registered may use the title of “engineer” and perform the professional activities reserved for engineers by the provincial laws and regulations.

Graduates of the Bachelor of Software Engineering program should be eligible for accreditation (once accreditation standards for Software Engineers have been adopted).

In Quebec, the professional engineering body is the Ordre des ingénieurs du Québec (OIQ). In order to better prepare new graduates for the practice of their profession, McGill organizes seminars in cooperation with the OIQ on various aspects of the profession. The OIQ also has a student section. As soon as students have accumulated 60 credits in a B.Eng. Program, they can join the Student Section of the OIQ. Registration is free.
3.3 Prerequisites and/or Corequisites

Prerequisites and/or corequisites must be completed prior to course registration, if applicable. If a student has registered for a course and did not satisfy the prerequisites and/or corequisites, the course may be dropped from his/her record by the Faculty. Written notification will be forwarded to the student and he/she will be permitted to revise his/her course selection.

Those students who have received advance credits/exemptions or passed a placement exam, and are blocked from registration into a course due to a prerequisite and/or corequisite block, must complete a Course Authorization Form and submit it to the Faculty of Engineering Student Affairs Office. A Departmental advisor must sign and make a notation on the Course Authorization Form indicating that the prerequisite and/or corequisite has been satisfied.

Further information may be obtained from the Faculty of Engineering Student Affairs Office, Macdonald Engineering Building, Room 378.

3.4 Complementary Studies

Engineering students must complete 6 credits of additional complementary courses as follows:

(i) One 3-credit course on the impact of technology on society.

(ii) One 3-credit course in the humanities and social sciences, administrative studies and law.

The three credits under (i) are to be chosen from the following list of courses which relate to the impact of technology on society.

- CHEE 230 Environmental Aspects of Technology
- CHEE 430 Technology Impact Assessment
- CIVE 469 Infrastructure and Society
- ECON 225 Economics of the Environment
- ENV 201 Society and Environment
- GEOG 200 Geographical Perspectives: World Environmental Problems
- GEOG 203 Environmental Systems
- GEOG 205 Global Change: Past, Present and Future
- GEOG 302 Environmental Management 1
- MIME 308 Social Impact of Technology
- PHIL 343 Biomedical Ethics
- SOCI 235 Technology and Society
- SOCI 312 Industrial Sociology

The course(s) under (ii) are to be chosen from:

A. Humanities and Social Sciences

Any course at the 200 level or above from the departments of:
- Anthropology (Subject Code ANTH)
- Economics (any 200 or 300 level course excluding ECON 208, ECON 217, ECON 227, ECON 259 and ECON 337)
- History (Subject Code HIST)
- Philosophy (excluding PHIL 210)
- Political Science (Subject Code POLI)
- Psychology (excluding PSYC 204, PSYC 305 and PSYC 435 but including PSYC 100)
- Religious Studies (Subject Code RELG)
- School of Social Work (Subject Code SWRK)
- Sociology (excluding SOCI 350) or ARCH 350 The Material Culture of Canada or ENVR 203 Knowledge, Ethics and Environment or ENVR 400 Environmental Thought or MATH 338 History and Philosophy of Mathematics

3.5 Student Progress

The B.Eng. programs may be completed in seven terms. The B.Sc.(Arch.) program may be completed in six or eight terms, depending upon point of entry.

A student must successfully complete the B.Eng. or B.Sc.(Arch.) programs within six years of entry. Candidates admitted to a lengthened program, or to a shortened program because of advanced standing, or who are participating in the IYES program, will have a correspondingly greater or lesser period in which to complete their program. Extensions may be granted by the Committee on Standing in cases of serious medical problems or where other similarly uncontrollable factors have affected a student's progress.

3.5.1 Letter Grades

In the Faculty of Engineering, letter grades are assigned according to the grading scheme adopted by the professor in charge of a particular course. They have the designations:

A, A-, B+, B, B-, C+, C, C-, D, D+, D, F Failed T Credit by examination only

Grades A, B and C indicate satisfactory results. Grade D indicates marginal results which may be acceptable for peripheral courses but not for core courses required by the program. The classification of a course as core or peripheral depends on the individual student's program and will be decided by the department concerned. Grade F is a permanent grade indicating unsatisfactory results. Grade J indicates an unexcused failure to submit assignments or an unexcused absence from an examination. It is equivalent to an F grade.

3.5.2 Incomplete Course Deadlines

Those students with a K grade (incomplete), MUST complete the course within three (3) months, after which the student will be given a grade of KF (incomplete/failed). The deadline for Fall term courses is March 31st (January 15th for Winter graduation); for Winter term courses it is August 15th (May 15th for Spring graduation) and for Summer term courses it is December 1st (October 1st for Fall graduation). If the student is unable to complete the course within the given deadlines, a request for an extension must be forwarded to the Associate Dean (Student Affairs). An extension has already been permitted, the Faculty will make the necessary corrections.

3.5.3 Satisfactory/Unsatisfactory Option

The Satisfactory/Unsatisfactory Option (S/U) may be used for elective courses only.
Students must specify courses as S/U at the time of registration. The option will not be added manually to a student’s record after the Drop/Add deadline or once a mark has been submitted by the Faculty. Once a mark has been submitted, this option will not be reversed.

1. “Elective” refers to that category of the complementary studies component of the program involving a Social Science/Humanities course, or a course dealing with the impact of technology on society; or to elective courses taken outside the School of Architecture by architecture students. It does not apply to the “technical complementaries” or “architectural complementaries”, or to any other category of the Engineering or Architecture programs.

2. A C grade is considered a pass under the University Satisfactory/Unsatisfactory option. (Students should note that the Faculty of Engineering accepts a D grade as a pass when courses eligible for the S/U option are taken in the conventional manner.)

3. Only students in satisfactory standing will be permitted to take a course under the Satisfactory/Unsatisfactory option. Only one course (3 credits) per term, to a maximum of 10% of a student’s credits taken at McGill may be taken this way. Grades will be reported in the normal fashion by the instructor and the grades of C and above will be converted to Satisfactory (S) and grades of D and F will be converted to Unsatisfactory (U).

4. The courses taken under this option will be excluded from the GPA, but will be included in the number of credits.

Note: To be considered for scholarships/renewal of awards, students must complete at least 27 credits in the regular academic session exclusive of courses completed under this option.

3.5.4 Course Credits

The credit assigned to a particular course reflects the amount of effort it demands of the student. One credit normally represents three hours total work per week. This is, in general, a combination of lecture hours and other contact hours such as laboratory periods, tutorials and problem periods as well as personal study hours. As a guide, the average division of time for a course is indicated in hours in the course listing after the course credit. For example, (3) (3-0-6) indicates a three-credit course consisting of three lecture hours per week, no other contact hours and six hours of personal study per week.

3.5.5 Grade Point Averages and Extra Courses

The Faculty calculates a term grade point average (TGPA). Any courses taken which lie outside the program are classified as extra, are indicated by an “X” on transcripts and do not affect the grade point average. Students must receive departmental approval for such courses, and the course must be identified and recorded prior to writing the final examination.

3.5.6 Academic Standing Decisions

In the Faculty of Engineering, a decision on the student’s academic standing is based on the CGPA (Cumulative Grade Point Average) according to the criteria listed below.

- Satisfactory standing - CGPA equal to 2.00 or greater.
- Probationary standing - CGPA less than or equal to 1.99 or equal to or greater than 1.20.
- Unsatisfactory standing - CGPA less than 1.20 (if this is the student’s first term, the student is normally readmitted to Probationary Standing by Faculty decision).

Note: The Faculty makes academic standing decisions after the completion of each term (Fall, Winter, Summer) based on academic results to-date. Thus, if a student has been granted permission to defer one or more examinations, the standing decision will be made regardless of such deferrals. Please see below for further information about academic standing decisions.

Satisfactory Standing

Students in satisfactory standing may proceed, with the following conditions:

- All core courses in which D or F grades were obtained must either be repeated successfully (grade C or better) or be replaced by an alternative approved course which is completed successfully.
- All other courses in which F grades were obtained must either be repeated successfully at some point before graduation or be replaced by some alternative approved course which is completed successfully before graduation.
- Students in poor academic standing are strongly urged to contact the Student Affairs Office to discuss their situation. Office staff are available to help guide students and to provide useful advice to help students achieve their goals. Helpful workshops are provided by Student Services, e.g., study skills, stress management, test anxiety. Students who are experiencing difficulties are encouraged to explore these avenues.

Probationary Standing

Students placed on Probationary Standing may proceed with their studies under the following conditions.

- Students must reduce their credit load to a maximum of 13 credits per term and must achieve at the end of the term either a CGPA of 2.00 or better, or a term GPA (TGPA) of 2.50 or better in order to continue.
- A student whose TGPA is 2.50 or better, but whose CGPA is less than 2.00, may continue on with his/her studies but will remain on Probationary Standing.
- Failure to achieve either the TGPA or CGPA requirements noted above will result in the student being placed on “Unsatisfactory Standing” (see below). Students will remain on probationary standing until they achieve a CGPA equal to or exceeding 2.00, at which time their standing will be changed to “satisfactory”.
- Students placed on Probationary Standing who need to reduce their credit load but are unable to drop course(s) must complete a Course Authorization Form and submit it to the Student Affairs Office. The course(s) will then be deleted manually from the student’s record.

Unsatisfactory Standing

Students who have been placed on Unsatisfactory Standing will be asked to withdraw from the Faculty of Engineering for a minimum of one term. Courses for which the student is currently registered will be deleted automatically from the student’s record by the Faculty.

After a minimum of one term away, the student can apply for readmission. A request for readmission must be made in writing in a letter addressed to the Associate Dean, Student Affairs in the Student Affairs Office. If readmitted, the student will be placed back on Probationary Standing. Students will remain on probationary standing until they achieve a CGPA greater or equal to 2.00, at which time their standing will be changed to “satisfactory”.

While on probation during that term and subsequent terms, the student must reduce his/her credit load to a maximum of 13 credits per term, and must meet or exceed the minimum TGPA specified by the department or a CGPA greater or equal to 2.00. The minimum TGPA requirement for each department is as follows:

- Department of Chemical Engineering: TGPA greater than or equal to 2.50
- Department of Civil Engineering and Applied Mechanics: TGPA greater than or equal to 2.50
- Department of Electrical and Computer Engineering: TGPA greater than or equal to 3.00
- Department of Mechanical Engineering: TGPA greater than or equal to 2.50
- Department of Mining, Metals and Materials Engineering: TGPA greater than or equal to 2.50
- School of Architecture: TGPA greater than or equal to 2.50

Students who fail to achieve the minimum TGPA required by their department will be required to permanently withdraw from the pro-
3.5.7 Repeated Courses
Students who fail to achieve the required results in a course must either repeat it successfully or complete a substitute course approved by their department. For students who fail prerequisite courses which are offered only in the Fall or Winter, the department responsible may, in appropriate cases, arrange “reading courses” during the other term or during the Summer months. Such courses taken during a Fall or Winter term constitute a normal part of the candidate’s work load. If the student is on probation, these courses must be included in the workload reduction.

3.5.8 Reassessment and Reread of a Grade
In accordance with the Charter of Student Rights, and subject to the conditions stated therein, students have the right to consult any written submission for which they have received a mark and the right to discuss this submission with the examiner. If, after discussion with the instructor, a student decides to request a formal reread of a final exam, the student must apply in writing, complete the Reread form and submit it to the Faculty of Engineering Student Affairs Office.

The following conditions apply:
- requests for rereads in more than one course per term will not be accepted, unless permission is given by the Faculty of Engineering;
- grades may be either raised or lowered as the result of a reread;
- rereads in courses not in the Faculty of Engineering are subject to the deadlines, rules and regulations of the relevant faculty;
- any request to have term work re-evaluated must be made directly to the instructor concerned.

The deadlines to make an application for a formal reread of a final exam are:
- the last working day of March for fall courses,
- the last working day of July for winter courses, and
- the last working day of November for summer courses.

A $35 fee for each reread will be assessed directly to the student’s McGill account if the result remains the same or is lowered. If the grade is increased, no charge is made.

For further information, students may consult the Faculty of Engineering Student Affairs Office.

3.5.9 Examination Regulations
For information regarding examination regulations and procedures in the Faculty of Engineering, please refer to the Engineering Website at www.mcgill.ca/engineering.

3.5.10 Supplemental Examinations
Courses administered by the Faculty of Engineering do not have supplemental examinations; however, Engineering students may be eligible to write supplemental examinations in courses administered by the Faculties of Arts and Science (typically Humanities and Social Science courses and freshman (U0) courses).

The following conditions apply:
- students must be in satisfactory or probationary standing; those with an unsatisfactory standing are not permitted to write supplements;
- students are permitted to write a supplemental for courses in which they have received a mark of D, F, J or U;
- students must write the supplemental at the time of the next supplemental examination period;
- special permission of the Associate Dean (Student Affairs), Engineering, is required if a student wishes to write supplemental exams totaling more than seven (7) credits.
- only one supplemental examination is allowed in a course;
- the supplemental result may or may not include the same proportion of class work as did the original grade. The instructor will announce the arrangements to be used for the course by the end of the course change period;
- the supplemental result will not erase the grade originally obtained; both the original mark and the supplemental result will be calculated in the CGPA;
- additional credit will not be given for a supplemental exam where the original grade for the course was a D and the student already received credit for the course.

The supplemental examination period for Fall courses is during the months of April and May, and for Winter courses and courses spanning Fall/Winter during the last week of August. It is the student’s responsibility to find out the date and time of the supplemental exam. Supplemental exam applications are available from the Faculty of Engineering Student Affairs Office. Alternatively, students may print out the Supplemental Examination Request Form from the Faculty Website and return it by mail or submit it to the Student Affairs Office.

The deadline for submission of applications is March 1st for Fall courses and July 15th for Winter courses and courses spanning Fall/Winter courses.

There is a $35 non-refundable fee per each supplemental exam, which is charged directly to the student’s McGill student account.

Students should consult the Faculty of Engineering Student Affairs Office for more information.

3.5.11 Deferred Examinations
Students who have missed a final examination due to illness or family affliction, must submit the following documentation to the Faculty of Engineering Student Affairs Office, Room 378 Macdonald Building:
- an original medical certificate or other documentation that covers the date of the missed examination, and the nature and duration of the illness;
- a completed Deferral Request Form;
- a detailed letter justifying the request for a deferral.

Students must also attest that they have completed all course work up-to-date, which will be verified with the instructor(s). The Student Affairs Office must be informed of the reasons for absences from final examination no later than one week after the date of the final examination that was missed.

A student’s signature on the Deferral Request form will allow the Faculty to verify the authenticity of the medical certificate and the nature of the illness, or any other documentation provided. If the form is not signed, it will result in the assignment of a ‘J’ grade in the course.

If a student becomes ill during a formal examination, he/she must inform the invigilator as soon as possible. If necessary, the student will be escorted to the Health Services. As stated above, the student must return to the Faculty of Engineering Student Affairs Office with medical certification within one week of the exam. IMPORTANT: If a student completes the exam in routine fashion, the grade received CANNOT be changed.

Students are advised that deferrals are granted ONLY for compelling reasons. If the request for deferral is denied by the Associate Dean (Student Affairs) the student will receive a ‘J’ grade (absent) in the course. For the purpose of calculating GPAs and CGPAs, the grade of a ‘J’ is treated as an ‘F’ (failed, 0%). Students will be contacted regarding the approval of a deferral initially via e-mail approximately two weeks after the end of examination period. A formal letter will be mailed at a later date.

