ProfessorAssociate Member, Department of Mathematics and Statistics

Degrees
BSc (Mathematics), MSc (Statistics), DSc (Mathematics)(Université catholique de Louvain, Belgium)
Short Bio
Pierre Dutilleul’s background is in mathematics and statistics, and his research interests are in statistical inference (estimation and testing) and applied statistics, the domains of application including plant science, ecology and the environmental sciences, agronomy and crop science, forestry and dendrochronology, soil science and seismology. Accordingly, he is Professor in the Department of Plant Science and Associate Member of the Department of Mathematics and Statistics and of the McGill School of Environment. In Google Scholar, Dr. Dutilleul is most known (600+ citations) for his modified ttest for correlation analysis with spatial data. Professor Dutilleul is also known for his innovative phytometric research work, in which his group is making use of a computed tomography (CT) scanner to collect 3D spatial data on plant structures and analyzing them statistically (see, e.g., his interview to the Science magazine in February 2006 and the RadioCanada Découverte reportage made in February 2007); this work has since been extended to the studies of soil and wood structures. Pierre Dutilleul has authored ~150 peerreviewed publications and one book (“SpatioTemporal Heterogeneity”, Cambridge University Press, 2011) and has coordinated from beginning to end the ebook project “Branching and Rooting Out with a CT Scanner” (Nature Publishing Group/Macmillan, 2016).
Active Affiliations
2011 to present: EditorinChief, Environmental and Ecological Statistics
2009present: Member, Board of Directors of Centre SÈVE (http://www.centreseve.org/), a multiinstitutional research centre in plant science that is funded by the Regroupements stratégiques program of the Fonds de recherche du Québec – Nature et technologies (FRQNT).
Research Interests
Two main axes of research
Spatiotemporal heterogeneity analysis:
In statistical sense and simply put, heterogeneity may concern the mean or variance parameter of the distribution of a random variable, or be related to the autocorrelation function of a stochastic process. When the value of the mean or the variance is susceptible to change, or variability is measured from observations that are partially dependent on each other because they are autocorrelated, in time or space, there is potential for a heterogeneity analysis, starting with the experimental design (Dutilleul, 1993a, Ecology). This opens the door to a lot of interesting situations and problems! A modified ttest (Dutilleul, 1993b, Biometrics) provides a solution to the problem of assessing validly the correlation between two autocorrelated spatial processes, and was followed by a modified Ftest and other modified ttests in the contexts of multivariate and multiscale analyses (e.g., Dutilleul et al., 2008a; Dutilleul and Pelletier, 2011). Concerning efficient estimation and the decomposition of the variability contained in multivariate spatial datasets, the series of geostatistical articles including Pelletier et al. (2004, 2009a, 2009b) and Larocque et al. (2007) provide solutions based on the fitting of the linear model of coregionalization by estimated generalized least squares and the development of the method of coregionalization analysis with a drift (CRAD) eventually. In a spectral instead of geostatistical approach, the method of multifrequential periodogram analysis (MFPA; Dutilleul, 2001) allows the decomposition of a time series, univariate or multivariate, into a number of periodic components, the number of periodic components as well as the period values being estimated in a stepwise procedure. I also have rising research interests in point pattern analysis (Dutilleul et al., 2009; Bonnell et al., 2013) and longterm research interests in multidimensional statistics (Dutilleul and PinelAlloul, 1996; Dutilleul, 1999), actually back to my doctoral studies.
Modern phytometry:
My research work in this area has started before that, via the search and finding of an improved quantification of the structural complexity of crop canopies (e.g. Foroutanpour et al., 2001), but it was really boosted with the creation of the CT Scanning Laboratory for agricultural and environmental research at Macdonald Campus of McGill, thanks to an NSERC Major Equipment grant (PI: Dutilleul) and the portion of a CFI grant (PI: Fortin) for the equipment of a computer room, both in 2000. Since the official opening of the facility in Fall 2003, our research group developed new procedures for the graphical, quantitative and statistical analyses of CT scan data in a broad range of applications other than the medical one for which the CT scanning equipment was designed originally. This includes fractal analysis of branching patterns of conifers, with McGill collaborators (Dutilleul et al., 2008b), and multifractal analysis of soil macropore networks, with U. Laval collaborators (Lafond et al., 2012).
