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Abstract
Evidence is emerging that several diseases and behavioral pathologies result
from defects in gene function. The best-studied example is cancer, but other
diseases such as autoimmune disease, asthma, type 2 diabetes, metabolic
disorders, and autism display aberrant gene expression. Gene function may
be altered by either a change in the sequence of the DNA or a change in
epigenetic programming of a gene in the absence of a sequence change. With
epigenetic drugs, it is possible to reverse aberrant gene expression profiles
associated with different disease states. Several epigenetic drugs targeting
DNA methylation and histone deacetylation enzymes have been tested in
clinical trials. Understanding the epigenetic machinery and the differential
roles of its components in specific disease states is essential for developing
targeted epigenetic therapy.
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HDAC: histone
deacetylase

HAT: histone
acetyltransferase

HDACis: HDAC
inhibitors

TSA: trichostatin A

SAHA:
suberoylanilide
hydroxamic acid

INTRODUCTION: EPIGENETICS AND HUMAN DISEASE

Changes in the normal program of gene expression are the basis for several human diseases. The
genome is programmed by the epigenome. The epigenome consists of the chromatin and its mod-
ifications, as well as a covalent modification of cytosines residing at the dinucleotide sequence CG
in DNA by methylation (1). Recently, a new level of epigenetic regulation by small noncoding
RNAs, termed microRNAs, has been discovered (2). A large number of loci in the human genome
encode noncoding RNAs, which are processed to short RNAs and target specific genes for si-
lencing. microRNAs regulate gene expression at different levels; they silence chromatin, degrade
mRNA, and block translation. microRNAs play an important role in cancer (3) and potentially
play an important role in behavioral pathologies, as well (4). Additional forms of noncoding RNA
are involved in programming gene expression. For example, the Air RNA regulates IgfIIR gene
expression in a manner dependent on the parental origin of the allele (5), and Xist RNA is involved
in inactivation of the X chromosome (6). microRNA expression is regulated by epigenetic factors
such as DNA methylation and chromatin structure (7).

CHROMATIN MODIFYING DRUGS IN CLINICAL DEVELOPMENT

DNA is wrapped around a protein-based structure termed chromatin. The basic building block
of chromatin is the nucleosome, which is formed of an octamer of histone proteins. There are 5
basic forms of histone proteins, H1, H2A, H2B, H3, and H4 (8), as well as other minor variants,
which are involved in specific functions such as DNA repair and gene activation (9). The octamer
structure of the nucleosome is composed of a H3-H4 tetramer flanked on either side with a H2A-
H2B dimer (8). The N-terminal tails of these histones are extensively modified by methylation
(10), phosphorylation, acetylation (11), sumoylation (12), and ubiquitination (13). The state of
modification of these tails plays an important role in defining the accessibility of the DNA to
the transcription machinery. Bidirectional enzymatic machineries modify the chromatin. This
offers significant opportunities for developing drugs that can affect the state of chromatin in both
directions. The main challenge in using epigenetic modulators for therapy is specificity.

HISTONE DEACETYLASE INHIBITORS AND THEIR ROLE
IN CANCER THERAPY

Histone acetylation is a global mark of gene activity. Histone deacetylases (HDACs) remove his-
tones and histone acetyl transferases (HATs) acetylate histones. The most advanced chromatin
modification targeted drugs are HDAC inhibitors (HDACis). There is a vast literature demon-
strating the involvement of HDACs in suppressing critical genes in cancer (14, 15). HDACis are
now being considered as potential therapeutics for mental pathologies, as well (16).

HDAC inhibitors fall into five different structural groups that are currently at varying stages
of development. The classic HDACis, trichostatin A (TSA) and suberoylanilide hydroxamic acid
(SAHA), are hydroxamate based. They inhibit class 1 and class 2 HDACs. SAHA is the first
clinically approved HDACi. A second group includes hydroxamate based HDACis (LBH589,
PXD101) that are currently in different stages of clinical development and inhibit class 1 and
class 2 HDACs. The third group are aliphatic based and also inhibit class 1 and class 2 HDACs.
This group includes sodium butyrate, one of the earliest HDAC inhibitors, as well as the mood
stabilizer and antiepileptic valproic acid. The fourth group includes a cyclic peptide based HDACi
(FK228) that inhibits class 1 and class 2 HDACs. The fifth group are benzamide based HDACis
that inhibit classes 1, 2, and 3 HDACs. An interesting example is MGCD0103, which showed
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isotypic specificity against class 1 HDACs and a broad spectrum of antitumor activity (17). HDAC
inhibitors have exhibited anticancer activity in preclinical tumor models and in phase 1 and phase
2 clinical trials [for a review, see (18)], and the first HDACi Vorinostsat (SAHA) was recently
approved for clinical use in cutaneous T-cell lymphoma (19). Vorinostat was safe and effective
at an oral dose of 400 mg/day with an overall response rate of 30 to 31% in refractory advanced
patients with CTCL (19). The HDAC1 isotypic specific MGCD0103 is now being tested in phase
1 and phase 2 clinical trials in solid and hematological tumors and has shown some clinical response
(20–22). Several novel HDACis are at different stages of preclinical development.