Students granted a deferral will be given an “L” grade which will be replaced by a “J” should the students miss the next deferred or regular examination in the course, whichever occurs first. Students are to ONLY write the final examination but NOT re-do or re-submit course material. If they wish to resubmit assignments and/or rewrite quizzes, class tests and/or midterms, they must appeal to the Associate Dean, Student Affairs.
4 Academic Programs

The curricula described in the following pages, and the courses listed under Faculty of Engineering, see page 437, have been approved for the 2003-04 session, but the Faculty reserves the right to introduce changes as may be deemed necessary or desirable.

4.1 School of Architecture

Macdonald-Harrington Building, Room 201
815 Sherbrooke Street West
Montreal, QC H3A 2K6
Telephone: (514) 398-6700
Fax: (514) 398-7372
Website: www.mcgill.ca/architecture

Director — David Covo

Emeritus Professor

Professors

Bruce Anderson; B.Arch.(McG.), M.Arch.(Harv.), F.R.A.I.C., O.A.Q.
Vikram Bhatt; N.Dipl.Arch.(Ahmedabad), M.Arch.(McG.), M.R.A.I.C.
Derek Drummond; B.Arch.(McG.), F.R.A.I.C., O.A.A. (William C. Macdonald Professor of Architecture)
Avi Friedman; B.Arch.(Technion), M.Arch.(McG.), Ph.D.(Montr.), O.A.Q., I.A.A.
Alberto Pérez-Gómez; Dipl.Eng.(Nat.Pol.Inst.Mexico), M.A., Ph.D.(Essex) (Sadie Rosner Bronfman Professor of Architectural History)
Adrian Sheppard; B.Arch.(McG.), M.Arch.(Yale), F.R.A.I.C., O.A.Q., A.A.P.P.Q.

Associate Professors

Annmarie Adams; B.A.(McG.), M.Arch., Ph.D.(Bekeley), M.R.A.I.C. (William Dawson Scholar)
Martin Bressani; B.Sc.(Arch.), B.Arch.(McG.), M.Sc.Arch., Diplomes des études approfondies, Docteur de l’Universtité de Paris-Sorbonne(Paris IV)
Ricardo Castro; B.Arch.(Los Andes), M.Arch., M.A.(Art History) (Ore.), M.R.A.I.C.
David Covo; B.Sc.(Arch.), B.Arch.(McG.), F.R.A.I.C., O.A.Q.
Robert Mellin; B.Arch., M.Sc.(Arch.)(Penn State), M.Arch.(McG.), M.Sc., Ph.D.(U.Penn.), M.R.A.I.C., N.A.A.
Pieter Sijpkes; B.Sc.(Arch.), B.Arch.(McG.)

Course Lecturers

Manon Asselin, Patrice Bégin, Jean D’Aragon, Maxime Gagné, Simon Jones, Richard Klop, Marie-Paule MacDonald, David Theodore, Lise Tremblay, Roland Uffig

Adjunct Professors

Research Associates

Jim Donaldson, Rafik Salama

Associate Members

Clarence Epstein, Tania Martin, Irena Murray, Howard Schubert

Visiting Critics and Lecturers

Each year visitors are involved in the teaching of certain courses as lecturers and critics. These visitors change from year to year; in 2002, they were:

Chuck Adler, Gavin Affleck, Gilles Arpin, Dino Barbarese, Barry Bell, Myriam Blais, Sheryl Boyle, Louis Brilliant, Peter Busby, Ravof Butros, Yvan Cabanaz, Gregory Caicco, Mario Carpo, Lily Chi, Denis Claremont, Jimalae Dakin, Luis de Miguel, José Di Bona, Josée Dionne, Julie Dionne, François Dufaux, Miguel Escobar, Marc Feuteux, Marla Franco, Stanislaus Fung, Ronald Gagnon, Alex Grabowski, Thomas Green, Katja Maria Grillner, Bobo Hamilton, Nora Hanessian, Jacques Herzog, Mitch Hill, Robert Kastelic, Ben Katchor, Donald Kunze, Catherine Lapierre, Irena Latek, Jean-Guy Lecat, Catherine LeGrand, Frank McMahon, Vouli Mamfredis, Eric Marosi, Brian Massumi, Nadia Meratli, André Meunier, Josette Michaud, Katsu Muramoto, Fred Ohmicien, Juhani Pallasmaa, Steve Parcell, Alina Payne, Daniel Pearl, Christie Pearson, Mark Pimlott, François Racine, Susan Ross, John Schweitzer, Jean-Pierre Smith, Laurent Stalder, Sudhir Suri, Sheila Theophanides, Nicole Valois, Fred Weiser, Andrea Wolff, Katherine Young.

ARCHITECTURAL CERTIFICATION IN CANADA

In Canada, all provincial associations recommend a degree from an accredited professional degree program as a prerequisite for licensure. The Canadian Architectural Certification Board (CACB), which is the sole agency authorized to accredit Canadian professional degree programs in architecture, recognizes two types of accredited degrees: the Bachelor of Architecture and the Master of Architecture. A program may be granted a five-year, three-year, or two-year term of accreditation, depending on its degree of conformance with established educational standards.

Masters degree programs may consist of a pre-professional undergraduate degree and a professional graduate degree, which, when earned sequentially, comprise an accredited professional education. However, the pre-professional degree is not, by itself, recognized as an accredited degree.

Since all provincial associations in Canada recommend any applicant for licensure to have graduated from a CACB-accredited program, obtaining such a degree is an essential aspect of preparing for the professional practice of architecture. While graduation from a CACB-accredited program does not assure registration, the accrediting process is intended to verify that each accredited program substantially meets those standards that, as a whole, comprise an appropriate education for an architect.

PROGRAMS OF STUDY

McGill’s professional program in architecture is structured as a four and a half year, or nine term, course of study divided into two parts.
The first part, for students entering with the Diploma of Collegial Studies in Pure and Applied Science or the equivalent, is a six-term design program leading to a non-professional degree, Bachelor of Science (Architecture). [Most students from outside Quebec are admitted to an eight-term B.Sc.(Arch.) program and enter a first year which includes courses outlined in section 3.1.3 “Architecture – Basic Science Requirements for Students Entering from Outside Quebec.”]

The second part, for students with the B.Sc.(Arch.) degree, is a one and a half year, or three-term, program leading to the professional Master of Architecture degree. The professional M.Arch. I degree is accredited by the Canadian Architectural Certification Board (CACB), and is recognized as accredited by the National Council of Architectural Registration Boards (NCARB) in the USA. Students in the B.Sc.(Arch.) program who intend to proceed to the professional degree must satisfy certain minimum requirements including:

1. complete the B.Sc.(Arch.) degree, including the series of required and complementary courses stipulated for professional studies, with a minimum CGPA of 3.00;
2. submit a portfolio of work executed in the sequence of six design studios, as well as samples of professional and personal work;
3. complete the minimum period of relevant work experience according to the current Work Experience Guidelines.

Further information on the professional M.Arch. I program is available on the Web at www.mcgill.ca/architecture.

Student Exchanges
A limited number of qualified students may participate in an exchange with Schools of Architecture at other universities which have agreements with the McGill School of Architecture, for a maximum of one term in the second year of the B.Sc.(Arch.) program. These include: Facultad de Arquitectura, Universidad de Los Andes, Bogotá, Colombia; Istituto Universitario di Architettura di Venezia, Venice, Italy; Fakultät für Raumplanung und Architektur, Technische Universität Wien, Vienna, Austria; The Technion - Israel Institute of Technology, Haifa, Israel; Institut Supérieur d'Architecture, Saint-Luc Bruxelles, Brussels, Belgium; École d'architecture de Grenoble, Grenoble, France; École d'architecture Clermont-Ferrand, Clermont-Ferrand, France.

ANCILLARY ACADEMIC FACILITIES
Laboratories and Workshops
Architectural Workshops – David Speller, Technician.
Communications Laboratory, including Photo Lab – Professor Ricardo Castro.
Computers in Architecture Laboratory and the Apple Design and Modeling Centre – Professors Robert Mellin and Richard Russell.
Building Science Resource Centre – Professor Ricardo Castro.

Library

Collections
Visual Resources Collection, including slides, film, video and other materials – Dr. Amnari Adams.
Canadian Architecture Collection, housed in the Blackader-Lauterman Library – Irena Murray.
Orson Wheeler Architectural Model Collection – Professor Pieter Sijpkes.
Materials Resource Centre – Dr. Avi Friedman.

CURRICULUM FOR THE B.Sc.(Arch.) DEGREE
[Program revisions are under consideration for September 2003. Go to www.mcgill.ca (Course Calendars) in July for details.]

REQUIRED COURSES
Non-Departmental Subjects
CIVE 205 Statics 3
CIVE 283 Strength of Materials 4
CIVE 385* Structural Steel and Timber Design 3
CIVE 388* Foundations and Concrete Design 3
CIVE 492* Structures 2
FACC 220 Law for Architects and Engineers 3
MIME 310 Engineering Economy 3 21

* Candidates intending not to proceed to the M.Arch. I degree may substitute other courses of equal total weight for any of these.

Architectural Subjects
ARCH 201 Communication, Behaviour and Architecture 6
ARCH 202 Architectural Graphics and Design 6
ARCH 217 Freehand Drawing 1 1
ARCH 218 Freehand Drawing 2 1
ARCH 240 Organization of Materials in Building 3
ARCH 250 Architectural History 1 3
ARCH 251 Architectural History 2 3
ARCH 303 Design and Construction 1 6
ARCH 304 Design and Construction 2 6
ARCH 321 Freehand Drawing 3 1
ARCH 322 Freehand Drawing 4 1
ARCH 324 Sketching School 1 1
ARCH 375 Landscape 2
ARCH 405 Design and Construction 3 6
ARCH 406 Design and Construction 4 6
ARCH 447 Electrical Services 2
ARCH 451 Building Regulations and Safety 2 56

COMPLEMENTARY COURSES 12
Students must complete 12 credits of architectural complementaries which must include at least one course from each of the areas of concentration listed below in order to qualify for the B.Sc.(Arch.) degree.

A. History
ARCH 372
ARCH 379
ARCH 388
ARCH 522
ARCH 523
ARCH 528
ARCH 531
ARCH 532
ARCH 533

B. Theory
ARCH 358
ARCH 376
ARCH 384
ARCH 526
ARCH 529
ARCH 544
ARCH 545
ARCH 534
ARCH 535

C. Environmental
ARCH 375
ARCH 388
ARCH 522
ARCH 528
ARCH 531
ARCH 532
ARCH 533

D. Technics
ARCH 379
ARCH 376
ARCH 384
ARCH 526
ARCH 529
ARCH 544
ARCH 545
ARCH 534
ARCH 535

ENGINEERING – ARCHITECTURE
COURSE
CREDIT

MIME 310 Engineering Economy 3 21
CIVE 283 Strength of Materials 4
CIVE 385* Structural Steel and Timber Design 3
CIVE 388* Foundations and Concrete Design 3
CIVE 492* Structures 2
FACC 220 Law for Architects and Engineers 3
MIME 310 Engineering Economy 3 21

OUTSIDE ELECTIVES 6
6 credits must be completed outside the School of Architecture, subject to approval by the Student Advisor.

TOTAL CREDITS 95

Architectural Complementaries
ARCH 252 (3) Introduction to Architectural History 1
ARCH 253 (3) Introduction to Architectural History 2
ARCH 318 (3) Design Sketching
ARCH 319 (3) The Camera and Perception
ARCH 350 (3) The Material Culture of Canada
ARCH 352 (3) Art and Theory of House Design
ARCH 364 (2) Architectural Modeling
ARCH 372 (2) History of Architecture in Canada
ARCH 377 (2) Energy, Environment and Buildings
ARCH 378 (3) Site Usage
ARCH 379 (4) Summer Course Abroad
ARCH 383 (3) Geometry/Architecture/Environment

McGill University, Undergraduate Programs 2003-2004
The central purpose of engineering is to pursue solutions to technological problems in order to satisfy the needs and desires of society. Chemical engineers are trained to solve the kinds of problems that are typically found in the "chemical process industries", which include the chemical manufacturing, plastics, water treatment, pulp and paper, petroleum refining, ceramics, and paint industries as well as substantial portions of the food processing, textile, nuclear energy, biochemical and pharmaceutical industries. The technological problems and opportunities in these industries are often closely linked to social, economic and environmental concerns. For this reason, practitioners of chemical engineering often deal with these questions when they are working in management, pollution abatement, product development, marketing and equipment design.

The discipline of chemical engineering is distinctive in being based equally on physics, mathematics and chemistry. Application of these three fundamental sciences is basic to a quantitative understanding of the process industries. Those with an interest in the fourth major science, biology, will find several courses in the chemical engineering curriculum which integrate aspects of the biological sciences relevant to process industries such as food processing, fermentation and water pollution control. Courses on the technical operations and economics of the process industries are added to this foundation. The core curriculum concludes with process design courses taught by practicing design engineers. Problem-solving, experimenting, planning and communication skills are emphasized in courses throughout the core curriculum.

By means of complementary courses, students can also obtain further depth in technical areas and breadth in non-technical subjects. Some students elect to complete a minor in biotechnology, management, materials engineering, computer science, environmental engineering or chemistry.

The solution to many environmental problems requires an understanding of technological principles. A chemical engineering degree provides an ideal background. In addition to relevant material learned in the core program, a selection of environmental complementary courses and minor programs is available. The involvement of many chemical engineering staff members in environmental research provides the opportunity for undergraduate students to carry out research projects in this area.

By means of complementary courses, students can also obtain further depth in technical areas and breadth in non-technical subjects. Some students elect to complete a minor in biotechnology, management, materials engineering, computer science, environmental engineering or chemistry.

The curriculum also provides the preparation necessary to undertake postgraduate studies leading to the M.Eng. or Ph.D. degrees in chemical engineering. Students completing this curriculum acquire a broad, balanced education in the natural sciences with the accent on application. Thus, for those who do not continue in chemical engineering, it provides an exceptionally balanced education in applied science. For others, it will form the basis of an educational program that may continue with a variety of studies such as business administration, medicine or law. Versatility is, then, one of the most valuable characteristics of the graduate of the chemical engineering program.

ACADEMIC PROGRAM

For those who have completed the Quebec CEGEP level program in Pure and Applied Sciences, the Chemical Engineering Program comprises 111 credits as outlined below. Certain students who take advantage of summer session courses can complete the departmental programs in three calendar years. Students who have passed Chemistry 202 or 302 at the CEGEP level may be exempt from course CHEM 212 or CHEM 234, respectively (Introductory Organic Chemistry 1 and Selected Topics in Organic Chemistry), the corresponding courses are transferred from required courses to electives.

For appropriately qualified high school graduates from outside Quebec, an extended credit program is available, as described in section 3.1.2 Basic Science Requirements for Students Entering from Outside Quebec. In some cases students from university science disciplines have sufficient credits to complete the requirements for the B.Eng. (Chemical) program in two years. Those concerned should discuss this with their advisor.

Students must obtain a C grade or better in all core courses. For the Department of Chemical Engineering, core courses include all...
required courses (departmental and non-departmental) as well as complementary courses (departmental). A grade of “D” is a passing grade in other complementary courses and in any elective courses taken.

