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Abstract. This paper examines the induction of emotions while listening to 
Romantic orchestral music. The study seeks to explore the relationship between 
subjective ratings of felt emotion and acoustic and physiological features. We 
employed 75 musical excerpts as stimuli to gather responses of excitement and 
pleasantness from 20 participants. During the experiments, physiological 
responses of the participants were measured, including blood volume pulse 
(BVP), skin conductance (SC), respiration rate (RR) and facial electromyography 
(EMG). A set of acoustic features was derived related to dynamics, harmony, 
timbre and rhythmic properties of the music stimuli. Based on the measured 
physiological signals, a set of physiological features was also extracted. The 
feature extraction process is discussed with particular emphasis on the interaction 
between acoustical and physiological parameters. Statistical relations among 
audio, physiological features and emotional ratings from psychological 
experiments were systematically investigated. Finally, a forward step-wise 
multiple linear regression model (MLR) was employed using the best features, 
and its prediction efficiency was evaluated and discussed. The results indicate that 
merging acoustic and physiological modalities substantially improves prediction 
of participants’ ratings of felt emotion compared to the results using the 
modalities in isolation. 

1 Introduction 

With the recent advances in diverse fields of technology there is an emerging interest 
in recognizing and understanding the emotional content of music. Music emotion 
recognition plays an important role in music retrieval, mood detection, health care, 
and human-machine interfaces. Moreover, the entire body of music collections 
available to humans is increasing rapidly, and there is a need to intelligently classify 
and retrieve music according to the emotions they elicit from listeners. Indeed, 
emotion recognition is considered a key issue in integrating emotional intelligence 
within advanced human-machine interaction. Thus, there is strong motivation for 
developing systems that can recognize music-evoked emotions. In the following, we 
briefly review some of the work related to music emotion recognition based on 
acoustical and physiological features. 



 Psychophysiological Measures of Emotional Response to Romantic Orchestral Music 45 

The emotions elicited during music listening are influenced by a number of 
structural music characteristics, including tempo, mode, timbre, harmony and 
loudness [1, 2]. In a pioneering publication [3], Li and Ogihara used acoustic features 
to classify music into mood categories. They achieved an accuracy of 45% using a 
database of 499 music clips selected from different genres annotated by a subject. 
They used a SVM-based multilabel classification method and determined the 
accuracy of their model using micro and macro-averaged precision. In [4] the authors 
used a similar variety of acoustic features for 800 classical music clips and achieved a 
recognition accuracy of 85%. Within the framework of Music Information Research 
Evaluation eXchange (MIREX), Tzanetakis reported an accuracy of 63.5% using a 
limited number of acoustic features [5]. Within the same framework, Peeters used a 
larger number of acoustic features and reported only a slight improvement [6], 
whereas in the next year Kim et al. proposed a system that reached a recognition 
accuracy of 65.7% [7].  

Music emotion recognition has employed a number of approaches. In [8] the 
automatic detection of emotion in music was modeled as a multi-label classification 
task. A series of multi-label classification algorithms were tested and compared, with 
the predictive power of different audio features reaching an average precision of 81%. 
However, recent research in music emotion recognition from audio has shown that 
regression approaches can outperform existing classification techniques. In [12] the 
effectiveness of emotion prediction using different musical datasets (classical, film 
and popular music) was investigated.  Their model had low generalizability between 
genres for valence (16%) and moderate generalizability between genres for arousal 
(43%), suggesting that valence operates differently depending on the musical genre. 
In [9] the authors used multiple acoustic features to predict pleasure and arousal 
ratings for music excerpts. They found that audio features are better for predicting 
arousal than valence and that the best prediction results are obtained for a 
combination of different features. In [10] a regression approach with combinations of 
audio features was employed in music emotion prediction. They found that the best 
performing features were spectral contrast and Mel-frequency cepstral coefficients 
(MFCC). The best performance, however, was achieved by a combination of features.  
In a recent publication [11], audio-based acoustical features for emotion classification 
were evaluated. A data set of 2090 songs was used, different audio features were 
extracted, and their predictive performance was evaluated. The results suggest that a 
combination of spectral, rhythmic and harmonic features yields the best results. 

Despite the progress achieved on emotion recognition using audio features alone, 
the success of these various models has reached a glass ceiling. In order to improve 
the recognition accuracy of audio-based approaches, many studies have exploited the 
advantages of using additional information from other domains. This approach has led 
to the development of methods combining audio and lyrics [13-16], audio and tags 
[17], and audio and images [18], all of which result in moderate increases in 
recognition accuracy. There is a large body of studies establishing the relationship 
between physiological responses and musical emotions during music listening. 
Several studies have attempted to demonstrate whether the basic emotions induced by 
music are related to specific physiological patterns [19-23]. The relation between 



46 K. Trochidis et al. 

discrete emotions and emotion-specific physiological response patterns predicted by 
theorists, however, still remains an open problem.  