The putative mechanism of action of HDACis in cancer is as follows: Blockage of HDACs tilts
the balance of acetylation-deactylation reactions toward acetylation. This results in hyperacety-
lation of histone tails and induction of genes that suppress the cancer phenotype such as tumor
suppressor genes and metastasis- and invasion-inhibitory genes. A well-characterized example is
the tumor suppressor P21 that is induced in response to treatment with TSA (23). Another example
is E CADHERIN, a gene that blocks mesenchymal to epithelial transition and cell invasiveness and
is induced by TSA (24). HDACis block multiple biological steps in cancer progression in cultured
cancer cells, including cell cycle arrest (25), apoptosis (26), epithelial to mesenchymal transition
(27), and invasion (28).

All the known HDACis block one class or several classes of HDACs and thus should have a
global effect on gene expression. Nevertheless, comprehensive microarray gene expression ex-
periments reveal that only a fraction of the transcriptome is activated or suppressed with HDAC
inhibition (29–32). HDACs and HATs are targeted to specific genes. HDACis will affect only genes
that are associated with HDACs and are also targets of HATs. Thus, the specific gene expression
response to an HDACi will be determined by the profile of distribution of HDACs and HATs in
the genome. Oncogenic pathways target HDACs to specific genes. For example, SNAIL targets
HDAC1/2 to the promoter of E CADHERIN (33). The relatively specific effects of HDACi on
cancer cell growth suggest that critical cancer genes are HDAC bound and HAT targeted.

There are 4 defined phylogenic classes of HDACs. Specificity of HDACis might increase if the
isotypes of HDACs involved in cancer are specifically targeted. Evidence points to the involvement
of class 1 HDACs, HDAC1 and HDAC3, in several types of cancer (34). A recent example of an
isotypic-specific drug is MGCD0103, which has high affinity to HDAC1 and has shown excellent
activity in vitro and in vivo (17) in tumor models and is now in clinical trials (21). However,
even isotypic-specific inhibitors that target HDAC1 act on an enzyme with multiple genomic
targets.

HISTONE DEACETYLASE INHIBITORS AND THEIR ROLE
IN MENTAL HEALTH

Chromatin acetylation and memory were shown to be impaired in CBP knockout mice, which
suggests a role for acetylation in memory formation (35). The fact that valproic acid, a long
established antiepileptic and mood stabilizer, is also a HDAC inhibitor (36) alludes to a possible
role for HDACis in treating certain mental conditions such as schizophrenia. Valproic acid has
had some effect alleviating psychotic agitation as an adjunct to antipsychotics in schizophrenia
(37, 38). HDACis were shown to improve memory and induce dendritic sprouting in a transgenic
mouse model of neurodegeneration, which suggests that HDACis might be of use in treating
neurodegeneration and memory loss, as well (39). Although biological and behavioral effects of
HDACis in the brain are somewhat characterized, their specific gene targets and their function
in mental pathologies are not well delineated. Nevertheless, the limited clinical and animal data
suggest a potentially important role for HDACis in treatment of mental disorders.
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HMTase: histone
methyltransferase

DNMT: DNA
methyltransferase

Recent clinical developments are focusing on schizophrenia. Experiments with
a novel HDACi from the benzamide class N-(2-aminophenyl)-4-[N-(pyridin-3-yl-
methoxycarbonyl)aminomethyl]benzamide derivative (MS-275) in mice resulted in brain
region–specific induction of acetylation in the frontal cortex at two genes involved with
schizophrenia pathogenesis, reelin and gad(67) (16). Valproic acid was shown to induce the
expression of reelin, which was silenced by methionine treatment in mice (40). These studies
raise the possibility that treatment of schizophrenics with an HDACi might cause activation of
expression of critical genes such as REELIN, and could reverse the course of this disease (41).
Several clinical trials tested valproate as an adjunctive therapy to antipsychotics in schizophrenia
(38, 42, 43). There are indications that valproate might improve violent episodes in a subset
of schizophrenia patients (42), and might, in combination with antipsychotics, have an effect
on euphoric mania (38) and features of manic symptomatology in bipolar disorders (38).
Further clinical trials are needed with valproate and with more potent and selective HDACis to
methodically test their therapeutic potential in mental pathologies. Isotypic-specific HDACis
might enhance the efficacy and potency of the treatment and reduce its toxicity.

HDAC INHIBITORS AND THEIR ROLE IN OTHER
HEALTH CONDITIONS

HDACis are potential therapeutics for other health conditions. One interesting area is trans-
plantation. A special subset of T cells, regulatory T cells (Tregs), control and maintain transplant
tolerance by suppressing immune responsiveness to the transplant. HDACis activate the transcrip-
tion factor FOXP3, which plays a cardinal role in the immunosuppressive function of Treg cells
(44). HDAC9 has proven particularly important in negatively regulating FOXP3-dependent sup-
pression (44), thus raising the attractive possibility that isotypic-specific HDAC9 inhibitors might
serve as excellent agents for suppressing the antitransplant response in transplantation therapy. In
addition, it might be potentially important in suppression of other autoimmune and proinflamma-
tory conditions. Recent preclinical trials with SAHA in the rhesus macaque demonstrated efficacy
in primates in induction of Treg function (45).