CURRICULUM FOR THE B.ENG. DEGREE IN CHEMICAL ENGINEERING

REQUIRED COURSES

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 212 Introductory Organic Chemistry 1</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 233 Topics in Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 234 Topics in Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>COMP 208 Computers in Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MATH 260 Intermediate Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 261 Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 265 Advanced Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MIME 221 Engineering Professional Practice</td>
<td>2</td>
</tr>
<tr>
<td>MIME 310 Engineering Economy</td>
<td>3 27</td>
</tr>
</tbody>
</table>

CHEMICAL ENGINEERING COURSES

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEE 200 Introduction to Chemical Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CHEE 204 Chemical Manufacturing Processes</td>
<td>3</td>
</tr>
<tr>
<td>CHEE 220 Chemical EngineeringThermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>CHEE 291 Instrumental Measurements Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHEE 314 Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>CHEE 315 Heat and Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td>CHEE 340 Process Modelling</td>
<td>3</td>
</tr>
<tr>
<td>CHEE 351 Separation Processes</td>
<td>3</td>
</tr>
<tr>
<td>CHEE 360 Technical Paper 1</td>
<td>1</td>
</tr>
<tr>
<td>CHEE 370 Elements of Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>CHEE 380 Materials Science</td>
<td>3</td>
</tr>
<tr>
<td>CHEE 392 Project Laboratory 1</td>
<td>4</td>
</tr>
<tr>
<td>CHEE 393 Project Laboratory 2</td>
<td>5</td>
</tr>
<tr>
<td>CHEE 423 Chemical Reaction Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CHEE 453 Process Design</td>
<td>4</td>
</tr>
<tr>
<td>CHEE 455 Process Control</td>
<td>4</td>
</tr>
<tr>
<td>CHEE 456 Design Project 1</td>
<td>1</td>
</tr>
<tr>
<td>CHEE 457 Design Project 2</td>
<td>5</td>
</tr>
<tr>
<td>CHEE 462 Technical Paper 2</td>
<td>1</td>
</tr>
<tr>
<td>CHEE 474 Biochemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHEE 484 Materials Engineering</td>
<td>3 69</td>
</tr>
</tbody>
</table>

COMPLEMENTARY COURSES

Courses to be selected from those approved by the Department (see list of technical complementaries below). Two courses (6 credits), selected from an approved list: one course on the impact of technology on society and one in the humanities and social sciences, administrative studies and law. See section 3.4 “Complementary Studies” for further information.

TOTAL

111

For students starting their B.Eng. studies in September who have completed the Quebec Diploma of Collegial Studies, a program for the first two terms of study is given below:

Term 1

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEE 200 Introduction to Chemical Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CHEE 291 Instrumental Measurement Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 212 Introductory Organic Chemistry 1</td>
<td>4</td>
</tr>
<tr>
<td>MATH 260 Intermediate Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MIME 221 Engineering Professional Practice</td>
<td>2</td>
</tr>
</tbody>
</table>

Term 2

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEE 204 Chemical Manufacturing Processes</td>
<td>3</td>
</tr>
<tr>
<td>CHEE 220 Chemical EngineeringThermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 234 Topics in Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>COMP 208 Computers in Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MATH 261 Differential Equations</td>
<td>3 15</td>
</tr>
</tbody>
</table>

Students entering their second year of study or who are starting in January must plan their program of studies in consultation with their departmental advisor.

Additional information can be found on the Faculty Website at www.mcgill.ca/engineering, as well as in section 3.1.2 “Basic Science Requirements for Students Entering from Outside Quebec”.

TECHNICAL COMPLEMENTARIES

A minimum of 9 credits of complementary courses must be chosen from a list of technical complementaries approved by the Department. The purpose of this requirement is to provide students with an area of specialization within the broad field of chemical engineering. Alternatively, some students use the technical complementaries to increase the breadth of their chemical engineering training.

At least two (2) technical complementary courses are to be selected from courses approved by the Department (list below). Permission is given to take the third complementary course from other suitable undergraduate courses in the Faculty of Engineering.

The Technical Complementary courses currently approved by the Department are as follows:

- BIOT 505 Selected Topics in Biotechnology (Biotechnology Minor students only)
- CHEE 363 Projects Chemical Engineering 1
- CHEE 438 Engineering Principles in Pulp and Paper Processes
- CHEE 452, Particulate Systems
- CHEE 458 Computer Applications
- CHEE 464 Projects in Chemical Engineering 2
- CHEE 471 Industrial Water Pollution Control (or CIVE 430)
- CHEE 472 Industrial Air Pollution Control (or MECH 534)
- CHEE 481 Polymer Engineering
- CHEE 487 Chemical Processing Electronics Industry
- CHEE 494 Research Project and Seminar
- CHEE 495 Research Project and Seminar
- CHEE 571 Small Computer Applications: Chemical Engineering
- CHEE 581 Polymer Composites Engineering

Courses CHEE 481 and CHEE 581 comprise a Polymeric Materials sequence. Additional courses in this area are available in the Chemistry Department (e.g., CHEM 455) or at the graduate level (CHEE 681 to CHEE 684). The Department has considerable expertise in the polymer area.

Courses CHEE 370 and CHEE 474 make up a sequence in biochemical engineering-biotechnology. Students interested in this area may take additional courses, particularly those offered by the Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, and courses in biochemistry and microbiology. The food, beverage and pharmaceutical industries are large industries in the Montreal area and these courses are relevant to these industries and to the new high technology applications of biotechnology.

The third area in which there is a sequence of courses is pollution control. The Department offers two courses in this area: CHEE 471 and CHEE 472. As some water pollution control problems are solved by microbial processes, course CHEE 474 is also relevant to the pollution control area. Likewise as the solution to pollution problems frequently involves removal of particulate matter from gaseous or liquid streams, course CHEE 452 is also relevant. Additional courses in this area are listed under section 5.7 “Environmental Engineering Minor”.

A Minor in Biotechnology is also offered in the Faculties of Engineering and of Science with emphasis on Molecular Biology and Chemical Engineering Processes. A full description of the program appears in section 5.2 “Biotechnology Minor”.

Note that many of the technical complementaries are offered only in alternate years. Students should, therefore, plan their complementaries as far ahead as possible. With the approval of the instructor and academic advisor, students may also take graduate (CHEE 500- level) courses as technical complementaries.

ELECTIVE COURSES

Students who have obtained exemptions for courses, i.e., for CEGEP courses equivalent to CHEM 212 or CHEM 234, or who take more than the minimum requirements for the degree, may
choose university-level courses in any field. Approval of an elective course requires only that no timetable conflicts are created and that it not be a repetition of material already covered in the curriculum or already mastered by the student.

CURRICULUM COMMITTEE

The Curriculum Committee is composed of three students, elected by their classes, and two staff members. This Committee provides a forum for all matters involving undergraduate student/staff interactions. While the primary concern is with matters of curriculum and courses (their content, evaluation, scheduling, etc.), the Committee has also taken up a number of other matters in recent years, e.g., working space, facilities (equipment and libraries), etc.

CANADIAN SOCIETY FOR CHEMICAL ENGINEERING

The Chemical Engineering Student Society has for many years been affiliated both with the CSChE (Canadian Society for Chemical Engineering) and with the AIChE (American Institute of Chemical Engineers). For a nominal fee students receive Canadian Chemical News, a monthly publication, and the AIChE Student Members Newsletter as well as other privileges of student membership in the two societies. The student chapter also organizes a series of local social, educational and sporting events. For example, recent events have included student-professor banquets and Christmas parties, dances, speakers, broomball games and joint meetings with the Montreal Section of the CSChE. The latter gives students a chance to mix with practising chemical engineers.

4.3 Department of Civil Engineering and Applied Mechanics

Macdonald Engineering Building, Room 492
817 Sherbrooke Street West
Montreal, QC H3A 2K6
Telephone: (514) 398-6860
Fax: (514) 398-7361
Website: www.mcgill.ca/civil

Chair — Denis Mitchell

Emeritus Professors
Stuart B. Savage; B.Eng.(McG.), M.S.Eng.(Cal.Tech.), Ph.D.(McG.), F.R.S.C.

Professors
Vincent H. Chu; B.S.Eng.(Taiwan), M.A.Sc.(Tor.), Ph.D.(M.I.T.), Eng.
Suresh C. Shrivastava; B.Sc.(Eng.) (Vikram), M.C.E.(Del.), Sc.D.(Col.), Eng.

Associate Professors
Ronald Gehr; B.Sc.(Eng.)(Rand), M.A.Sc., Ph.D.(Tor.), P.Eng.
James Nicell; B.A.Sc., M.A.Sc., Ph.D.(Windsor), P.Eng. (William Dawson Scholar)
Yixin Shao; B.S., M.S.(Tongji), Ph.D.(Northwestern)

Assistant Professors
Susan J. Gaskin; B.Sc.(Queen’s), Ph.D. (Canterbury)
Subhasis Ghoshat; B.C.E. (Jadavpur), M.S. (Missouri), Ph.D.(Carnegie Mellon)

Murtaza Haider; B.Sc.(Peshawar), M.A.Sc., Ph.D.(Tor.) (joint appoint. with School of Urban Planning)
Colin Rogers; B.A.Sc.(Waterloo), M.A.Sc., Ph.D.(Sydney), P.Eng.

Adjunct Professors

Civil engineers have traditionally applied scientific and engineering knowledge to the task of providing the built environment, from its conception and planning to its design, construction, maintenance and rehabilitation. Examples include buildings, bridges, roads, railways, dams, and facilities for water supply and treatment, and waste disposal. With the aging and deterioration of an already vast infrastructure, its maintenance and rehabilitation has become an increasingly important role of the civil engineering profession.

The program in Civil Engineering is comprehensive in providing the fundamentals in mechanics and engineering associated with the diverse fields of the profession, in offering choices of specialization, and in fully reflecting the advances in science, mathematics, engineering and compiling that have transformed all fields of engineering in recent years. The resulting knowledge and training enables graduates to not only enter the profession thoroughly well prepared, but also to adapt to further change.

The required courses ensure a sound scientific and analytical basis for professional studies through courses in solid mechanics, fluid mechanics, soil mechanics, environmental engineering, water resources management, structural analysis, systems analysis and mathematics. Fundamental concepts are applied to various fields of practice in both required and complementary courses.

By a suitable choice of complementary courses, students can attain advanced levels of technical knowledge in the specialized areas mentioned above. Alternatively, students may choose to develop their interests in a more general way by combining complementary courses within the Department with several from other departments or faculties.

Students who wish to extend their knowledge in certain areas beyond the range that the program complementary courses allow, can also take a Minor program. Minors are available in fields such as Arts, Economics, Management, Environmental Engineering, and Construction Engineering and Management. These require additional credits to be taken from a specified list of topics relating to the chosen field. Further information on the various Minor programs may be found in section 5 “Minor Programs and Choice of Electives or Complementary Courses”. Details of how the Minors can be accommodated within the Civil Engineering program will be made available at the time of preregistration counselling.

Experience has shown that graduates of the program who choose to pursue advanced studies elsewhere receive favourable consideration by all the leading universities in North America and abroad.

ACADEMIC PROGRAMS

Considerable freedom exists for students to influence the nature of the program of study which they follow in the Department of Civil Engineering and Applied Mechanics. A variety of advanced complementary courses is offered in five main groupings: Environmental Engineering, Geotechnical and Geoenvironmental Engineering, Water Resources and Hydraulic Engineering, Structural Engineering, and Transportation Engineering.

Guidance on the sequence in which required core courses should be taken is provided for students in the form of a sample program which covers the entire period of study. The technical complementary courses selected, usually in the last two terms of the program, will depend upon the student’s interests. All students...
must meet with their advisor each term to confirm the courses for which they are registered.

Courses taken in Term 3 or later will depend on a student's interests and ability. Information and advice concerning different possibilities are made available in the Department prior to registration. All programs require the approval of a staff advisor. Programs for students transferring into the Department with advanced standing will be dependent upon the academic credit previously achieved, and such a program will be established only after consultation with a staff advisor.

CURRICULUM FOR THE B.ENG. DEGREE IN CIVIL ENGINEERING

REQUIRED COURSES

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 208</td>
<td>3</td>
</tr>
<tr>
<td>EDEC 206</td>
<td>3</td>
</tr>
<tr>
<td>EPSC 221</td>
<td>3</td>
</tr>
<tr>
<td>MATH 260</td>
<td>3</td>
</tr>
<tr>
<td>MATH 261</td>
<td>3</td>
</tr>
<tr>
<td>MATH 265</td>
<td>3</td>
</tr>
<tr>
<td>MECH 261</td>
<td>3</td>
</tr>
<tr>
<td>MECH 290</td>
<td>3</td>
</tr>
<tr>
<td>MIME 221</td>
<td>2</td>
</tr>
<tr>
<td>MIME 310</td>
<td>3</td>
</tr>
</tbody>
</table>

Departmental courses

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 202</td>
<td>4</td>
</tr>
<tr>
<td>CIVE 205</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 206</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 207</td>
<td>4</td>
</tr>
<tr>
<td>CIVE 208</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 210</td>
<td>2</td>
</tr>
<tr>
<td>CIVE 225</td>
<td>4</td>
</tr>
<tr>
<td>CIVE 290</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 302</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 311</td>
<td>4</td>
</tr>
<tr>
<td>CIVE 317</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 318</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 319</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 320</td>
<td>4</td>
</tr>
<tr>
<td>CIVE 323</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 324</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 327</td>
<td>4</td>
</tr>
<tr>
<td>CIVE 418</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 432</td>
<td>1</td>
</tr>
</tbody>
</table>

COMPLEMENTARY COURSES

A minimum of six credits to be selected from list (a) and the remaining nine credits to be selected from lists (a) or (b) or from other suitable undergraduate or 500-level courses.

15 credits from list (a) or (b) or from other suitable undergraduate or 500-level courses.

(b) General Technical Complementaries

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 430</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 433</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 440</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 446</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 451</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 460</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 470</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 512</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 514</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 526</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 527</td>
<td>3</td>
</tr>
</tbody>
</table>

Two courses (6 credits), selected from an approved list: one course on the impact of technology on society and one in the humanities and social sciences, administrative studies and law. See section 3.4 “Complementary Studies” for further information.

TOTAL CREDITS

109

4.4 **Department of Electrical and Computer Engineering**

McConnell Engineering Building, Room 633

3480 University Street

Montreal, QC H3A 2A7

Telephone: (514) 398-7110

Fax: (514) 398-4470

Website: www.ece.mcgill.ca

Chair — David A. Lowther

Emeritus Professors

Eric L. Adler; B.Sc.(Lond.), M.A.Sc.(Tor.), Ph.D.(McG.), F.I.E.E.E., Eng.

Post-Retirement

Clifford H. Champness; M.Sc.(Lond.), Ph.D.(McG).

Professors

Geza Joos; B.Sc.(C’dia), M.Eng. Ph.D.(McG.)

Peter Kabal; B.A.Sc., M.A.Sc., Ph.D.(Tor.)

Tho Le-Ngoc; M.Eng.(McG.), Ph.D.(Ott.), F.I.E.E.E.

Harry Leib; B.Sc.(Technion), Ph.D.(Tor.)

David A. Lowther; B.Sc.(Lond.), Ph.D.(C.N.A.A.), F.C.A.E., Eng.

Benoit Champagne; B.Eng., M.Eng.(Montr.), Ph.D.(Tor.)

James Clark; B.Eng., Ph.D.(McG.)

Frank Ferrie; B.Eng., Ph.D.(McG.)

Steve McFee; B.Eng., Ph.D.(McG.)
The program in Computer Engineering provides students with greater depth and breadth of knowledge in the hardware and software aspects of computers. Students are exposed to both theoretical and practical issues of both hardware and software in well-equipped laboratories. Although the program is designed to meet the growing demands by industry for engineers with a strong background in modern computer technology, it also provides the underlying depth for graduate studies in all fields of Computer Engineering.

