DNA
DNA ‘cages’ may aid drug delivery
Nanoscale “cages” made from strands of DNA can encapsulate small-molecule drugs and release them in response to a specific stimulus, McGill University researchers report in a new study.
DNA ‘cages’ may aid drug delivery
Nanoscale “cages” made from strands of DNA can encapsulate small-molecule drugs and release them in response to a specific stimulus, McGill University researchers report in a new study.
DNA ‘cages’ may aid drug delivery
Nanoscale “cages” made from strands of DNA can encapsulate small-molecule drugs and release them in response to a specific stimulus, McGill University researchers report in a new study.
DNA ‘cages’ may aid drug delivery
Nanoscale “cages” made from strands of DNA can encapsulate small-molecule drugs and release them in response to a specific stimulus, McGill University researchers report in a new study.
DNA 'cages' may aid drug delivery
Nanoscale “cages” made from strands of DNA can encapsulate small-molecule drugs and release them in response to a specific stimulus, McGill University researchers report in a new study.
Contact Information
Secondary Contact Information
Understanding the effects of genes on human traits
Recent technological developments in genomics have revealed a large number of genetic influences on common complex diseases, such as diabetes, asthma, cancer or schizophrenia. However, discovering a genetic variant predisposing to a disease is only a first step. To apply this knowledge towards prevention or cure, including tailoring treatment to the patient’s genetic profile –also known as personalized medicine – we need to know how this genetic variant affects health.
Contact Information
Genomic atlas of gene switches in plants
What allows certain plants to survive freezing and thrive in the Canadian climate, while others are sensitive to the slightest drop in temperature? Those that flourish activate specific genes at just the right time -- but the way gene activation is controlled remains poorly understood.
Contact Information
Secondary Contact Information
Chronic pain alters DNA marking in the brain
Contact Information
Early life adversity affects broad regions of brain DNA
Early life experience results in a broad change in the way our DNA is “epigenetically” chemically marked in the brain by a coat of small chemicals called methyl groups, according to researchers at McGill University. A group of researchers led by Prof. Moshe Szyf, a professor of Pharmacology and Therapeutics in the Faculty of Medicine, and research scientists at the Douglas Institute have discovered a remarkable similarity in the way the DNA in human brains and the DNA in animal brains respond to early life adversity. The finding suggests an evolutionary conserved mechanism of response to early life adversity affecting a large number of genes in the genome.