Other candidates for HDACis are metabolic diseases such as type 2 diabetes. The critical
glucose transporter, GLUT4, response to exercise is regulated by HDAC5. Activation of GLUT4
through inhibition of HDAC5 might be an interesting approach to type 2 diabetes (46). Because
HDACi treatment of type 2 diabetes is anticipated to be chronic and long-term, it is especially
critical to focus on isotypic-specific inhibitors in order to limit systemic toxicity.

HISTONE METHYLTRANSFERASE INHIBITORS

A new area of potential interest is the development of histone methyltransferase (HMTase) in-
hibitors. H3K9Me2 histone is a hallmark of gene silencing and was shown to mark silenced tumor
suppressor genes (47–49). H3K27 methylation, which is targeted by the polycomb group pro-
tein and histone methyltransferase EZH2, is another interesting target for inhibition (Figure 1).
EZH2 associates with DNA methyltransferases (DNMTs) in silencing of tumor suppressor genes
(50). HMTase inhibitors could be used therapeutically to activate silenced tumor suppressor genes.
Two HMTase inhibitors were recently described. The fungal mycotoxin chaetocin, which belongs
to the class of 3–6 epidithio-diketopiperazines (ETPs), specifically inhibits the Drosophila HMTase
dSU(VAR)3-9 and its human homolog (51). A small-molecule inhibitor of G9a histone methyl-
transferase was reported last year and was shown to block H3K9Me2 in vitro and in cell culture (52).
However, it is not known whether these compounds have anticancer activity or systemic toxicity.
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M
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EZH2
K27–

Histone
demethylase
LSD1?

Oncogenic pathways

DNMT

DNMT
EZH2

K27–M K27–M 
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Figure 1
Interaction of histone methyltransferase and DNA methyltransferases (DNMTs) in methylation of tumor
suppressor genes. Tumor suppressor genes are marked by EZH2 binding and K27 methylation (K27-M).
Increase in DNMT expression as a result of activation of oncogenic pathways such as RAS or RB knockdown
increases cellular levels of DNMT1, which is then recruited to EZH2 sites in the genome, resulting in
methylation of EZH2-associated DNA (circled M). This illustrates the tight correlation between chromatin
and DNA modifications. HMTase inhibitors should cause DNA demethylation as well.

LSD1: lysine-specific
demethylase 1

Another interesting group of targets are histone demethylases (53, 54). H3K4Me2 is a hall-
mark of active genes. Because the state of histone methylation is a balance of methylation and
demethylation reactions, inhibition of H3K4 demethylase would result in increased H3K4 his-
tone methylation and activation of genes, including potential tumor suppressor genes. A candidate
target is the histone, lysine-specific demethylase 1 (LSD1), that demethylates H3K4Me2. Novel
biguanide and bisguanidine polyamine analogues were shown to inhibit LSD1, a homologue of
polyamine oxidase, and activate multiple aberrantly silenced genes in colorectal cancer cells (55).
Nonselective monoamine oxidase inhibitors such as tranylcypromine, which were used as antide-
pressive medication in psychiatry, were also found to be LSD1 inhibitors (56). It is possible that
LSD1 inhibition is involved in the mechanism of action of antidepressive agents. It is tempting to
speculate that selective inhibitors of LSD1 might be effective as antidepressants, as well.

DNA METHYLATION PATTERNS

A major element of epigenetic regulation in vertebrates is the pattern of distribution of a covalent
modification of cytosines by methylation in the genome. The primary methylated sequence in
vertebrates is composed of only two bases, the di-nucleotide sequence CG (57). Only <80% of
the methylatable CG population is methylated. Different CG sites are methylated in different
tissues, creating a pattern of methylation that is gene and tissue specific (57). This pattern creates
a layer of information that confers upon a genome its specific cell type identity. The DNA methy-
lation pattern is copied by independent enzymatic machinery, the DNMT (58). DNA methylation
patterns in vertebrates are distinguished by their tight correlation with chromatin structure. Ac-
tive regions of the chromatin, which enable gene expression, are associated with hypomethylated
DNA, whereas hypermethylated DNA is packaged in inactive chromatin (58).

Mechanisms of Silencing of Gene Expression by DNA Methylation

DNA methylation is a highly effective mechanism for silencing of gene expression in vertebrates
and plants. DNA methylation silences gene expression either by interfering with the binding of
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MBD: methylated
DNA binding domain

SAM: S-adenosyl-l-
methionine

transcription factors (59, 60), or by attracting methylated DNA-binding proteins (MBDs) such
as MeCP2 (61). MeCP2 recruits other proteins such as SIN3A and histone modifying enzymes,
which leads to formation of a closed chromatin configuration and silencing of gene expression (61).
Several methylated DNA-binding proteins such as MeCP2, MBD1, MBD2, and MBD3 suppress
gene expression by a similar mechanism (62–64). MBD3 does not bind directly methylated DNA,
but it associates with the NurD complex that contains MBD2 as the methylated DNA-binding
factor (65). Certain MBDs have other enzymatic activities. MBD4 is a thymidine glycosylase (66),
and MBD2 was suggested to bear demethylase activity (67–71), although this is highly contested.