The Department, jointly with the School of Computer Science, offers a Bachelor of Software Engineering program*. Graduates of this program should be eligible for accreditation (once accreditation standards for Software Engineers have been adopted). This program offers students the opportunity to focus their studies on the skills needed to design and develop complex software systems. This emerging field of engineering is a major component of the growing Information Technology (IT) sector of the economy, in which the demand for qualified personnel continues to outstrip supply. Graduates of this program will have a solid foundation for careers in the software industry. [*The School of Computer Science offers a B.Sc. Major program in Software Engineering, which will not lead to accreditation. For further information on the B.Sc. program see “Computer Science [COMP]” on page 269.]

In addition to technical complementary courses, students in all three programs take general complementary courses in social sciences, administrative studies and humanities. These courses allow students to develop specific interests in areas such as psychology, economics, management or political science.

Entry into the Honours Program

The Honours Program is a limited enrollment program and entry is highly competitive. There is no direct entry to the Honours program in the first year. Students may enter the Honours Program in the following ways:

– Students from CEGEP will be admitted, on the basis of their grades, at the start of the third term.

– Students from outside Quebec will be admitted, on the basis of their grades, at the start of the fifth term.

Though not required to do so, students in the Honours Program or wishing to enter the Honours Program are encouraged to take the following advanced math and physics courses:

MATH 325 Ordinary Differential Equations instead of MATH 261
MATH 247 Linear Algebra instead of MATH 270
MATH 248 Advanced Calculus 1 instead of MATH 260
MATH 249 Advanced Calculus 2 instead of MATH 381
PHYS 251 Classical Mechanics 1 instead of CIVE 281

To remain in the Honours program and to be awarded the Honours Degree, a student must have completed at least 14 credits in each term since entering Electrical and Computer Engineering and maintained a CGPA of at least 3.00 since entering Electrical and Computer Engineering. For more information, please contact the Departmental office at (514) 398-7344.

COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 247</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 248</td>
<td>Advanced Calculus 1</td>
<td>3</td>
</tr>
<tr>
<td>MATH 249</td>
<td>Advanced Calculus 2</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 251</td>
<td>Classical Mechanics 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 281</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

REQUIREMENT FOR THE B.ENG. DEGREE IN ELECTRICAL ENGINEERING (HONOURS)

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 202</td>
<td>Introduction to Computing 1</td>
<td>3</td>
</tr>
<tr>
<td>EDEC 206</td>
<td>Communication in Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MATH 260</td>
<td>Intermediate Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 247*</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 270</td>
<td>Applied Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 248*</td>
<td>Advanced Calculus 1</td>
<td>3</td>
</tr>
<tr>
<td>MATH 265</td>
<td>Advanced Calculus 3</td>
<td>3</td>
</tr>
</tbody>
</table>
MATH 249 Advanced Calculus 2 3
or MATH 381 Complex Variables and Transforms (3)
MATH 325 Ordinary Differential Equations 3
or MATH 261 Differential Equations (3)
MIME 221 Engineering Professional Practice 2
MIME 310 Engineering Economy 3
PHYS 251 Classical Mechanics 1 3
or CIVE 281 Analytical Mechanics (3)
PHYS 271 Quantum Physics 3 32
* CGPA of 3.30 is required to register for MATH 247 and MATH 248.

Departmental Courses
ECSE 200 Fundamentals of Electrical Engineering 3
ECSE 210 Circuit Analysis 3
ECSE 221 Introduction to Computer Engineering 3
ECSE 291 Electrical Measurements Laboratory 2
ECSE 303 Signals and Systems 1 3
ECSE 304 Signals and Systems 2 3
ECSE 305 Probability and Random Sig. 1 3
ECSE 322 Computer Engineering 3
ECSE 323 Digital System Design 5
ECSE 330 Introduction to Electronics 3
ECSE 334 Introduction to Microelectronics 5
ECSE 351 Electromagnetic Fields 3
ECSE 352 EM Waves and Optics 3
ECSE 361 Power Engineering 3
ECSE 498 Honours Thesis 1 3
ECSE 499 Honours Thesis 2 3 51

COMPLEMENTARY COURSES
Technical Complementaries

Five technical complementary courses (15 credits), which must be ECSE courses at the 500 level (or ECSE 427, ECSE 451). Students must choose their technical complementary courses so that they complete at least 9 credits in one of the following specializations. However, with Departmental approval, the Honours Thesis 1 and 2 (ECSE 498 and ECSE 499) can count as 6 of the 9 credits. The remaining courses may be any at the 500 level offered by the Department. The choice is not restricted.

Computer Systems Technology
ECSE 427 Operating Systems
ECSE 525 Computer Architecture
ECSE 532 Computer Graphics
ECSE 548 Introduction to VLSI Systems

Control and Automation
ECSE 501 Linear Systems
ECSE 502 Control Engineering
ECSE 503 Linear Stochastic Systems 1
ECSE 504 Computer Control
ECSE 505 Nonlinear Control Systems
ECSE 507 Optimization and Optimal Control
ECSE 509 Probability and Random Sig. 2
ECSE 512 Digital Signal Processing 1
ECSE 529 Image Processing and Communication
ECSE 531 Real Time Systems

Integrated Circuits and Electronics
ECSE 522 Asynchronous Circuits and Systems
ECSE 527 Optical Engineering
ECSE 530 Logic Synthesis
ECSE 533 Physical Basis of Semiconductor Devices
ECSE 534 Analog Microelectronics
ECSE 545 Microelectronics Technology
ECSE 548 Introduction to VLSI Systems
ECSE 571 Optoelectronic Devices
ECSE 573 Microwave Electronics

Power Engineering
ECSE 502 Control Engineering
ECSE 549 Expert Systems in Electrical Design
ECSE 559 Flexible AC Transmission Systems
ECSE 560 Power Systems Analysis 2
ECSE 563 Power Systems Operation and Planning

ECSE 565 Introduction to Power Electronics
Telecommunications
ECSE 451 EM Transmission and Radiation
ECSE 509 Probability and Random Sig. 2
ECSE 511 Introduction to Digital Communication
ECSE 512 Digital Signal Processing 1
ECSE 521 Digital Communications 1
ECSE 523 Speech Communications
ECSE 527 Optical Engineering
ECSE 528 Telecommunication Network Architecture
ECSE 571 Optoelectronic Devices
ECSE 596 Optical Waveguides

Laboratory Complementaries

Two of the following eleven 400-level laboratory courses:
ECSE 426 Microprocessor Systems
ECSE 431 Introduction to VLSI CAD
ECSE 435 Mixed-Signal Test Techniques
ECSE 485 IC Fabrication Laboratory
ECSE 486 Power Laboratory
ECSE 487 Computer Architecture Laboratory
ECSE 488 High Frequency Laboratory
ECSE 490 Digital Signal Processing Laboratory
ECSE 491 Communication Systems Laboratory
ECSE 492 Optical Communications Laboratory
ECSE 493 Control and Robotics Laboratory

General Complementaries

Two courses (6 credits), selected from an approved list: one course on the impact of technology on society and one in the humanities and social sciences, administrative studies and law. See section 3.4 "Complementary Studies" for further information.

TOTAL CREDITS 108

CURRICULUM FOR THE B.ENG. DEGREE IN ELECTRICAL ENGINEERING (REGULAR)

REQUIRED COURSES

Non-Departmental Courses
CIVE 281 Analytical Mechanics 3
or PHYS 251 Classical Mechanics 1 (3)
COMP 202 Introduction to Computing 1 3
EDEC 206 Communication in Engineering 3
MATH 260 Intermediate Calculus 3
MATH 261 Differential Equations 3
or MATH 325 Ordinary Differential Equations (3)
MATH 265 Advanced Calculus 3
or MATH 248 Advanced Calculus 1 (3)
MATH 270 Applied Linear Algebra 3
or MATH 247 Linear Algebra (3)
MATH 381 Complex Variables and Transforms 3
MIME 221 Engineering Professional Practice 2
MIME 310 Engineering Economy 3
PHYS 271 Quantum Physics 3 32
* CGPA of 3.30 is required to register for MATH 247 and MATH 248.

Departmental Courses
ECSE 200 Fundamentals of Electrical Engineering 3
ECSE 210 Circuit Analysis 3
ECSE 221 Introduction to Computer Engineering 3
ECSE 291 Electrical Measurements Laboratory 2
ECSE 303 Signals and Systems 1 3
ECSE 304 Signals and Systems 2 3
ECSE 305 Probability and Random Sig. 1 3
ECSE 322 Computer Engineering 3
ECSE 323 Digital System Design 5
ECSE 330 Introduction to Electronics 3
ECSE 334 Introduction to Microelectronics 5
ECSE 351 Electromagnetic Fields 3
ECSE 352 EM Waves and Optics 3
ECSE 361 Power Engineering 3
ECSE 494 Electrical Engineering Design Project 3 48
The benefits of the specialization are:
- a guaranteed project lab (ECSE 494) in telecommunications, at IIT or with an IIT company; and
- permission to take ECSE 496 at IIT.

To complete the specialization, students must take six courses as Technical Complementaries:
- ECSE 411 Communications Systems 1
- ECSE 414 Introduction to Telecommunication Networks
- ECSE 496 Telecommunications Systems and Services

and any three courses selected from the following list:
- ECSE 412 Discrete Time Signal Processing
- ECSE 413 Communications Systems 2
- ECSE 414 Introduction to Telecommunication Networks

In addition, students must take ECSE 491 (Communications Systems Lab) and complete ECSE 494 (Electrical Engineering Design Project) in telecommunications, at IIT or with an IIT company.

There may be an enrolment limitation in this specialization in any given term.

CURRICULUM FOR THE B.ENG. DEGREE IN COMPUTER ENGINEERING

REQUIRED COURSES

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 260 Intermediate Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 261 Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 265 Advanced Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 248 Advanced Calculus 1</td>
<td>3</td>
</tr>
<tr>
<td>MATH 270 Applied Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 247* Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 363 Discrete Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 281 Analytical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 291 Electrical Measurements Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 251* Classical Mechanics 1</td>
<td>3</td>
</tr>
<tr>
<td>MIME 221 Engineering Professional Practice</td>
<td>2</td>
</tr>
<tr>
<td>MIME 310 Engineering Economy</td>
<td>3</td>
</tr>
<tr>
<td>COMP 202 Introduction to Computing 1</td>
<td>3</td>
</tr>
<tr>
<td>COMP 250 Introduction to Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>COMP 302 Programming Languages and Paradigms</td>
<td>3</td>
</tr>
<tr>
<td>EDEC 206 Communication in Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

* CGPA of 3.30 is required to register for MATH 247 and MATH 248.

Non-Departmental Courses

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 281 Analytical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 291 Electrical Measurements Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 251* Classical Mechanics 1</td>
<td>3</td>
</tr>
<tr>
<td>MIME 221 Engineering Professional Practice</td>
<td>2</td>
</tr>
<tr>
<td>MIME 310 Engineering Economy</td>
<td>3</td>
</tr>
<tr>
<td>COMP 202 Introduction to Computing 1</td>
<td>3</td>
</tr>
<tr>
<td>COMP 250 Introduction to Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>COMP 302 Programming Languages and Paradigms</td>
<td>3</td>
</tr>
<tr>
<td>EDEC 206 Communication in Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Departmental Courses

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE 200 Fundamentals of Electrical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 210 Circuit Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 221 Introduction to Computer Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 291 Electrical Measurements Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ECSE 303 Signals and Systems 1</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 304 Signals and Systems 2</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 305 Probability and Random Sig. 1</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 321 Introduction to Software Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 322 Computer Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 323 Digital System Design</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 330 Introduction to Electronics</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 334 Introduction to Microelectronics</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 353 Electromagnetic Fields and Waves</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 425 Computer Organization and Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 427 Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 494 Electrical Engineering Design Project</td>
<td>3</td>
</tr>
</tbody>
</table>

COMPLEMENTARY COURSES

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE 404 Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 411 Communications Systems 1</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 412 Discrete Time Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 414 Introduction to Telecommunication Networks</td>
<td>3</td>
</tr>
</tbody>
</table>

*Enhanced ITT Specialization in Telecommunications

The International Institute of Telecommunications (IIT) was established in Montreal as a center for telecommunications education. Funded by government and industry, it provides state-of-the-art laboratory facilities and a point of contact between local telecommunications industries and universities.

This program is open to students in the regular Electrical Engineering program only.
Technical Complementaries

Students must take 11-12 credits of technical complementaries from the following list, of which at least 6 credits must be taken from list A and the remainder from list B.

Group A Technical Complementaries

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 350</td>
<td>Numerical Computing</td>
<td>3</td>
</tr>
<tr>
<td>COMP 409</td>
<td>Concurrent Programming</td>
<td>3</td>
</tr>
<tr>
<td>COMP 424</td>
<td>Topics: Artificial Intelligence 1</td>
<td>3</td>
</tr>
<tr>
<td>COMP 433</td>
<td>Personal Software Engineering</td>
<td>3</td>
</tr>
<tr>
<td>COMP 524</td>
<td>Theoretical Foundations of Programming Languages</td>
<td>3</td>
</tr>
<tr>
<td>COMP 575</td>
<td>Fundamentals of Distributed Algorithms</td>
<td>3</td>
</tr>
</tbody>
</table>

Group B Technical Complementaries

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE 304</td>
<td>Signals and Systems 2</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 323</td>
<td>Digital Systems Design</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 404</td>
<td>Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 411</td>
<td>Communications Systems 1</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 412</td>
<td>Discrete Time Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 413</td>
<td>Communications Systems 2</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 414</td>
<td>Introduction to Telecommunication Networks</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 421</td>
<td>Embedded Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 422</td>
<td>Fault Tolerant Computing</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 420</td>
<td>Parallel Computing</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 424</td>
<td>Human-Computer Interaction</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 425</td>
<td>Computer Organization and Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 426</td>
<td>Microprocessor Systems</td>
<td>3</td>
</tr>
<tr>
<td>COMP 573</td>
<td>Microprocessors</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 431</td>
<td>Real Time Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 426</td>
<td>Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 429</td>
<td>Image Processing and Communication</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 430</td>
<td>Logic Synthesis</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 431</td>
<td>Real Time Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 432</td>
<td>Computer Graphics</td>
<td>3</td>
</tr>
<tr>
<td>COMP 557</td>
<td>Computer Graphics</td>
<td>3</td>
</tr>
<tr>
<td>COMP 410</td>
<td>Mobile Computing</td>
<td>3</td>
</tr>
<tr>
<td>COMP 412</td>
<td>Software for E-commerce</td>
<td>3</td>
</tr>
<tr>
<td>COMP 505</td>
<td>Advanced Computer Architecture</td>
<td>3</td>
</tr>
<tr>
<td>COMP 520</td>
<td>Compiler Design</td>
<td>3</td>
</tr>
<tr>
<td>COMP 535</td>
<td>Computer Networks</td>
<td>3</td>
</tr>
<tr>
<td>COMP 566</td>
<td>Discrete Optimization</td>
<td>3</td>
</tr>
</tbody>
</table>

General Complementaries

Two courses (6 credits), selected from an approved list: one course on the impact of technology on society and one in the humanities and social sciences, administrative studies and law. See section 3.4 “Complementary Studies” for further information.

