genetics
Understanding the effects of genes on human traits
Recent technological developments in genomics have revealed a large number of genetic influences on common complex diseases, such as diabetes, asthma, cancer or schizophrenia. However, discovering a genetic variant predisposing to a disease is only a first step. To apply this knowledge towards prevention or cure, including tailoring treatment to the patient’s genetic profile –also known as personalized medicine – we need to know how this genetic variant affects health.
Contact Information
New avenue for improved treatment of cystic fibrosis
Cystic fibrosis is caused by a mutation in the gene that encodes a particular protein, known as the cystic fibrosis transmembrane conductance regulator (or CFTR). Although this discovery was made 25 years ago and the lives of those with the disease have been extended, there is still no effective cure for the disease. Now new information about the nature of the most common form of mutation in the CFTR gene, gathered by a research team led by Dr. Gergely Lukacs of the Department of Physiology at McGill University, offers exciting new avenues for improving the treatment of the disease.
Contact Information
Genomic atlas of gene switches in plants
What allows certain plants to survive freezing and thrive in the Canadian climate, while others are sensitive to the slightest drop in temperature? Those that flourish activate specific genes at just the right time -- but the way gene activation is controlled remains poorly understood.
Contact Information
Secondary Contact Information
New cause of thyroid hormone deficiency discovered
International researchers, including a team at McGill University, have discovered a new cause for thyroid hormone deficiency, or hypothyroidism. This common endocrine disorder is typically caused by problems of the thyroid gland, and more rarely, by defects in the brain or the pituitary gland (hypophysis). However, a new cause of the disease has been discovered from an unsuspected source and is reported in the journal Nature Genetics. The scientists, led by McGill Professor Daniel Bernard, Department of Pharmacology and Therapeutics in the Faculty of Medicine, identified a new hereditary form of hypothyroidism that is more prevalent in males than in females. This sex bias shone a light on where to look for the underlying cause.