DNA Methyltransferases

The DNA methylation reaction is catalyzed by DNMT (58). Methylation of DNA occurs imme-
diately after replication by a transfer of a methyl moiety from the donor S-adenosyl-l-methionine
(SAM, or AdoMet) in a reaction catalyzed by DNMT. Three distinct phylogenic DNA methyl-
transferases were identified in mammals. DNMT1 shows preference for hemimethylated DNA in
vitro, which is consistent with its role as a maintenance DNMT, whereas DNMT3a and DNMT3b
methylate unmethylated and methylated DNA at an equal rate, which is consistent with a de novo
DNMT role (72). It is clear, however, that this classic distinction between de novo and main-
tenance DNMT doesn’t always apply. Both classes of enzymes participate in both de novo and
maintenance methylation, and DNA methylation is a targeted process.

Is DNA Methylation a Reversible Reaction?

The most controversial issue in the DNA methylation field is the question of whether the DNA
methylation reaction is reversible (73). Dynamic reversibility is essential for life-long responsive-
ness of the DNA methylation pattern to drugs. There is a long list of data from both cell culture
and early mouse development supporting the hypotheses that active methylation occurs in em-
bryonal and somatic cells, and that a dynamic, reversible DNA methylation pattern is involved in
memory in the brain (74), as well as in an estrogen induced gene (75).

Several enzymatic activities were proposed to cause DNA demethylation. A G/T mismatch
repair glycosylase functions as a 5-methylcytosine DNA glycosylase, recognizes methyl cytosines,
and cleaves the bond between the sugar and the base. The abasic site is then repaired and replaced
with a nonmethylated cytosine resulting in demethylation (76). An additional protein with similar
activity was recently identified, the methylated DNA binding protein 4 (MBD4) (77). MBD2b
(a shorter isoform of MBD2) was shown to directly remove the methyl group from methylated
cytosine in methylated CpGs (78), but this was contested by several groups (63). GADD45A, a
damage response protein, was proposed to trigger active DNA demethylation through a repair-
mediated process (79). However, this was also contested by a later study (80). More recently, it
was proposed that the DNA methyltransferase DNMT3A acts as a demethylase, possibly through
a mechanism that involves deamination (81).

BILATERAL RELATIONSHIP BETWEEN CHROMATIN STRUCTURE
AND DNA METHYLATION

Correlation Between Chromatin and DNA Methylation States

The two components of the epigenome, DNA methylation and chromatin, are tightly correlated
(Figures 1 and 2). More than three decades ago, Cedar & Razin showed that inactive chromatin is
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M
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Figure 2
Interrelation between chromatin modifying drugs and DNA methylation. Histone deacetylase inhibitors
(HDACis) cause acetylation of target genes, which facilitates demethylation. This could serve as a way to
demethylate genes in the brain, where 5-aza-cytidine (5-azaC), a replication-dependent DNA methylation
inhibitor, would not be functional. Acetylation (Ac); methylcytidine (M).

5-azaC:
5-aza-cytidine

enriched with hypermethylated DNA and that active chromatin is associated with hypomethylated
DNA (58). These correlations were confirmed by detailed analyses of specific genes, as well as
genome-wide ChIP-on-chip analyses. The relationship between chromatin and DNA methylation
is bilateral (82).

Implications of the Interrelationship of Chromatin and DNA Methylation
on the Use of Chromatin Modifying Drugs

The interrelation between chromatin state and DNA methylation suggests that there is a crosstalk
between drugs targeting chromatin and those targeting DNA methylation. This could be utilized
therapeutically. For example, because HDACis not only affect histone acetylation but also facilitate
replication-independent DNA demethylation (70), they could be utilized to induce demethyla-
tion in post mitotic nondividing tissues such as brain or heart (Figure 2). Catalytic inhibitors
of DNMT1 such as 5-aza-cytidine (5-azaC) or Zebularine need to be incorporated into DNA;
only then do they inhibit DNMT during passage of the replication fork. Indeed, valproate, the
antiepileptic drug that is also an HDACi, induces replication-independent demethylation (69, 83)
in cell culture and demethylation of the reelin gene in mouse brain in vivo (84).

HISTONE MODIFYING ENZYMES AND RECRUITMENT OF DNA
METHYLTRANSFERASES AND DEMETHYLASES TO SPECIFIC GENES

Specific DNA methylation patterns could be directed by chromatin modification. It is now well
established that histone modification enzymes interact with DNA methylating enzymes and re-
cruit DNA methylation activity to specific targets. A growing list of histone modifying enzymes
such as HDAC1 and HDAC2 have been shown to interact with DNMT1, DNMT3a, the his-
tone methyltransferases SUV3-9, EZH2, and PRC2/3, a member of the multi-protein polycomb
complex that methylates H3 histone at the K27 residue (85–88), as well as the heterochromatin
protein HP1, which binds H3-K9 methylated histones (89). The methylated DNA binding protein
MeCP2 interacts with the HMT SUV3-9 (87).