TOTAL CREDITS

108/109
Professors
Abdul M. Ahmed; B.Sc.(Dhaka), M.Eng., Ph.D.(McG.), Eng. (Thomas Workman Professor of Mechanical Engineering)
Jorge Angeles; B.Eng., M.Eng.(UNAM Mexico), Ph.D.(Stanford), Eng., F.A.S.M.E., F.C.S.M.E. (James McGill Professor)
Bantwal R. Baliga; B.Tech.(I.I.T., Kanpur), M.Sc.(Case), Ph.D.(Minnesota)
Wagdi Habash; B.Eng., M.Eng.(McG.), Ph.D.(Cornell), P.Eng., F.A.S.M.E. (NSERC-Bombardier Industrial Research Chair)
Stuart J. Price; B.Sc., Ph.D.(Bristol), P.Eng.

Associate Professors
Martin Buehler; M.Sc., Ph.D.(Yale) (William Dawson Scholar)
Luca Corteazzi; M.Sc., Ph.D.(Caltech)
David L. Frost; B.A.Sc.(U.B.C.), M.S., Ph.D.(Caltech), P.Eng. Tim Lee; M.S.(Portland State), Ph.D.(Idaho)
Larry B. Lessard; B.Eng.(McG.), M.Sc., Ph.D.(Stanford), P.Eng. (Undergraduate Program Coordinator)
Meyer Nahon; B.Sc.(Queen's), M.Sc.(Tor.), Ph.D.(McG.), P.Eng. (Graduate Program Coordinator)
James A. Nemès; B.Sc.(Maryland), M.S., D.Sc.(GWU) (William Dawson Scholar)
Peter Radziszewski; B.Sc.(U.B.C.), M.Sc., Ph.D.(Laval)
Inna Sharf; B.A.Sc.(Queen’s), Ph.D.(Tor.), P.Eng. (Society of Automotive Engineers), and ASME (American Society

Assistant Professors
Andrew J. Higgins, B.Sc.(Ill.), M.S., Ph.D.(Wash.)

Laboratory Superintendents
D. Chellan, G. Savard, G. Tewfik

Associate Members
R.E. Kearney; B.Eng., M.Eng., Ph.D.(McG.), Biomedical Engineering Unit
B.H.K. Lee; B.Eng., M.Eng., Ph.D.(McG.)
M. TANZER; M.D., Orthopaedic Surgery

Adjunct Professors

Mechanical engineers are traditionally concerned with the conception, design, implementation and operation of mechanical systems. Typical fields of work are aerospace, energy, manufacturing, machinery, and transportation. Because of the very broad nature of the discipline there is usually a high demand for mechanical engineers.

Many mechanical engineers follow other career paths. Graduate studies are useful for the specialists working in research establishments, consulting firms or in corporate research and development.

To prepare the mechanical engineer for a wide range of career possibilities, there is a heavy stress in our curriculum on the fundamental analytical disciplines. This is balanced by a sequence of experimental and design engineering courses which include practice in design, manufacture and experimentation. In these courses students learn how to apply their analytical groundwork to the solution of practical problems.

Specialists interests are satisfied by selecting appropriate complementary courses from among those offered with a specific subject concentration, such as management, industrial engineering, computer science, controls and robotics, bio-engineering, aeronautics, combustion, systems engineering, etc.

The Department offers an Honours Program which is particularly suitable for those with a high aptitude in mathematics and physics and which gives a thorough grounding in the basic engineering sciences. The complementary courses in this program can be utilized to take courses with applied engineering orientation, such as those offered in the regular program, or if preferred, to obtain an even more advanced education in engineering science.

Concentrations in Aeronautical Engineering, Mechatronics and Design are available for students in either the Regular or Honours Programs who wish to specialize in these areas.

While the program is demanding, there is time for many extracurricular activities. Students are active in such professional societies as CASI (Canadian Aeronautics and Space Institute), SAE (Society of Automotive Engineers), and ASME (American Society of Mechanical Engineers) and in various campus organizations.

Relations between faculty and students are extremely close. Social functions, at which students and professors meet to exchange views and get to know each other better, are organized frequently.

Curriculum for the B.Eng. Degree in Mechanical Engineering (Regular)

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 207</td>
<td>4</td>
</tr>
<tr>
<td>COMP 208</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 461</td>
<td>3</td>
</tr>
<tr>
<td>EDEC 206</td>
<td>3</td>
</tr>
<tr>
<td>MATH 260</td>
<td>3</td>
</tr>
<tr>
<td>MATH 261</td>
<td>3</td>
</tr>
<tr>
<td>MATH 265</td>
<td>3</td>
</tr>
<tr>
<td>MATH 266</td>
<td>4</td>
</tr>
<tr>
<td>MIME 221</td>
<td>2</td>
</tr>
<tr>
<td>MIME 260</td>
<td>3</td>
</tr>
<tr>
<td>MIME 310</td>
<td>3</td>
</tr>
</tbody>
</table>

Departmental Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 201</td>
<td>2</td>
</tr>
<tr>
<td>MECH 210</td>
<td>2</td>
</tr>
<tr>
<td>MECH 220</td>
<td>4</td>
</tr>
<tr>
<td>MECH 240</td>
<td>3</td>
</tr>
<tr>
<td>MECH 260</td>
<td>2</td>
</tr>
<tr>
<td>MECH 262</td>
<td>3</td>
</tr>
<tr>
<td>MECH 291</td>
<td>3</td>
</tr>
<tr>
<td>MECH 292</td>
<td>3</td>
</tr>
<tr>
<td>MECH 314</td>
<td>3</td>
</tr>
<tr>
<td>MECH 315</td>
<td>4</td>
</tr>
<tr>
<td>MECH 321</td>
<td>3</td>
</tr>
<tr>
<td>MECH 331</td>
<td>3</td>
</tr>
<tr>
<td>MECH 341</td>
<td>3</td>
</tr>
<tr>
<td>MECH 346</td>
<td>3</td>
</tr>
<tr>
<td>MECH 362</td>
<td>2</td>
</tr>
<tr>
<td>MECH 383</td>
<td>3</td>
</tr>
<tr>
<td>MECH 393</td>
<td>3</td>
</tr>
<tr>
<td>MECH 409</td>
<td>3</td>
</tr>
<tr>
<td>MECH 412</td>
<td>3</td>
</tr>
<tr>
<td>MECH 430</td>
<td>3</td>
</tr>
<tr>
<td>MECH 463D1</td>
<td>3</td>
</tr>
<tr>
<td>MECH 463D2</td>
<td>64</td>
</tr>
</tbody>
</table>

Complementary Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 courses (6 credits)</td>
<td>2</td>
</tr>
</tbody>
</table>
MECH 413 Control Systems
MECH 432 Aircraft Structures
MECH 471 Industrial Engineering
MECH 472 Case Studies in Project Mgmt
MECH 495 Design 3
MECH 496 Design 4
MECH 497 Value Engineering
MECH 524 Computer Integrated Manufacturing
MECH 526 Manufacturing and the Environment
MECH 528 Product Design
MECH 532 Aircraft Performance, Stability and Control
MECH 541 Kinematic Synthesis
MECH 543 Design with Composite Materials
MECH 554 Microprocessors for Mechanical Systems
MECH 557 Mechatronic Design
MECH 565 Fluid Flow and Heat Transfer Equipment
MECH 572 Introduction to Robotics
MECH 573 Mechanics of Robotic Systems
MECH 577 Optimum Design

1 course (3 credits) at the 300-level or higher from the Faculty of Engineering or an approved course in the Faculty of Science, including Mathematics.

Two courses (6 credits), selected from an approved list: one course on the impact of technology on society and one in the humanities and social sciences. Administrative studies and law. See section 3.4 “Complementary Studies” for further information.

TOTAL CREDITS 113

Students entering in September or January must plan their program of studies in accordance with the regulations posted on the Faculty Website at www.mcgill.ca/engineering. After registering, students must consult with their academic advisor.

Additional information can be found in section 3.1.2 “Basic Science Requirements for Students Entering from Outside Quebec”.

CURRICULUM FOR THE B.ENG. DEGREE IN MECHANICAL ENGINEERING (HONOURS)

REQUIRED COURSES

COURSE CREDIT

Non-Departmental Subjects
CIVE 207 Solid Mechanics 4
EDEC 206 Communication in Engineering 3
COMP 208 Computers in Engineering 3
MATH 260 Intermediate Calculus 3
MATH 261 Differential Equations 3
MATH 265 Advanced Calculus 3
MATH 266 Linear Algebra and Boundary Value Problems 4
MIME 221 Engineering Professional Practice 2
MIME 310 Engineering Economy 3 28

Departmental Courses
MECH 201 Introduction to Mechanical Engineering 2
MECH 210 Mechanics 1 2
MECH 220 Mechanics 2 4
MECH 240 Thermodynamics 1 3
MECH 260 Machine Tool Laboratory 2
MECH 262 Statistics and Measurement Laboratory 3
MECH 291 Graphics 3
MECH 292 Design 1 3
MECH 321 Mechanics of Deformable Solids 3
MECH 331 Fluid Mechanics 1 3
MECH 341 Thermodynamics 2 3
MECH 346 Heat Transfer 3
MECH 362 Mechanical Laboratory 1 2
MECH 383 Applied Electronics and Instrumentation 3
MECH 403D1 Thesis (Honours) 3
MECH 403D2 Thesis (Honours) 3
MECH 404 Honours Thesis 2
MECH 409 Numerical Methods in Mechanical Engineering 3
MECH 419 Advanced Mechanics of Systems 3
MECH 430 Fluid Mechanics 2 3
MECH 452 Mathematical Methods in Engineering 1 3
MECH 494 Honours Design Project 3 63

COMPLEMENTARY COURSES 21

2 of the following three courses (6 credits):
MECH 545 Advanced Stress Analysis
MECH 562 Advanced Fluid Mechanics
MECH 578 Advanced Thermodynamics

2 courses (6 credits) at the 300 level or higher to be selected from Mechanical Engineering. For students who entered in September 2000 or later, one of these two courses must be chosen from the following list:
MECH 343 Energy Conversion
MECH 413 Control Systems
MECH 432 Aircraft Structures
MECH 471 Industrial Engineering
MECH 472 Case Studies in Project Mgmt
MECH 495 Design 3
MECH 496 Design 4
MECH 497 Value Engineering
MECH 524 Computer Integrated Manufacturing
MECH 526 Manufacturing and the Environment
MECH 528 Product Design
MECH 532 Aircraft Performance, Stability and Control
MECH 541 Kinematic Synthesis
MECH 543 Design with Composite Materials
MECH 554 Microprocessors for Mechanical Systems
MECH 557 Mechatronic Design
MECH 565 Fluid Flow and Heat Transfer Equipment
MECH 572 Introduction to Robotics
MECH 573 Mechanics of Robotic Systems
MECH 577 Optimum Design

1 course (3 credits) at the 300 level or higher from the Faculty of Engineering or an approved course in the Faculty of Science, including Mathematics.

Two courses (6 credits), selected from an approved list: one course on the impact of technology on society and one in the humanities and social sciences, administrative studies and law. See section 3.4 “Complementary Studies” for further information.

TOTAL CREDITS 112

Students entering in September or January must plan their program of studies in accordance with the regulations posted on the Faculty Website at www.mcgill.ca/engineering. After registering, students must consult with their academic advisor.

Additional information can be found in section 3.1.2 “Basic Science Requirements for Students Entering from Outside Quebec”.

LIST OF COMPLEMENTARY COURSES (DEPARTMENTAL) (Each is 3 credits)
MECH 343 Energy Conversion
MECH 413 Control Systems
MECH 432 Aircraft Structures
MECH 434 Turbomachinery
MECH 447 Combustion
MECH 471 Industrial Engineering
MECH 472 Case Studies in Project Mgmt
MECH 474 Selected Topics in Operations Research
MECH 495 Design 3
MECH 496 Design 4
MECH 497 Value Engineering
MECH 500 Selected Topics in Mechanical Engineering
MECH 501 Special Topics: Mechanical Engineering
MECH 522 Production Systems
MECH 524 Computer Integrated Manufacturing
MECH 526 Manufacturing and the Environment
MECH 528 Product Design
MECH 529 Discrete Manufacturing Systems
TYPICAL PROGRAM OF STUDIES FOR REGULAR OR HONOURS

For students starting their B.Eng. studies in September 2003 who have completed the Quebec Diploma of Collegial Studies, a program for the first two terms of study is given below. Students will be advised by the Department whether they should follow Stream A or Stream B.

STREAM A:

Term 1 (Fall)
- COMP 208 Computers in Engineering
- MATH 260 Intermediate Calculus
- MECH 201 Introduction to Mechanical Engineering
- MECH 210 Mechanics 1
- MECH 260 Machine Tool Laboratory
- MIME 221 Engineering Professional Practice

Term 2 (Winter)
- COMP 208 Computers in Engineering
- MATH 260 Intermediate Calculus
- MECH 201 Introduction to Mechanical Engineering
- MECH 260 Machine Tool Laboratory
- MIME 221 Engineering Professional Practice

STREAM B:

Term 1 (Fall)
- COMP 208 Computers in Engineering
- MATH 260 Intermediate Calculus
- MECH 201 Introduction to Mechanical Engineering
- MECH 260 Machine Tool Laboratory
- MIME 221 Engineering Professional Practice

Term 2 (Winter)
- COMP 208 Computers in Engineering
- MATH 260 Intermediate Calculus
- MECH 201 Introduction to Mechanical Engineering
- MECH 260 Machine Tool Laboratory
- MIME 221 Engineering Professional Practice

For all Minors and Concentrations, students should complete a special form available from the Undergraduate Program Secretary indicating their intention to take the Minor or the Concentration.

AERONAUTICAL ENGINEERING CONCENTRATION
Students in this Concentration should take five courses in the area of Aeronautical Engineering. Specifically they must take the following two required courses:
- MECH 532 Aircraft Performance, Stability and Control
- MECH 533 Subsonic Aerodynamics
and at least one of the following:
- MECH 432 Aircraft Structures
- MECH 434 Turbomachinery

The remaining two courses may be chosen from the above or from the following courses:
- MECH 531 Aeroelasticity
- MECH 537 High-Speed Aerodynamics
- MECH 538 Unsteady Aerodynamics
- MECH 539 Computational Aerodynamics

All courses must be passed at a level C or better. Students should also discuss the matter with their advisor and complete a special form indicating their intention to take this Concentration.