Current Research
 NSERC, Individual Discovery Grant, Mathematics and Statistics Group (201520): “SpatioTemporal Heterogeneity Analysis and Modern Phytometry”
 FRQNT, Regroupements stratégiques Grant (201117) : “SÈVE: Centre de recherche en amélioration végétale”: Carole Beaulieu (PI), Pierre Dutilleul (CoApplicant)
 MITACS, Accelerate Graduate Research Internship Grant (201517): “Community benefit: Microbial consortia that stimulate plant growth”: Donald Smith (PI), Pierre Dutilleul (CoApplicant)
 NSERC, Collaborative Research and Training Experience Grant (201420): “AgroPhytoSciences”: Carole Beaulieu (PI), Pierre Dutilleul (Collaborator)
 USGS (US Geological Survey), National Earthquake Hazards Reduction Grant (201516): “Periodic Loading, Deformation and Seismicity in California”: Roland Bürgmann (PI), Pierre Dutilleul (Collaborator)
 SCEC (Southern California Earthquake Center), Science Collaborative Plan (Integration and Theory) Grant (201617): “Seasonal stress modulation on active California fault structures”: Roland Bürgmann (PI), Pierre Dutilleul (Collaborator)
Examples of current and recently completed research projects:
Following the two main axes of research described above, I am leading or recently led, or am involved or was recently involved in, the following projects. On the spatiotemporal heterogeneity analysis side, I worked with Prof. Yves Carrière (University of Arizona) and American entomologist collaborators in the frame of a USDA/RAMPfunded project, to design and implement field and landscape level reducedrisk management strategies for Lygus bug in Western cropping systems; I collaborated with Dr. Tim Haltigin (Canadian Space Agency) on pattern recognition analysis and a quantitative characterization of terrain landforms on Mars and at analog terrestrial sites; with Prof. Roland Bürgmann (UC Berkeley) and his Ph.D. student Chris Johnson, we just completed the first application of the MFPA, which resolved several periodicities in Central California earthquake catalogs that reveal external periodic forcing (Dutilleul et al., 2015a); with my former Ph.D. student Ameur Manceur, we developed unbiased modified likelihood ratio tests for simple and double separability of a variancecovariance structure – this work culminated with the release of the R package ‘sEparaTe’ (Manceur et al., 2016); and a new modified Ftest to be used in the redundancy analysis with spatial data is in preparation with Dr. Bernard Pelletier. On the modern phytometry side, collaborations with Centre SÈVE members occupy an important place; for example, with Prof. Carole Beaulieu (U. de Sherbrooke) and McGill collaborators, we completed the first phytopathological application of CT scanning (Han et al., 2008); after other successful collaborations with Prof. Suzanne Allaire (U. Laval) and Profs. Donald Smith and Joann Whalen (McGill) (see the Soil CT scan, Corn Root CT scan, and Earthworm CT Scan projects above), a new SÈVE project with Prof. Steeve Pépin and Dr. Martine Dorais (AAFC) is under way, i.e., Biochar Tomato Root CT Scan. The Frontiers in Plant Science Research Topic project “Branching and Rooting Out with a CT Scanner: The Why, The How, and The Outcomes, Present and Possibly Future”, with Dr. Jonathan Lafond (U. Laval) as Topic coEditor, has been completed this spring with the publication of an ebook; see BIO.
Courses
 Fall
 Winter
 Summer
 Fall
 Winter
 Summer
 Fall
 Winter
 Summer
 Fall
 Winter
 Summer
Publications
View a list of current publications
Selected Publications
Dutilleul, P. 1993a. Modifying the t test for assessing the correlation between two spatial processes. Biometrics 49:305314.