One of the most important links between chromatin and DNA methylation is the association
of EZH2 HMTase, methylation of H3-histones at K27 residues, and DNA methylation of tumor
suppressor genes (Figure 2). A survey of CG islands methylated in lung cancer revealed that they
were also PcG EZH2 targets (90). Thus, sites bound by EZH2 are poised to become methylated,
but in normal cells the level of DNMT1 keeps the EZH2 targets unmethylated. In the process
of tumorigenesis, DNMT1 levels are induced by activation of several oncogenic pathways and
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silencing of tumor suppressor pathways (91–95). It is therefore anticipated that EZH2 inhibitors
will trigger selective loss of methylation of tumor suppressor genes.

Similar to DNA methylation, demethylation is targeted to genes by chromatin modification
changes. Transcription factors recruit HATs to specific genes. This triggers gene-specific acetyla-
tion and recruitment of RNApolII to the gene, which is followed by demethylation (96). There are
examples in the literature indicating that transcription factors such as NF-κB (97) and NGFI-A
(98) are required for replication-independent active demethylation.

In summary, DNA methylation pattern and chromatin structure are found in a dynamic balance.
This balance is required to maintain the homeostasis of epigenetic information. A change in either
of these parameters would trigger a change in the DNA methylation state.

DNA METHYLATION PHARMACOLOGY

DNA methylation could be modified pharmacologically. By modification of DNA methylation,
it would be possible to alter gene expression programs, including those for pathological gene
expression. There are potentially multiple diseases that are candidates for DNA methylation
therapy. The critical issues are: understanding the aberrations in methylation involved in the
disease, the complexity of the DNA methylation machinery, and the multiple interactions of the
DNA methylation machinery with other cellular machineries.

Aberrations of DNA Methylation Patterns and DNA Methylation
Machinery in Cancer

Cancer was the first disease for which DNA methylation was proposed as a therapeutic target
(99). The first DNA methylation inhibitor 5-azaC (or 5AC) and its deoxy analog 5-deoxycytidine
(5-azaCdR or DAC) (100) were recently approved by the FDA for treatment of myelodysplastic
syndromes (MDS) (101) (see Figure 3). Three types of aberration in the DNA methylation
machinery occur in cancer: hypermethylation of tumor suppressor genes, aberrant expression

DNA replication

5-azaC

5-azadC

5-azaCTP 

5-azac

5-azac
DNMT1

DNMT1

Figure 3
Mechanism of action of 5-aza-cytidine (5-azaC) and 5-azadC. 5-azadC is a prodrug, which needs to be
phosphorylated by cellular cytidine kinases to the triphosphate nucleotide 5-azadCTP. 5-azadCTP is
incorporated into DNA and traps the DNA methyltransferase (DNMT) in the progressing fork, resulting in
passive demethylation of the nascent strand. Methylated CGs (red circles); unmethylated CGs (purple circles).
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Figure 4
Epigenetic changes in cancer involve both methylation of tumor suppressor genes and demethylation
of prometastatic genes. The process of gene activation involves participation of histone acetyl transferases
(HATs), histone demethylases, and possibly DNA demethylases. The process of gene inactivation
involves participation of DNA methyltransferases (DNMTs), histone deacetylases (HDACs), and
histone methyltransferases (HMTases). Tumor suppressors could be activated by either HDACi or DNMT
inhibitors, however, it is possible that the DNA demethylation would activate prometastatic genes. Several
agents were shown to suppress prometastatic genes in culture and in vivo: S-adenosyl-l-methionine (SAM),
5′-methylthioadenosine (MTA), and a methylated DNA binding domain 2 (MBD2) antisense oligonucleotide.

of DNMT1 and other DNMTs, and hypomethylation of unique genes and repetitive sequences
(102–104). It is important to consider all three when designing therapeutic strategies targeting
DNA methylation (Figure 4).

Mechanism of Action of DNMT1 Inhibitors

The expression of DNMT1 is tightly regulated with the state of cell growth by transcriptional
and posttranscriptional mechanisms (105, 106). Several oncogenic pathways lead to overexpres-
sion of DNMT1 through transcriptional and posttranscriptional control of DNMT1 (91–93, 107).
Deregulation of the proper cell-cycle coordinated expression of DNMT1 causes cellular transfor-
mation (107). Overexpression of DNMT1 in nontransformed cells leads to cellular transformation
(108), whereas knockout of dnmt1 protects mice from colorectal cancer (109). Taken together, these
data support the idea that inhibition of DNMT1 should be a reasonable strategy for anticancer
therapeutics. The anticancer effects of DNMT1 inhibition were demonstrated pharmacologically
using antisense oligonucleotide inhibitors (110, 111), and genetically using dnmt1-/- mice (109).

In order to properly design and utilize therapeutic strategies that involve DNMT1 inhibition,
it is essential to understand why DNMT1 transforms cells and why DNMT1 inhibition blocks
tumor growth. DNMT1 is an enzyme that methylates DNA. The commonly accepted and attrac-
tively straightforward model is that DNMT1 inhibition causes loss of methylation during DNA
synthesis and, as a result, aberrantly methylated tumor suppressor genes are activated, arresting
tumor growth. However, knockdown of DNMT1 by siRNA or antisense oligonucleotides blocks
the growth of cancer cells by mechanisms independent of DNA methylation through induction
of tumor suppressor genes (112). This triggers a DNA damage response and inhibition of DNA
replication (113). It is plausible, therefore, that DNMT1 transforms cells by a mechanism inde-
pendent of DNA methylation and that targeting the DNA methylation–independent functions of
DNMT1 will have a strong anticancer growth effect (Figure 4).