DESIGN CONCENTRATION
The Design Concentration is comprised of six courses as follows:
- MECH 495 Design 3
- MECH 496 Design 4

Plus any four below:
- MECH 497 Value Engineering
- MECH 540 Design: Modelling and Decision
- MECH 541 Kinematic Synthesis
- MECH 543 Design with Composite Materials
- MECH 557 Mechatronic Design
- MECH 565 Fluid Flow and Heat Transfer Equipment
- MECH 576 Computer Graphics and Geometric Modelling
- MECH 577 Optimum Design

MECHATRONICS CONCENTRATION
Students in this Concentration should take six courses in the area of Control, Robotics and/or CAD/CAM. They must take the following four required courses:
- MECH 413 Control Systems
- MECH 554 Microprocessors for Mechanical Systems
- MECH 557 Mechatronic Design
- MECH 572 Introduction to Robotics

and two of the following:
- MECH 528 Product Design
- MECH 541 Kinematic Synthesis
- MECH 573 Mechanics of Robotic Systems
- MECH 576 Computer Graphics and Geometric Modelling
- ECSE 502 Control Engineering

4.6 Department of Mining, Metals and Materials Engineering
Wong Building, Room 2160
3610 University Street
Montreal, QC H3A 2B2
Website: www.minmet.mcgill.ca

Emeritus Professors
William M. Williams; B.Sc., M.Sc.(Brist.), Ph.D.(Tor.), Eng.
(Henry Birks Emeritus Professor of Metallurgy)

Professors
George P. Demopoulos; Dipl. Eng.(NTU Athens), M.Sc., Ph.D.(McG.), Eng.
Robin A.L. Drew; B.Tech.(Bradford), Ph.D.(Newcastle)
James A. Finch; B.Sc.(Birm.), M.Eng., Ph.D.(McG.), Eng.
(Industry Professor of Mineral Processing)
Raynald Gauvin; B.Eng., Ph.D.(Montr.), Eng.
John E. Gruzeliski; B.Sc., M.Sc.(Qu.), Ph.D.(Tor.), Eng.
(Gerald G. Hatch Professor of Mining and Metallurgy)
Rod L. Guthrie; B.Sc., Ph.D.(Lond.), D.I.C., A.R.S.M., Eng.
(William C. Macdonald Professor of Mining and Metallurgy)
Farzameh (Fern) P. Hassan; B.Sc., Ph.D.(Nott.), C.Eng.(U.K. Reg.)
(George Boyd Webster Professor of Mining Engineering)
Director, Mining Engineering Program
(Henry Birks Professor of Metallurgy)
Hani S. Mitri; B.Sc.(Cairo), M.Eng., Ph.D.(McMaster), Eng.
Jerzy Szpunar; B.Sc., M.Sc., Ph.D., D.Sc.(Krakow)
Associate Professors
Ralph Harris; B.Sc.(Qld), M.Eng., Ph.D.(McG.)
Mainul Hasan; B.Eng.(Dhaka), M.Sc.(Dhahran), Ph.D.(McG.)
Janusz A. Kozinski; B.A., M.Eng., D.Sc.(Krakow)(William Dawson Scholar)
André Laplante; B.A.Sc., M.A.Sc.(Montr.), Ph.D.(Tor.), Eng.
Jacques Ouellet; B.A.Sc.(Laval), M.A.Sc.(Montr.), Ph.D.(Montr.), Eng.
Steve Yue; B.Sc., Ph.D.(Leeds)
Faculty Lecturers
John Mossip, Florence Paray
Adjunct Professors
Marc Betournay, William Carey, Roussous Dimitrakopoulos, Elhachmi Essadagi, Bryn Harris, Ahmad Hemami, Mohamad Jahazi, Raad Jassim, Eric Lifshin, Martin Pugh, John H. Root, Wiwek Vardya, Albert E. Wraith

REMOTE PROGRAMS

Director — Frank Mucciardi

Work-term Coordinators — Genevieve Snider (Materials)
Michel Vachon (Mining)

The Department of Mining, Metals and Materials Engineering offers programs leading to the Bachelor of Engineering degree in Metals and Materials Engineering or Mining Engineering. In addition to regular courses and laboratories, the curriculum includes seminars, colloquia and student projects reinforced by field trips to industrial operations.

The equipment operated by the Department is the best available. On the materials side there is a full range of laboratory facilities for extractive and process metallurgy as well as excellent materials characterization and processing facilities. In mining engineering the Department has rock engineering laboratories to test the mechanical properties of both rock and backfill materials and computer-aided mine design facilities.

Metals and Materials Engineering (CO-OP). The Metals and Materials Engineering degree is a cooperative program leading to a B.Eng. and includes formal industrial work periods. It is built around a strong background of mathematics, basic sciences, computer skills and applications, and specific engineering and design courses to provide up-to-date training in metals/materials engineering. Students take core courses covering processing, fabrication, applications and performance. The program conforms with requirements of the Canadian Engineering Accreditation Board (CEAB) and is designed to offer students the best training for employment in Canada’s large and vital metallurgical and manufacturing industries. The basic courses are supplemented by complementary courses which provide a good choice of specialties for the graduating engineer. The course structure is reinforced with laboratory exercises. Graduates find employment in a wide range of industries which include the mineral/metal producing and processing sectors, as well as the aerospace and manufacturing industries. Students in the CO-OP program benefit from the practical learning experience arising from work-term employment in meaningful engineering jobs. Students also benefit from the non-tangible learning experience arising from the increased responsibilities required to obtain and successfully complete the work terms.

Mining Engineering (CO-OP), McGill, which has the oldest mining engineering program in Canada, has always been noted for the excellence of its courses and for the training it provides in mining technology, mineral economics and mining practice. Graduates in mining engineering are in demand not only in Canada but throughout the world. Technical developments have been rapid in recent years. These offer a challenge to the imaginative student with a strong engineering interest. The Department offers a cooperative program leading to the B.Eng. degree in Mining Engineering. The CO-OP program is offered in collaboration with the Département des génies civil, géologique et des mines at École Polytechnique in Montreal, and includes formal industrial work periods. Students registered at McGill are required to take a series of technical mining courses at École Polytechnique in the latter part of the program. These courses are designated as such in the program outline (Subject Code MIME).

Scholarships

The Department offers Entrance Scholarships each year, valued at $3000; these scholarships are renewable. A substantial number of other scholarships and bursaries are awarded by the Department as well as by the Canadian Mineral Industry Education Foundation.

Student Advising

Students entering the Mining or Metals and Materials Engineering programs must plan their schedule of studies in consultation with one of the departmental advisors: Professors Laplante and Yue (Materials) or Mr. J. Mossip (Mining).

CURRICULUM FOR THE B.ENG. DEGREE IN METALS AND MATERIALS ENGINEERING – CO-OP PROGRAM

<table>
<thead>
<tr>
<th>COURSE CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQUIRED COURSES</td>
</tr>
<tr>
<td>Non-Departmental Courses</td>
</tr>
<tr>
<td>CHEM 233</td>
</tr>
<tr>
<td>CIVE 205</td>
</tr>
<tr>
<td>CIVE 207</td>
</tr>
<tr>
<td>COMP 208</td>
</tr>
<tr>
<td>MATH 260</td>
</tr>
<tr>
<td>MATH 261</td>
</tr>
<tr>
<td>MATH 265</td>
</tr>
</tbody>
</table>

| **Departmental Courses** |
MIME 200	Introduction to the Minerals Industry	3
MIME 202	Engineering Communication Skills	2
MIME 209	Mathematical Applications	3
MIME 212	Engineering Thermodynamics	3
MIME 221	Engineering Professional Practice	2
MIME 261	Structure of Materials	3
MIME 280	Industrial Training 1	2
MIME 301	Engineering Economy	3
MIME 311	Modelling and Automatic Control	3
MIME 317	Analytical and Characterization Techniques	3
MIME 337	Electrotechnology	2
MIME 341	Introduction to Mineral Processing	3
MIME 350	Extractive Metallurgical Engineering	3
MIME 352	Hydrochemical Processing	3
MIME 356	Heat, Mass and Fluid Flow	4
MIME 360	Phase Transformations: Solids	3
MIME 362	Mechanical Properties	3
MIME 367	Electronic Properties of Materials	3
MIME 380	Industrial Training 2	2
MIME 442	Modelling and Control: Mineral Processing	3
MIME 452	Process and Materials Design	3
MIME 455	Advanced Process Engineering	3
MIME 456	Steelmaking and Steel Processing	3
MIME 465	Ceramic Engineering	3
A fee of $500 is assessed by the University for each Industrial Training course.

COMPLEMENTARY COURSES
Technical Courses
Four courses may be taken; one of these can be chosen from the Faculty list. (Note: Not all courses are given annually; verification with course instructor is advised.)
- CHEE 481 (3) Polymer Engineering
- CHEE 581 (3) Polymer Composites Engineering
- CHEM 585 (3) Colloid Chemistry
- CIVE 512 (3) Advanced Civil Engineering Materials

Mechanics of Composite Materials
- MECH 530 (3) Mechanics of Composite Materials

Light Metals Extraction and Processing
- MIME 544 (3) Analysis: Mineral Processing Systems 1
- MIME 545 (3) Analysis: Mineral Processing Systems 2

Deformation Processing of Metals
- MIME 463 (3) Deformation Processing of Metals

Advanced Metallurgical and Materials Thermodynamics
- MIME 515 (3) Advanced Metallurgical and Materials Thermodynamics

Analysis: Mineral Processing Systems 1
- MIME 544 (3) Analysis: Mineral Processing Systems 1

Analysis: Mineral Processing Systems 2
- MIME 545 (3) Analysis: Mineral Processing Systems 2

Electrochemical Processing
- MIME 551 (3) Electrochemical Processing

Thermal Remediation of Wastes
- MIME 555 (3) Thermal Remediation of Wastes

Joining Processes
- MIME 560 (3) Joining Processes

Hot Deformation of Metals
- MIME 563 (3) Hot Deformation of Metals

Light Metals Extraction and Processing
- MIME 567 (3) Light Metals Extraction and Processing

Analysis of Materials
- MIME 564 (3) X-ray Diffraction Analysis of Materials
- MIME 566 (3) Texture, Structure & Properties of Polycrystalline Materials

Aluminum Casting Alloys
- MIME 567 (3) Aluminum Casting Alloys

Topics in Advanced Materials
- MIME 568 (3) Topics in Advanced Materials

Electron Beam Analysis of Materials
- MIME 569 (3) Electron Beam Analysis of Materials

Solid State Physics
- PHYS 558 (3) Solid State Physics

General Complementaries
Two courses (6 credits), selected from an approved list: one course on the impact of technology on society and one in the humanities and social sciences, administrative studies and law. See section 3.4 “Complementary Studies” for further information.

TOTAL 116

A fee of $500 is assessed by the University for each Industrial Training course.

CURRICULUM FOR THE B.ENG. DEGREE IN MINING ENGINEERING – CO-OP PROGRAM

REQUIRED COURSES

Non-Departmental Courses
- CIVE 205 Statics 3
- CIVE 207 Solid Mechanics 4
- CIVE 208 Computers in Engineering 3
- EPSC 221 General Geology 3
- EPSC 225 Properties of Minerals 1
- MATH 260 Intermediate Calculus 3
- MATH 261 Differential Equations 3
- MATH 265 Advanced Calculus 3
- MECH 290 Graphics 2 3

Departmental Mining Courses
- MIME 200 Introduction to the Minerals Industry 3
- MIME 202 Engineering Communication Skills 2
- MIME 203 Mine Surveying 2 (2 weeks at beginning of summer)
- MIME 209 Mathematical Applications 3
- MIME 221 Engineering Professional Practice 2
- MIME 260 Materials Science and Engineering 3
- MIME 290 Industrial Work Period 1 2

- MIME 291 Industrial Work Period 2 2
- MIME 310 Engineering Economy 3
- MIME 322 Rock Fragmentation 3
- MIME 323 Rock and Soil Mass Characterization 3
- MIME 325 Mineral Industry Economics 3
- MIME 333 Materials Handling 3
- MIME 337 Electrotechnology 2
- MIME 340 Applied Fluid Dynamics 3
- MIME 341 Introduction to Mineral Processing 3
- MIME 392 Industrial Work Period 3 2
- MIME 419 Surface Mining 3
- MIME 420 Feasibility Study 3
- MIME 426 Development and Services 3
- MIME 484 Mining Project 3

École Polytechnique Mining Courses
- MPMC 320 CAO et informatique pour les mines 3
- MPMC 321 Mécanique des roches et contrôle des terrains 3
- MPMC 326 Recherche opérationnelle I 3
- MPMC 328 Environnement et gestion des rejets miniers 3
- MPMC 329 Géologie minière 2
- MPMC 330 Géotechnique minière 3
- MPMC 421 Exploitation en souterrain 3
- MPMC 422 Ventilation minière et hygiène du travail 3

COMPLEMENTARY COURSES
Either Choice I or II 8 or 9
Choice I (8 credits)
- MIME 494 (2) Industrial Work Period 4
- and two Technical Complementaries
Choice II (9 credits)
- MIME 544 (3) Analysis: Mineral Processing Systems 1
- and one Technical Complementary

General Complementaries 6
Two courses (6 credits), selected from an approved list: one course on the impact of technology on society and one in the humanities and social sciences, administrative studies and law. See section 3.4 “Complementary Studies” for further information.

TOTAL 119/120

A fee of $300 is assessed by the University for each Industrial Work Period course.
4.7 School of Urban Planning

Macdonald-Harrington Building
815 Sherbrooke Street West
Montreal, QC H3A 2K6

Telephone: (514) 398-4075
Fax: (514) 398-8376
Website: www.mcgill.ca/urbanplanning

Director — David F. Brown
Emerita Professor
Jeanne M. Wolfe; B.Sc.(Lond.), M.Sc.(W.Ont.), M.A.(McG.)
Professor
Jane M. Glenn; B.A., LL.B.(Qu.), D. en Droit(Stras.)
Associate Professors
David F. Brown; B.A.(Bishop’s), M.U.P.(McG.), Ph.D.(Sheffield)
Raphaël Fischler; B.Eng.(Eindhoven), M.Sc., M.C.P.(MIT),
Ph.D.(U.C. Berk.)
Assistant Professors
Madhav G. Badami; B.Tech., M.S.(I.I.T., Madras)
M.E.Des.(Calg.), Ph.D.(Br.Col.) (joint appoint. with McGill School of Environment)
Lisa Bornstein; B.Sc.(U.C.Berk.), M.R.P.(C’nell), Ph.D.(U.C.Berk.)
Murtaza Haider; B.Sc.(Peshawar), M.A.Sc. (joint appoint. with Civil Engineering)
Instructor
François Dufaux; B.Arch.(Laval), M.U.P.(McG.)
Adjunct Professors
David Farley; B.Arch.(McG.), M.Arch., Master of City Planning(Harvard)
Mario Polese; B.A.(CUNY), M.A., Ph.D.(Penn.)
Guest Lecturers
Cameron Charlebois, Luc Danielse, Marc Denhez,
Andrew Hoffmann, Peter Jacobs, Brenda Lee, Léon Ploegаетs,
Alain Trudeau, Ray Tomalty, Martin Wexler

Modern urban planning developed into a profession in the early decades of the twentieth century, largely as a response to the appalling sanitary, social and economic conditions of rapidly developing industrial cities. Initially the disciplines of architecture, civil engineering and public health provided the nucleus of concerned professionals; beautification schemes and infrastructure works marked the early stages of public intervention in the nineteenth century. Architects, engineers and public health specialists were joined by economists, sociologists, lawyers and geographers as the complexities of the city’s problems came to be more fully understood and public pressure mounted for their solution. Concerned professionals; beautification schemes and infrastructure developments marked the early stages of public intervention in the nineteenth century. Architects, engineers and public health specialists were joined by economists, sociologists, lawyers and geographers as the complexities of the city’s problems came to be more fully understood and public pressure mounted for their solution.

Today, urban planning can be described as the collective management of urban development. It is concerned with the welfare of communities, control of the use of land, design of the built environment, including transportation and communication networks, and protection and enhancement of the natural environment. It is at once a technical and a political process which brings together actors from the public, private and community spheres. Planners participate in that process in a variety of ways, as designers and analysts, advocates and mediators.

McGill University was the first institution in Canada to offer a full-time planning program. An inter-disciplinary program was established in 1947, in which students combined a master’s degree in Urban Planning with one in a related field. An autonomous program was established in 1972. It became the School of Urban Planning in 1976.