Dutilleul, P. 1993b. Spatial heterogeneity and the design of ecological field experiments. Ecology 74:16461658.
Dutilleul, P. and PinelAlloul, B. 1996. A doubly multivariate model for statistical analysis of spatiotemporal environmental data. Environmetrics 7:551566.
Dutilleul, P. 1999. The MLE algorithm for the matrix normal distribution. Journal of Statistical Computation and Simulation 64:105123.
Dutilleul, P. 2001. Multifrequential periodogram analysis and the detection of periodic components in time series. Communications in Statistics  Theory and Methods 30:10631098.
Foroutanpour, K., Dutilleul, P., and Smith, D. L. 2001. Inclusion of the fractal dimension of leafless plant structure in the BeerLambert law. Agronomy Journal 93:333338.
Pelletier, B., Dutilleul, P., Larocque, G., and Fyles, J. W. 2004. Fitting the linear model of coregionalization by generalized least squares. Mathematical Geology 36:323343.
Larocque, G., Dutilleul, P., Pelletier, B., and Fyles, J. W. 2007. Characterization and quantification of uncertainty in coregionalization analysis. Mathematical Geology 39:263288.
Dutilleul, P., Pelletier, B., and Alpargu, G. 2008. Modified Ftests for assessing the multiple correlation between one spatial process and several others. Journal of Statistical Planning and Inference 138:14021415.
Dutilleul, P., Han, L., and Smith, D. L. 2008. Plant light interception can be explained via computed tomography scanning: Demonstration with pyramidal cedar (Thuja occidentalis, Fastigiata). Annals of Botany 101:1923.
Han, L., Dutilleul, P., Prasher, S. O., Beaulieu, C., and Smith, D. L. 2008. Assessment of common scabinducing pathogen effects on potato underground organs via computed tomography scanning. Phytopathology 98:11181125.
Dutilleul, P., Haltigin, T. W., and Pollard, W. H. 2009. Analysis of polygonal terrain landforms on Earth and Mars through spatial point patterns. Environmetrics 20:206220.
Pelletier, B., Dutilleul, P., Larocque, G., and Fyles, J. W. 2009a. Coregionalization analysis with a drift for multiscale assessment of spatial relationships between ecological variables 1. Estimation of drift and random components. Environmental and Ecological Statistics 16:439466.
Pelletier, B., Dutilleul, P., Larocque, G., and Fyles, J. W. 2009b. Coregionalization analysis with a drift for multiscale assessment of spatial relationships between ecological variables 2. Estimation of correlations and coefficients of determination. Environmental and Ecological Statistics 16:467494.
Dutilleul, P. and Pelletier, B. 2011. Tests of significance for structural correlations in the linear model of coregionalization. Mathematical Geosciences 43:819846.
Lafond, J. A., Han, L., Allaire, S. E., and Dutilleul, P. 2012. Multifractal properties of porosity as calculated from computed tomography (CT) images of a sandy soil, in relation to the relative soil gas diffusion coefficient. European Journal of Soil Science 63:861873.
Manceur, A. M., Beaulieu, J., Han, L., and Dutilleul, P. 2012. A multidimensional statistical model for wood data analysis, with density estimated from CT scanning data as an example. Canadian Journal of Forest Research 42:10381049.
Bonnell, T. R., Dutilleul, P., Chapman, C. A., ReynaHurtado, R., Sengupta, R., and Sarabia, U. 2013. Analysing smallscale aggregation in animal visits in space and time: the STBBD method. Animal Behaviour 85:483492.
Dutilleul, P., Han, L., and Beaulieu, J. 2014. How do trees grow? Response from the graphical and quantitative analyses of computed tomography scanning data collected on stem sections. Comptes Rendus Biologies (to appear).