DNA Methylation Inhibitors and DNMT1 Modulators

The three most commonly used catalytic inhibitors of DNMTs are the nucleoside analogs 5-azaC,
5-azaCdR, and Zebularine. The mechanism of action of these inhibitors is somewhat unique. They
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are first phosphorylated to the triphosphate nucleotide and incorporated into DNA during DNA
synthesis (Figure 3). DNMT1 forms a covalent bond with the carbon at position 6 of the cytosine,
as well as at the 5-aza-cytosine ring in DNA. Under normal conditions, the enzyme transfers the
methyl group from SAM to the 5′ carbon position of the cytosine ring. This enables the release of
the enzyme from its covalent bond with cytosine. When a 5′-aza-cytosine ring replaces cytosine
in the DNA, the methyl transfer does not take place and the DNMT is trapped on the DNA
(114). The replication fork progresses in the absence of DNMT, resulting in passive loss of DNA
methylation in the nascent strand but not the template. Zebularine is a nucleoside analog that,
unlike 5-azaC, is chemically stable and orally bioavailable. Zebularine was originally identified as
a cytidine deaminase inhibitor (115). Its mechanism of action is predicted to be similar to that
of 5-azaC. This compound exhibits DNA demethylation activity and shows reduced potency and
toxicity in comparison to 5-azaC.

Because both 5-azaC and Zebularine need to be incorporated into DNA to trap DNMT, they
might have additional nonspecific toxicities that are a result of the trapping of DNMT1 onto DNA,
and perhaps the trapping of other DNA binding proteins, as well (116). Non-nucleoside-based
inhibitors of DNMT1 that inhibit DNMT catalytic activity without incorporation into DNA are
therefore of much interest. Such a compound was described, but its efficacy and potency in whole
animals and humans are unclear (117).

Other commonly used drugs were shown to bring about demethylation. For example, pro-
cainamide, a widely used antiarrythmic drug, inhibits DNMT activity and promotes hypomethy-
lation (118, 119). Recently, analogues of procainamide were synthesized and one lead was reported
to inhibit DNMT1 and to cause global hypomethylation (120). Hydralazine, an antidiuretic, in-
duces hypomethylation (118). Valproic acid, a widely used antiepileptic and mood stabilizer, was
shown to cause demethylation (69, 83). These data raise the concern that other heavily used
drugs affect the DNA methylation pattern and thus can promote the expression of disease-
promoting genes (121). Future drug safety tests should include measures of DNA demethylation
(121).

Clinical Trials with DNA Methylation Inhibitors

Several clinical trials have been launched with a nucleoside-analog pan DNMT inhibitor 5-azaC
and its deoxy analog 5-deoxycytidine (DAC). Responses with tolerable adverse effects were re-
ported in clinical trials in hematological malignancies, especially in myelodysplastic syndrome
(MDS) (122). However, there was no significant success reported in solid tumors (123). The weak
response of solid tumors might result from pharmacokinetic issues such as delivery problems, as
well as dosing and scheduling. Different strategies for combining 5-azaC with other chemothera-
peutic agents or chromatin modifiers such as HDACis are now being tested and might be effective
in solid tumors (124).

Basic questions regarding the mechanism of action of 5-azaC need to be answered. Although
the basic hypothesis is that 5-azaC causes demethylation and reexpression of silenced tumor
suppressor genes, this has not yet been proven in the clinic. 5-azaC might be acting through
methylation-independent mechanisms, through induction of damage response pathways, or via
toxicity associated with incorporation into DNA to induce tumor suppressor genes. It is un-
clear whether its clinical activity is a result of DNA methylation-independent activities mediated
through 5-azaC binding of DNMT1 and other DNMTs, nor is it clear what specific DNMT iso-
forms are responsible for the anticancer activity of 5-azaC. Identifying the critical DNMT isotype
involved would guide the development of isotypic-specific DNMT inhibitors. Understanding why
5-azaC is effective in hematological cancers is critical for developing second-generation potent
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and less toxic DNA methylation inhibitors. These unresolved issues also have implications for the
dosing and scheduling of 5-azaC. Under the supposition that 5-azaC causes demethylation at low
doses, whereas it is mainly toxic at high doses, researchers in recent trials have focused on doses of
5-azaC that are well below the maximum tolerated dose (MTD) (122). These trials showed better
responses than previous trials, but there was no immediate correlation between the response past
a given threshold and the extent of demethylation. The response was not correlated with the
presence of a hypermethylated P15 prior to treatment, which served as a readout for the state of
tumor suppressor gene methylation (122). In contrast to the hypothesis of low-dose 5-azaC for
anticancer activity, a recent animal study showed that 5-azaC dose intensification increased 5-azaC
antineoplastic activity (125). The issue of scheduling and dosing is a critical issue that needs to be
resolved in animal testing and further clinical trials.