Students come to the School from diverse backgrounds, the physical sciences, the traditional professions, such as architecture and engineering, and the social sciences. Alumni of the School work as planners and designers at various levels of government, in non-profit organizations and with private consulting firms. Their expertise ranges from historic preservation to traffic management, from housing development to computer imaging. They devote their efforts in increasing numbers to environmental planning and sustainable development.

The School is a partner in the Montreal Interuniversity Group “Urbanization and Development”, a consortium recognized by CIDA as a Centre of Excellence, which is devoted to the study of urban problems and the formulation of policies in developing regions. Faculty and students collaborate actively with members of other McGill departments, notably Architecture, Geography, Civil Engineering and Law, and with colleagues at other institutions in Canada and abroad.

The objective of the School is to produce qualified professional urban planners for the public and the private sectors. Training is provided at the post-graduate level; the degree offered is the Master of Urban Planning (M.U.P.). Upon completion of the two-year program of studies, graduates are expected to have acquired basic planning skills, a broad understanding of urban issues, and specialized knowledge in a field of their own choice.

The program of study offered by the School is fully recognized by the Ordre des Urbanistes du Quebec (O.U.Q.) and the Canadian Institute of Planners (C.I.P.). Graduates can become full members of these professional organizations after meeting their internship requirements.

For details of the M.U.P. admission requirements and curriculum, consult the Graduate and Postdoctoral Studies Calendar, available on the Web at www.mcgill.ca.

The following 500-level courses are taught by the faculty of the School:

- ARCH 550 Urban Planning 1
- ARCH 551 Urban Planning 2
- URPB 501 Principles and Practice 1
- URPB 505 Geographic Information Systems
- URPB 506 Environmental Policy and Planning

5 Minor Programs and Choice of Electives or Complementary Courses

Minors are coherent sequences of courses which may be taken in addition to the courses required for the B.Eng. degree. Minor programs normally consist of 18 - 24 credits, allowing 9 - 12 credits of overlap with the degree program. The real credit cost to the student is typically 9 to 15 credits, representing one term beyond the B.Eng. degree program. All courses in a Minor program must be passed with a grade of C or better.

Students of the Faculty have a considerable variety of complementary course choices, which fall into the categories of technical and complementary studies. Students should refer to their respective departments for information concerning complementary course selections. Departments also publish in this Calendar and in separate documents, information regarding the choice of courses. Students should also consult their course advisors.

Some general information applicable to all students of the Faculty is given below. This mainly covers the areas of materials engineering, management, biotechnology, economics, mathematics, arts, environmental engineering, computer science and chemistry. Further information is available through the Faculty of Engineering Student Affairs Office, Macdonald Engineering Building, Rm 378.

5.1 Arts Minor

Engineering students may obtain a Minor in Arts as part of their B.Eng. degree by satisfying the 24-credit requirement described below. In general, complementary studies courses given in the Faculty of Arts and listed under: (i) “3 credits of studies of the Impact of Technology on Society” and (ii) “the remaining credits to be elective social science and humanities courses” (see section 3.4 “Complementary Studies”), may be used to satisfy some of these requirements. In no case will more than 9 credits taken from
these complementary studies requirements be credited towards the Minor in Arts.

Requirements

1. The program must consist of 24 credits as follows:
 a) at least two areas of concentration from within the Faculty of Arts must be chosen, with the minimum number of credits in any one area being 6;
 b) at least 12 credits must be at the 300 or above level.

2. All courses in the Minor program must be passed with a grade of C or better.

3. The selection of courses for the Minor is to be done in consultation with the Minor Advisor, Ms. Judy Pharo, Faculty of Engineering Student Affairs Office.

For further information, contact Professor B. Haskel, Political Science, or Ms. J. Pharo, Student Affairs Office, Faculty of Engineering.

5.2 Biotechnology Minor

The Faculties of Engineering and of Science offer a Minor in Biotechnology for students interested in taking additional courses in this area. For Engineering students, the Minor has been designed specifically for students within the Chemical Engineering Department, however other Engineering students are invited to contact the Minor program supervisor, Professor Bennett, or Ms. Judy Pharo, Faculty of Engineering Student Affairs Office, for further information.

Students should identify an interest in the Minor to their academic advisor and the supervisor of the program during the U1 year, and at the time of registration for the U2 year. With the agreement of the academic advisor, students should submit their course list to the program supervisor who will certify that the proposed program conforms to the requirements for the Minor.

The Biotechnology Minor Program is administered for the Faculties of Engineering and of Science by Prof. H. Bennett, Sheldon Biotechnology Centre (Lyman-Duff Building), phone 398-3998. A full description of the Minor program appears under the Faculty of Science, *Biotechnology (BIOT)* on page 265.

A Chemical Engineering student may complete the Biotechnology Minor by taking BIOL 200, BIOL 201, BIOL 202, MIMM 211, BIOT 505, plus one course from the list of additional courses not including MIME 310. The Department of Chemical Engineering permits students in the Minor program to complete BIOT 505 as one of their technical complementary requirements. The total course credit required for the Chemical Engineering student is 15 credits beyond the 111-credit B.Eng. program.

5.3 Chemistry/Chemical Engineering Minor

The Departments of Chemistry and Chemical Engineering offer a Minor Program in Chemistry, of particular interest to Chemical Engineering students, and a Minor in Chemical Engineering, of interest to Chemistry students (described under the Faculty of Science). The Minor in Chemistry consists of 25 credits as follows:

1. Required courses, 10 credits: CHEM 212, CHEM 233 and CHEM 234 (or CEGEP equivalent)

2. At least 15 credits from the following list, two of which must be laboratory courses (* indicates lab). Note that CHEM 212 is a prerequisite for most of the courses listed below. If students take CHEM 222* instead of CHEM 234, they will receive credit for one of the two laboratories that are required but they must have a total of 25 Chemistry credits for the Minor.

Inorganic Chemistry

CHEM 281 Inorganic Chemistry 1
CHEM 371 Inorganic Chemistry Laboratory*
CHEM 381 Chemistry of Transition Elements
CHEM 591 Advanced Coordination Chemistry

Analytical Chemistry

CHEM 257D1 Introductory Analytical Chemistry*
CHEM 257D2 Introductory Analytical Chemistry*

or CHEM 277D1 Analytical Chemistry*
CHEM 277D2 Analytical Chemistry*
CHEM 307 Analytical Chemistry of Pollutants
CHEM 367 Instrumental Analysis 1
CHEM 377 Instrumental Analysis 2

Organic Chemistry

CHEM 302 Introductory Organic Chemistry 3
CHEM 352 Structural Organic Chemistry
CHEM 362 Advanced Organic Chemistry Laboratory*
CHEM 382 Organic Chemistry: Natural Products
CHEM 402 Advanced Bio-organic Chemistry

Physical Chemistry

CHEM 345 Molecular Properties and Structure 1
CHEM 355 Molecular Properties and Structure 2
CHEM 363 Physical Chemistry Laboratory 1*
CHEM 393 Physical Chemistry Laboratory 2*
CHEM 455 Introductory Polymer Chemistry

Please consult the program coordinators for more information: Professor D. Cooper (Chemical Engineering) and Dr. G. Wilczek (Chemistry). A passing grade for courses within the Minor is a C.

5.4 Computer Science Courses and Minor Program

The School of Computer Science offers an extensive range of courses for Engineering students interested in computers. The course explicitly for Engineering students (COMP 206) and other courses in the core of the various Engineering programs are listed below. Descriptions of these and other Computer Science courses can be found on Class Schedule or in the Courses section.

- COMP 202 Introduction to Computing 1
- COMP 208 Computers in Engineering
- COMP 250 Introduction to Computer Science
- COMP 302 Programming Languages and Paradigms

Engineering students may obtain a Minor in Computer Science as part of their B.Eng. degree by satisfying the 24-credit requirement described below. In general, complementary courses within Engineering Departmental programs may be used to satisfy some of these requirements, but the Minor in Computer Science will require at least 12 extra credits from Computer Science (COMP) courses beyond those needed for the B.Eng. degree. Students should consult their departments about the use of complementary courses and credits that can be double counted.

Students should see the receptionist in 318 McConnell to obtain the appropriate forms and to make an appointment to see the Minor Advisor for approval of their course selection. Forms must be approved before the end of the Add/Drop period of the student’s final term.

For further information, please check the School of Computer Science Website www.cs.mcgill.ca/acadpages/undergrad.

Minor in Computer Science for Engineering Students

[Program revisions are under consideration for September 2003. Go to www.mcgill.ca (Course Calendars) in July for details.] The program must consist of 24 credits, from courses passed with a grade of C or better, as follows:

Required Course (3 credits)

COMP 302 (3) Programming Languages and Paradigms

Complementary Courses (21 credits)

3 credits – one of the following courses:
- COMP 203 (3) Introduction to Computing 2
- COMP 250 (3) Introduction to Computer Science
- COMP 251 (3) Data Structures and Algorithms

3 credits – one of the following courses:
- COMP 206 (3) Introduction to Software Systems
- ECSE 221 (3) Introduction to Computer Engineering

3 credits – one of the following courses:
- COMP 273 (3) Introduction to Computer Systems
- ECSE 222 (3) Introduction to Computer Engineering 2
3 credits – one of the following courses:
- COMP 350 (3) Numerical Computing
- MECH 409 (3) Numerical Methods in Mechanical Engineering

9 credits chosen from Computer Science courses numbered 300 or higher, or any course making considerable use of computing and approved by the School of Computer Science for the Minor.*

* Students may consult with the School of Computer Science about the acceptability of particular courses. The courses in other departments are at a variety of levels. Some may be required courses in the student’s Engineering program; some are courses that may be taken as technical complementaries. Students should consult with their advisors about the possibility of taking specific courses.

Note:
A. COMP 202 and COMP 208 (compulsory for some Engineering students) do not form part of the Minor.
B. COMP 202 is a prerequisite for COMP 203. Students with a substantial high level language programming course may forego this prerequisite. Some additional make-up effort may be needed at the start of the course.
C. COMP 208 cannot be taken for credit with or after COMP 250.

5.5 Construction Engineering and Management Minor

Students in the Faculty of Engineering may obtain a Minor in Construction Engineering and Management by completing 24 to 25 credits chosen from the required and complementary courses listed below. By a careful selection of complementary courses, a Civil Engineering student may obtain this Minor by completing as few as 9 additional credits. Students in other departments would typically require 12 to 15 additional credits to complete the Minor. For further information, contact Professor L. Chouinard at (514) 398-6446, Room 484, Macdonald Engineering Building.

Prerequisites:
- CIVE 208 Civil Engineering Systems Analysis
- CIVE 302 Probabilistic Systems or equivalent
- COMP 208 Computers in Engineering or equivalent
- MIME 310 Engineering Economy

Requirements:
The 24 to 25 credits listed below must be completed with a grade of C or higher in order to fulfil the requirements of the Minor.

1. Management and Law: 15 credits, as follows:
 - FACC 220 (3) Law for Architects and Engineers
 - INDR 294 (3) Introduction to Labour-Management Relations
 - MGCR 211 (3) Introduction to Financial Accounting
 - MGCR 341 (3) Finance 1
 - and one of:
 - CIVE 324 (3) Construction Project Management
 - MECH 472 (3) Case Studies in Project Mgmt

2. Either 3 or 4 credits, as follows:
 a) 4 credits - Any two of the following relating to Building Structures:
 - ARCH 446 (2) Mechanical Services in Buildings
 - ARCH 447 (2) Electrical Services
 - ARCH 451 (2) Building Regulations and Safety
 - CIVE 492 (2) Structures
 b) 3 credits - One of the following relating to Heavy Construction:
 - MIME 322 (3) Rock Fragmentation
 - MIME 333 (3) Materials Handling

3. Other Construction-Related Complementaries: 6 credits
 Any two of the following:
 - ABEN 411 (3) Off-Road Power Machinery
 - BUSA 462 (3) Management of New Enterprises
 - CIVE 446 (3) Construction Engineering

Total requirement: 24 or 25 credits

5.6 Economics Minor

The Minor consists of 18 credits in courses given in the Economics Department. It consists of required courses and complementaries. In addition, it is presumed that all Engineering students will have a sufficient background in statistics. Engineering Economy, MIME 310, does not form part of this minor. For more information see the Department of Economics, Leacock Room 443.

Required Courses (9 credits)
- ECON 230D1* Microeconomic Theory
- ECON 230D2* Microeconomic Theory
- ECON 209** Macroeconomic Analysis and Applications

Complementary Courses (9 credits) from:
- ECON 225 Economics of the Environment
- ECON 302D1 Money and Banking
- ECON 302D2 Money and Banking
- ECON 303D1 Canadian Economic Policy
- ECON 303D2 Canadian Economic Policy
- ECON 305 Industrial Organization
- ECON 306D1 Labour Economics and Institutions
- ECON 306D2 Labour Economics and Institutions
- ECON 308 Public Policies Toward Business
- ECON 311 United States Economic Development
- ECON 313 Economic Development 1
- ECON 314 Economic Development 2
- ECON 316 The Underground Economy
- ECON 321 The Quebec Economy
- ECON 326 Ecological Economics
- ECON 329 Economics of Confederation
- ECON 330D1 Macroeconomic Theory
- ECON 330D2 Macroeconomic Theory
- ECON 331 Economic Development: Russia and USSR
- ECON 332 Comparative Economic Systems
- ECON 333 Comparative Economic Systems
- ECON 335 The Japanese Economy
- ECON 337 Introductory Econometrics 1
- ECON 344 The International Economy, 1830 - 1914
- ECON 345 The International Economy Since 1914
- ECON 347 Economics of Climate Change
- ECON 404 Transportation
- ECON 405 Natural Resource Economics
- ECON 406 Topics in Economic Policy
- ECON 408D1 Public Sector Economics
- ECON 408D2 Public Sector Economics
- ECON 411 Economic Development: A World Area
- ECON 416 Topics in Economic Development 2
- ECON 420 Topics in Economic Theory
- ECON 423D1 International Trade and Finance
- ECON 423D2 International Trade and Finance
- ECON 426 Labour Economics
- ECON 434 Current Economic Problems
- ECON 440 Health Economics
- ECON 447 Economics of Information and Uncertainty
- ECON 467D1 Econometrics - Honours
- ECON 467D2 Econometrics - Honours
- ECON 525 Project Analysis
- ECON 534 Pensions Crisis
- ECON 546 Game Theory

Mining Engineering students will be permitted to include Mineral Economics (MIME 526) among these 18 credits.
* Students may, with consent of instructor, take
ECON 250D1/ECON 250D2 Introduction to Economic Theory: Honours, in place of ECON 230D1/ECON 230D2.

** This requirement is waived for students who choose ECON 330D1/ECON 330D2 from the list of complements. Students may not take both ECON 209 and ECON 330D1/ECON 330D2.

5.7 Environmental Engineering Minor
The Environmental Engineering Minor is offered for students of Engineering and the Department of Agricultural and Biosystems Engineering wishing to pursue studies in this area. The Minor program consists of 27 credits in courses. Through a judicious choice of core and complementary courses listed below, students may minimize the number of additional credits required to obtain this Minor. The Minor typically requires a minimum of 9 to 15 additional credits. This minimum depends on the department/school in which the student is registered.

The Environmental Engineering Minor Program is administered by the Department of Civil Engineering and Applied Mechanics. Further information may be obtained from Professor S. Ghoshal, Room 475C, Macdonald Engineering Building.

General Regulations
To complete the Minor in Environmental Engineering, students must:

a) complete a minimum of 21 credits of Engineering courses (a minimum of 6 credits in this category must be chosen outside the student's principal departmental program) (see section A below);

b) complete a minimum of 6 credits of non-Engineering courses (each course must be chosen from a different department, and neither from the student's home department) (see section B below);

c) complete one of the corequisite courses listed below in addition to the 27 credits counted toward the Minor;

d) in the case of Agricultural and Biosystems, Chemical, and Civil Engineering students, courses taken towards the Humanities and Impact course requirements for the Major cannot double-count as Minor program courses;

e) obtain a grade of C or better in all approved courses in the Minor; and

f) satisfy the requirements of both the Minor and the student's departmental program.

Note: Not all courses listed below are offered every year. Students should consult with the department concerned about the courses which are offered in a given year.

Corequisites
(Not credited to the Minor Program)
CHEE 230 Environmental Aspects of Technology or CIVE 225 Environmental Engineering or MIME 308 Social Impact of Technology or equivalent environmental impact course

A. ENGINEERING COURSES (21 credits)

Agricultural Engineering (Macdonald Campus)
ABEN 217 Hydrology and Drainage (not open to students who have passed CIVE 323)
ABEN 322 Food Production/Processing Waste Management
ABEN 416 Engineering for Land Development
ABEN 518 Pollution Control for Agriculture

Chemical Engineering
CHEE 351 Separation Processes
CHEE 370 Elements of Biotechnology
CHEE 430 Technology Impact Assessment (not open to students who have passed WILD 437)
CHEE 452 Particulate Systems (offered in alternate years)
CHEE 471 Industrial Water Pollution Control (not open to students who have passed CIVE 430)

CHEE 472 Industrial Air Pollution Control
CHEE 591 Environmental Bioremediation

Civil Engineering and Applied Mechanics
CIVE 225 Environmental Engineering (not part of the Minor for Civil Engineering Students)
CIVE 323 Hydrology and Water Resources (not open to students who have passed ABEN 217)
CIVE 421 Municipal Systems
CIVE 430 Water Treatment and Pollution Control (not open to students who have passed CHEE 471)
CIVE 451 Geoenvironmental Engineering
CIVE 526 Solid Waste Management
CIVE 550 Water Resources Management
CIVE 553 Stream Pollution and Control
CIVE 572 Advanced Hydraulics
CIVE 574 Fluid Mechanics of Water Pollution
CIVE 575 Fluid Mechanics of Air Pollution
CIVE 577 River Engineering
CIVE 585 Groundwater Hydrology

Mechanical Engineering
MECH 343 Energy Conversion
MECH 434 Turbomachinery
MECH 447 Combustion
MECH 525 Intro. to Nuclear Engineering
MECH 526 Manufacturing and the Environment
MECH 534 Air Pollution Engineering

Mining, Metals and Materials Engineering
MIME 412 Corrosion and Degradation
MIME 451 Environmental Controls: Met'l Plants
MIME 555 Thermal Remediation of Wastes
MPMC 327 Hydrogéologie appliquée
MPMC 328 Environnement et gestion des rejets miniers
MPMC 422 Ventilation minière et hygiène du travail

B. NON-ENGINEERING COURSES (6 credits)

Agricultural Sciences (Macdonald Campus)
AEBI 200 Biology of Organisms
AEBI 201 Biology of Organisms 2
AEBI 205 Principles of Ecology
AEPH 510 Agricultural Micrometeorology
ENTO 380 Food Systems and the Environment
MICR 230 Microbial World (not open to students who have passed CHEE 370)
MICR 331 Microbial Ecology (not open to students who have passed CHEE 370)

MICR 341 Mechanisms of Pathogenicity
SOIL 210 Principles of Soil Science (not part of the Minor for Agricultural Engineering Students)

SOIL 331 Soil Physics
WILD 333 Physical and Biological Aspects of Pollution
WILD 375 Issues: Environmental Sciences
WILD 415 Conservation Law
WILD 437 Assessing Environmental Impact (not open to students who have passed CHEE 430)

WOOD 420 Environmental Issues: Forestry
ZOOOL 315 Science of Inland Waters

Anthropology
ANTH 206 Environment and Culture

Atmospheric and Oceanic Sciences
ATOC 210 Introduction to Atmospheric Science (not open to students who have passed GEOG 321)

ATOC 220 Introduction to Oceanic Sciences

Biology
BIOL 205 Biology of Organisms
BIOL 208 Introduction to Ecology
BIOL 432 Limnology
BIOL 470 Lake Management

Chemistry
CHEM 307 Analytical Chemistry of Pollutants
Earth and Planetary Sciences
EPSC 243 Environmental Geology (not open to students who have passed or who will take EPSC 221)
EPSC 549 Groundwater Hydrology

Economics
ECON 225 Economics of the Environment
ECON 326 Ecological Economics
ECON 347 Economics of Climate Change

Geography
GEOG 200 Geographical Perspectives: World Environmental Problems
GEOG 201 Introductory Geo-Information Science
GEOG 203 Environmental Systems
GEOG 205 Global Change: Past, Present and Future
GEOG 302 Environmental Management 1
GEOG 308 Principles of Remote Sensing
GEOG 321 Climatic Environments (not open to students who have passed ATOC 210)
GEOG 404 Environmental Management 2

Law
CMPL 580 Environment and the Law

Microbiology and Immunology
MIMM 211 Introductory Microbiology

Religious Studies (Macdonald Campus)
RELG 270 Religious Ethics and the Environment

Sociology
SOCI 328 Environmental Sociology

5.8 Minor in Environment

Environmental studies involve the interactions between humans and their natural or technological environment. Environmental problems are frequently comprehensive and complex, and their satisfactory solutions require the synthesis of humanistic, scientific, and institutional knowledge.

The Minor in Environment is offered and administered by the McGill School of Environment (MSE). Inquiries should be directed to Mr. Peter Barry, MSE Program Coordinator. E-mail: info.mse@mccgill.ca or telephone: (514) 398-4306.

Since the program comprises a total of 18 credits for the Minor, additional credits beyond those needed for the B.Eng. degree are required. Students wishing to receive the Minor should prepare a program and have it approved by both their regular Engineering Advisor and the MSE Advisor. For program details, see “Minor in Environment” on page 329.

5.9 Management Courses and Minor Program

Many engineers begin to assume management functions within a few years of graduation. They can, at this stage, take up the study of economics, behavioural science and other management subjects. Students wishing to include such studies in their undergraduate program can take suitable courses from Engineering and Management as listed below.

Engineering Economy MIME 310 introduces the concept of costs into evaluations of engineering projects and architectural proposals. Prerequisite to entry to this Minor is a grade C or better in MIME 310.

Several additional courses are available, subject to timetable requirements, from the core program of the Faculty of Management. Other courses from the Management core program have considerable overlap with Engineering courses and thus are available to Engineering students.

Note: Course MGCR 211, a course in statistics, and a course in micro-economics are prerequisite for MGCR 341. If included in the Minor in Management, MGCR 423 should be taken at the end of the program.

Engineering students may obtain a Minor in Management by completing 15 credits of courses from the following list of Faculty of Management courses with a grade of C or better. Successful completion of this Minor is noted on a student’s transcript.

Required Courses (6 credits)
MGCR 211 Introduction to Financial Accounting
MGCR 320 Managing Human Resources

Complementary Courses (9 credits)
3 credits, one of List A:
MGCR 213 Introduction to Management Accounting
MGCR 341 Finance 1
MGCR 373 Operations Research 1
MGCR 382 International Business

3 credits, one of List B:
BUSAM 62 Management of New Enterprises
MGCR 222 Introduction to Organizational Behaviour
MGCR 352 Marketing Management 1
MRKT 360 Marketing of Technology
MGCR 360 Social Context of Business
MGCR 423 Organizational Policy

3 credits, any available 300 or 400-level Management course (for which the prerequisites, if any, have been met).

An Engineering course deemed equivalent by the Faculty of Management may be substituted for course MGCR 373. There are three courses in Engineering that qualify: CIVE 208, MECH 474 and MPMC 326. It should be noted that MGCR 373 does not count as a technical complementary course.

A student embarking on the Minor must be prepared to take credits additional to the normal Engineering program. The student may choose the non-technical complementary course(s) required in his/her program from list B above, but under no circumstances will more than 6 credits of non-technical complementary courses count towards both the Engineering program and the Minor. Students considering this Minor should consult their advisor or the Faculty of Engineering Student Affairs Office.

5.10 Materials Engineering Minor

Engineering students may obtain a Minor in Materials Engineering by completing 24 credits chosen from the required and complementary courses listed below. By a careful selection of complementary courses, Engineering students may obtain this Minor with a minimum of 15 additional credits. It should be noted that some departments (e.g., Mechanical Engineering) will allow their students to take courses from this list providing they complete the Minor prior to graduation. For further information, please contact the coordinator, Prof. J. Szpunar, Room 2M020, Wong Building.

Required Courses (15 credits)
MIME 260 Materials Science and Engineering
or CHEE 380 Materials Science
MIME 367 Electronic Properties of Materials
MIME 465 Ceramic Engineering
CHEE 481 Polymer Engineering
CHEE 484 Materials Engineering

Complementary Courses (9 credits)
Three courses to be chosen from the following list:
CHEE 381 Polymer Technology
CHEE 483 Industrial Rheology
CHEE 487 Chemical Processing Electronics Industry
CHEE 530 Structure and Properties of Paper
CHEE 581 Polymer Composites Engineering
CHEM 455 Introductory Polymer Chemistry
ECSE 545 Microelectronics Technology
MECH 530 Mechanics of Composite Materials
MIME 360 Phase Transformations: Solids
MIME 361 Liquid State Processing of Materials
MIME 362 Mechanical Properties
MIME 412 Corrosion and Degradation
MIME 560 Joining Processes
MIME 561 Advanced Materials Design
MIME 563 Hot Deformation of Metals
MIME 564 X-Ray Diffraction Analysis of Materials
5.11 Mathematics Minor
The Minor in Mathematics for students in the Faculty of Engineering requires satisfactory passes in 24 credits of approved courses in Mathematics not including MATH 247 (or MATH 223), MATH 260 (or MATH 222), MATH 261 (or MATH 315 or MATH 325), MATH 265 (or MATH 248 or MATH 314), MATH 266, MATH 270, MATH 319.

At least 18 credits must be chosen from the Mathematics and Statistics courses approved for the Mathematics Majors or Honours program, or from MATH 249, MATH 363, MATH 381, MATH 386. The remaining credits may be chosen from mathematically-allied courses.

In addition to an Engineering Advisor, each student in the Minor program must have an Advisor designated by the Department of Mathematics and Statistics, normally beginning in the U2 year. The selection of courses for the Minor is to be done in conjunction with the Minor Advisor. Please consult the Department of Mathematics and Statistics for an Advisor.

5.12 Physics Minor
Students in Honours Electrical Engineering may obtain a Minor in Physics as part of their B.Eng. degree by satisfying the 18-credit requirement listed below:

PHYS 253 Thermal Physics
PHYS 357 Quantum Physics
PHYS 457 Quantum Physics

and at least 9 credits chosen from the following:

PHYS 332 Physics of Fluids
PHYS 362 Statistical Mechanics
PHYS 451 Classical Mechanics
PHYS 514 General Relativity
PHYS 551 Quantum Theory
PHYS 557 Nuclear Physics
PHYS 558 Solid State Physics
PHYS 559 Advanced Statistical Mechanics
PHYS 562 Electromagnetic Theory
PHYS 567 Particle Physics

Students who take PHYS 357 and PHYS 457 can omit PHYS 271 from their normal Electrical Engineering program. Candidates must go to the Department of Physics at registration time in their U3 year to fill out a Minor Program Form.

5.13 Technological Entrepreneurship Minor
Engineering students may obtain a Minor in Technological Entrepreneurship by completing 6 courses (18 credits) as listed below. Up to two courses (6 credits) may be double-counted for credit towards the Humanities and Social Sciences Complementary Courses.

This Minor is offered jointly by the Faculties of Engineering and Management. It will appeal to those students who have a concept, process or product idea in mind and who want to explore the opportunity of commercializing it. It will also be of interest to students who have a general interest in entrepreneurship and intend to pursue a career in small and medium sized high technology/engineering companies.

Students considering the Minor should consult Ms. Judy Pharo, Faculty of Engineering Student Affairs Office, e-mail: judy.pharo@mcgill.ca.

Required Courses (18 credits)
BUSA 465 (3) Technological Entrepreneurship
FACC 480 (3) Technological Entrepreneurship Project
MGCR 320 (3) Managing Human Resources
MGPO 562 (3) Seminar in Organizational Strategy
MRKT 360 (3) Marketing of Technology
ORGB 321 (3) Leadership

5.14 Software Engineering Minor
This Minor will prepare an engineering student for a career in software engineering. It will provide a foundation in basic computer science, computer programming and software engineering practice.

The Minor consists of 24 credits (8 courses). Up to four of the courses (12 credits) may be double-counted for credit towards the B. Eng. degree in Electrical Engineering or Computer Engineering. Students in other programs may double-count up to three courses (9 credits).

Students considering this Minor should contact Ms. Judy Pharo, Faculty of Engineering Student Affairs Office, e-mail: judy.pharo@mcgill.ca.

Required Courses (9 credits)
COMP 203 (3) Introduction to Computing 2
COMP 250 (3) Introduction to Computer Science

Complementary Courses (15 credits)
one course (3 credits), either:
COMP 538 (3) Person-Machine Communication
ECSE 427 (3) Operating Systems
ECSE 553 (3) Real Time Systems
ECSE 552 (3) Computer Graphics

ECSE 321 (3) Introduction to Software Engineering
ECSE 322 (3) Computer Engineering
ECSE 428 (3) Software Engineering Practice

ECSE 424 (3) Human-Computer Interaction
ECSE 427 (3) Operating Systems
ECSE 526 (3) Artificial Intelligence
ECSE 531 (3) Real Time Systems
ECSE 532 (3) Computer Graphics

MECH 474 (3) Selected Topics in Operations Research
MECH 524 (3) Computer Integrated Manufacturing
MECH 539 (3) Computational Aerodynamics
MECH 545 (3) Advanced Stress Analysis
MECH 576 (3) Computer Graphics and Geometrical Modelling

CHEE 458 (3) Computer Applications
CHEE 571 (3) Small Computer Applications: Chemical Engineering
CIVE 460 (3) Matrix Structural Analysis
CIVE 550 (3) Water Resources Management
CIVE 572 (3) Computational Hydraulics

ECSE 322 (3) Computer Engineering
ECSE 428 (3) Software Engineering Practice

ECSE 424 (3) Human-Computer Interaction
ECSE 427 (3) Operating Systems
ECSE 526 (3) Artificial Intelligence
ECSE 531 (3) Real Time Systems
ECSE 532 (3) Computer Graphics

MECH 474 (3) Selected Topics in Operations Research
MECH 524 (3) Computer Integrated Manufacturing
MECH 539 (3) Computational Aerodynamics
MECH 545 (3) Advanced Stress Analysis
MECH 576 (3) Computer Graphics and Geometrical Modelling

No more than two courses (6 credits) can be selected from the following list of courses offered by the School of Computer Science:
COMP 302 (3) Programming Languages and Paradigms
COMP 335 (3) Software Engineering Methods
COMP 420 (3) Files and Databases
COMP 421 (3) Database Systems
COMP 424 (3) Topics: Artificial Intelligence 1
COMP 426 (3) Automated Reasoning
COMP 431 (3) Algorithms and Data Structures
COMP 433 (3) Personal Software Engineering
COMP 538 (3) Person-Machine Communication