The only isotypic-specific DNMT1 inhibitor tested in clinical trials is MG98, a second-
generation antisense oligonucleotide that specifically targets DNMT1 mRNA (126). The mech-
anism of action of this class of inhibitors is different from catalytic inhibitors of DNMT1. This
agent eliminates the expression of DNMT1 protein entirely and thus targets all functional activ-
ities of DNMT1, including methylation-independent activities. Knockdown of DNMT1 results
in inhibition of DNA replication (127), triggering of damage response (113), and induction of
tumor suppressor genes (112). The immediate blockage of replication by DNMT1 knockdown
dramatically limits the demethylation induced by DNMT1 inhibition, thus avoiding the potential
deleterious impact of global demethylation (113). Knockdown of DNMT1 is devoid of the ad-
verse effect of global hypomethylation. Other isotypic-specific DNMT inhibitors might exhibit
different therapeutic effects in different conditions. They might enrich the arsenal and diversity
of epigenetic drugs. The main issue with antisense oligonucleotides is delivery to solid tumors.
Recently, the clinical trials of this class of drugs were stopped because of lack of objective re-
sponse in the last phase II trials in metastatic renal cancer (128). Nevertheless, this strategy, as
well as therapeutic siRNAs, carries great promise. Searching for agents that knock down DNMT1
rather than inhibit its catalytic activity is an alternative path to DNMT inhibitors that is worth
pursuing.

Demethylation in Cancer and Other Diseases: Possible Adverse Effects
of Inhibitors of DNA Methylation

One of the main adverse effects of catalytic inhibitors of DNA methylation enzymes is global
hypomethylation. There are several lines of data to suggest that this is an undesired effect that
might promote cancer metastasis and other disease states such as lupus and autoimmune disease.
A recent study suggests that hypomethylation is systemic in certain cancers and could be detected
even in cycling lymphocytes in bladder cancer patients (129). Demethylation activates metastatic
genes such as HEPARANASE (130) and uPA and plays an important role in metastasis (131). Screens
for hypomethylated genes in different cancers revealed several genes that were characteristically
unmethylated in different types of cancer (132, 133). In addition to activation of gene expression
through promoter demethylation, hypomethylation causes genomic instability (134) and unleashes
the expression of repetitive sequences disrupting gene expression programming (135). Although
knockout of dnmt1 protected mice from colorectal cancer, dnmt1 hypomorph alleles promoted
thymic lymphomas in mice (136).

These data have important implications for DNA methylation therapy. Catalytic inhibitors
of DNMTs that cause global hypomethylation, such as 5-azaC, and are now used in anticancer
therapy might increase the propensity of cancer cells to metastasize. We have recently shown that
treatment of non-invasive breast cancer cells with 5-azaC induces demethylation and expression of
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prometastatic genes, and stimulates invasiveness (137). It is important to carefully examine whether
a similar increase in metastases might occur in current clinical trials and to be cognizant of this
possibility in new treatments with 5-azaC. If 5-azaC is found to stimulate metastasis in humans,
this should prompt an effort to develop other classes of DNMT inhibitors, either isotypic-specific
inhibitors that do not induce metastatic genes, or agents that knock down the DNMT1 protein
or its interaction with the replication fork, as discussed above. DNMT inhibition is a powerful
strategy to block deregulated growth of cancer cells and is worth pursuing, but it is necessary
to accomplish this while avoiding the adverse effects of global hypomethylation. In this respect,
it is critical to carefully examine and map the changes in gene expression profile in response to
knockdown of each of the different DNMT1 isotypes.

Blocking Demethylation as a Therapeutic Strategy

An interesting therapeutic implication of the global hypomethylation observed in cancer is that
inhibitors of global hypomethylation might serve as cancer therapeutics (138). It is clear, however,
that we need a better understanding of the processes leading to demethylation in cancer and that
this is an important field of research that requires additional input.

Two different approaches were used to block demethylation in cancer. The first approach
involved treatment with the methyl donor SAM. The common sense rationale behind using SAM
is that SAM is a methyl donor of all DNMT reactions and increasing cellular levels of SAM would
enhance the activity of DNMT, but this obviously holds true only if the cellular concentration of
SAM is well below the Km for the different DNMTs. It is not clear that this is the case. Another
proposed explanation is that increased SAM concentrations change the SAM:SAH ratio. SAH is
a potent inhibitor of DNMT, therefore, by increasing SAM we reduce inhibition of DNMT and
increase the rate of methylation (139). A third hypothesis is that SAM inhibits demethylation,
thus tilting the equilibrium of the DNA methylation reaction toward methylation. SAM was
shown to inhibit demethylase activity in vitro and in cells (68). SAM is highly unstable and it
is not clear whether its in vivo activities are caused by SAM or by SAM metabolites such as 5′-
methylthioadenosine (MTA) (140). MTA was recently shown to affect histone methylation as a
HMTase inhibitor (141).

Notwithstanding the mechanism through which SAM induces genomic methylation, SAM was
previously shown to be chemoprotective in a liver cancer model in rodents (140). In vitro treatment
of human breast and prostate cancer cell lines with SAM resulted in inhibition of invasion in vitro,
and metastasis and tumor growth when the cells were transplanted into nude mice in vivo (131,
142). These results call for an effort to develop SAM analogues with improved pharmacokinetics.

Another important line of investigation involves identifying proteins responsible for demethy-
lation of metastatic genes in cancer and targeting them for inhibition. The MBD2 controversy
focused on in vitro activity of MBD2 following in vitro translation of the recombinant pro-
tein (143). However, follow up data showed that transient coexpression of MBD2 and methy-
lated promoters resulted in demethylation and activation of gene expression (144) and knock-
down of MBD2-inhibited replication-independent active demethylation induced by valproate
(69). Interestingly, ectopic expression of MBD2 in liver cells induced the expression of type II
HEXOKINASE, a gene suppressed by methylation in normal liver cells and induced by demethy-
lation in liver cancer cells (145).

Knockdown of MBD2 blocked tumor growth in vitro and in vivo (146, 147). Blocking MBD2
in breast and prostate cancer cell lines inhibits tumor growth, invasiveness, and metastasis in vivo
(131, 142). Antisense oligonucleotides, siRNA inhibitors, and MBD2 antagonists are therefore
potential promising antimetastatic candidates.
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DNA Methylation and Demethylation Inhibitors in Other Diseases

The brain is now a fertile ground for DNA methylation research. Emerging data suggest that both
early and adult environments affect DNA methylation in the brain, and that DNA methylation
is changing in a physiological timescale during memory acquisition, thereby illustrating its dy-
namic nature (148–150). There are data to suggest that increased DNMT1 expression and hyper-
methylation of REELIN in the cortex might be involved in schizophrenia (151–155). Animal mod-
els have provided evidence that hypermethylation of reelin could be reversed by pharmacological
treatment with HDACi (16, 84). DNMT inhibitors might be of therapeutic utility in schizophre-
nia. However, the currently approved DNA methylation inhibitor 5-azaC requires DNA synthesis
for its action. 5-azaC is a prodrug that has to be phosphorylated to the tri-nucleotide form and
incorporated into DNA to trap the DNMT during progression of the DNA replication fork (114,
156) (Figure 3). Thus, 5-azaC seems to be of essentially no utility in the brain, where a vast
majority of neurons are postmitotic and do not incorporate DNA. Surprisingly, several recent
studies attempted to inhibit DNA methylation in the brain using 5-azaC (157), but if this was
successful it must have been accomplished through a different, yet unknown mechanism. A pos-
sible strategy to achieve demethylation is using HDACis. Indeed, TSA (158), valproate (40), and
a benzamide HDACi, MS-275 (16), induced demethylation in the brain (Figure 2). Neverthe-
less, it might be valuable to develop small-molecule DNMT antagonists, which do not require
incorporation into DNA and could thus serve as DNA methylation inhibitors even in postmitotic
tissues.

Autoimmune diseases are an example of a health state with documented involvement of hy-
pomethylation. Hypomethylation of the DNA in T cells is believed to drive expression of antigens
and other genes that stimulate the autoimmune response in lupus (159–162). It was recently shown
that DNA in T cells from lupus patients were hypomethylated and, interestingly, the level of hy-
pomethylation correlated with the levels of expression of MBD2 (163). MBD2 inhibitors might
be of interest in the treatment of lupus and perhaps other autoimmune diseases. In addition, it
might be worthwhile to test whether SAM or MTA would be effective. A similar approach might
be of value in other autoimmune and hyperinflammatory diseases.

SUMMARY AND PERSPECTIVES

In summary, chromatin modification and DNA methylation and demethylation machineries are
attractive therapeutic targets in cancer and other diseases, however, certain cardinal issues need
to be addressed before the full potential in therapy is realized. First, the epigenetic machinery is
complex. It is therefore important to understand the differential role of specific isotypes of all the
participants (HDACs, HMTases, DNMTs, and demethylases) in the specific disease in question.

Second, disease-specific changes in DNA methylation or histone modification require targeting
of histone and DNA modification enzymes to specific genes by specific factors. Targeting these
factors is an interesting possibility for drug development.

Third, it is important to understand the exact mechanism through which certain DNA and
histone modifying enzymes promote disease. Some of the epigenetic proteins such as DNMT1
are multifunctional proteins. The bona fide enzymatic function might not be exclusively involved
in transformation. It is clear, for example, that DNMT1 is involved in cancer through DNA
methylation-independent and -dependent mechanisms (95, 112).

Fourth, in addition to DNMTs, the DNA demethylation machinery is emerging as a new
target for inhibition of metastasis, one of the most intractable facets of cancer, and for other
diseases such as autoimmune disease. The fifth issue relates to the interrelationship between the
DNA methylation and chromatin modification machineries. This has several implications. First,
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adverse and long-term effects through DNA methylation changes need to be considered. Second,
HDACis could be used as a strategy to block DNA methylation in postmitotic tissues. Third,
different combinations of histone and DNA modification inhibitors have synergistic effects, thus
providing a promising approach in therapy (164).

Fourth, the emerging importance of DNA methylation in the brain and in mental health calls
for the development of DNMT inhibitors that do not require DNA replication for their mode
of action. Understanding how some epigenetic agents might act as psychiatric drugs is one of the
most exciting new directions in epigenetics.

Although many questions remain open, the DNA methylation and chromatin modification
machineries appear to be extremely important targets for novel therapeutics that are bound to
have an impact on human disease. These classes of drugs will open new chapters in pharmacology
and in our therapeutic arsenal.
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