Indeed, the attempt to provide robust, incontrovertible evidence of emotional 
induction during music listening remains a tremendous challenge. The adoption of 
psychophysiological measures provides one possible solution, as they offer direct, 
objective evidence of autonomic and somato-visceral activation. Physiological 
responses during music listening include variations in heart rate, respiration 
electrodermal activity, finger temperature, and surface electromyography. Little 
attention, however, has been paid to the effect of physiological signals in music emotion 
recognition. The main problem of using physiological signals is the difficulty of 
mapping physiological patterns to specific emotional states. Furthermore, recording 
physiological signals requires the use of sensors and the analysis of signals that often 
reflect innervation by distinct branches of the autonomic nervous system (ANS). On the 
other hand, physiological signals have certain advantages, as they provide an objective 
measure of the listener’s emotional state without relying on participant self-reports.  

In [24] the authors used movie clips to induce emotions in 29 subjects, and 
combining physiological measures and subjective ratings achieved 83% recognition 
accuracy. In [25] the authors recorded four biosignals from subjects listening to songs 
and reached a recognition accuracy of 92%. Kim [26] used music excerpts to 
spontaneously induce emotions, measured electromyogram, electrocardiogram, skin 
conductivity and respiration changes, and then extracted the best features, achieving a 
classification accuracy of 70% and 90% for subject-independent and subject-dependent 
classification, respectively. Recently, in [27] a multimodal approach was based on 
physiological signals for emotion recognition, using music video clips as stimuli. They 
recorded EEG signals, peripheral physiological signals and frontal video. A variety of 
features was extracted and used for emotion recognition by using different fusion 
techniques. The results, however, demonstrated only a modest increase in recognition 
performance, indicating limited complementarity of the different modalities. 

An important issue in musical emotion recognition is the modeling of perceived 
musical emotions. The two main approaches to modeling emotions in music-related 
studies are the categorical and the dimensional approach. According to the categorical 
approach, emotions are conceptualized as discrete entities, and there are a certain number 
of basic emotions, such as happiness, sadness, anger, fear and disgust, from which all 
subsequent emotional states are ultimately derived [28]. In music-related studies, emotion 
researchers often employ music-specific emotion labels (awe, frisson), or they use 
emotion terms that are more suitable to everyday musical experience (peacefulness, 
tenderness). Whereas the categorical model often employs these apparently distinct 
labels, in the dimensional approach all of the emotions experienced in everyday life are 
characterized (or supported) by two underlying dimensions: valence, which is related to 
pleasure-displeasure, and arousal, which is related to activation-deactivation. Thus, all 
emotions can be characterized in terms of varying degrees of valence and arousal [29, 
30]. Both approaches have been recently investigated in relation to musical emotions 
[31], and their limitations were analyzed and discussed. In our study, the dimensional 
approach was employed because existing research in psychophysiology can find little 
evidence to suggest that there are emotion-specific physiological descriptors [21]. Rather, 
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psychophysiological responses appear to be related to the underlying dimensions of 
arousal and valence [32]. 

To the best of our knowledge, a combination of audio and physiological features 
has not been used in music emotion recognition research. There are, however, studies 
combining speech and physiological features for emotion recognition. In [33] and 
[34] the authors used combined voice data and physiological signals for emotion 
recognition. By fusing the features from both modalities, they achieved higher 
recognition accuracy compared with recognition results using the individual 
modalities. 

The primary aim of the present work is to investigate the acoustic and 
physiological effects on the induction of emotions by combining audio and 
physiological features for music emotion recognition. Following [35] and [36], we 
argue that there is a possible route of emotion elicitation by peripheral feedback, and 
thus, that physiological arousal may influence the intensity and valence of emotions. 
In our study, we want to investigate the possibility of increasing the prediction rate of 
felt emotion through peripheral feedback by using acoustic and physiological features. 
The emotion recognition task is formulated as a regression problem, in which the 
arousal and valence ratings for each musical excerpt are predicted using a forward 
step-wise multiple linear regression model. During the experiment, music excerpts 
were employed as stimuli and the physiological responses of the listeners were 
measured, which included blood volume pulse, respiration rate, skin conductivity, and 
facial electromyographic activity. Both audio and physiological features were 
extracted, and the best features were combined and used for emotion recognition.  

To combine the two modalities, it is important to determine at which stage in the 
model the individual modalities should be combined, or fused. A straightforward 
approach is to simply merge the features from each modality, called feature-level 
fusion. The alternative is to fuse the features at the decision level based on the outputs 
of separate single classifiers, called decision-level fusion. The existing literature on 
bimodal emotion recognition using speech features and physiological changes [34] 
demonstrates that feature-level fusion provides higher recognition accuracies 
compared to decision-level fusion. Therefore, in our study we employed feature-level 
fusion.  

2 Methods 

Participants. Twenty non-musicians (10 females) were recruited as participants 
(mean age = 26 years). The participants reported less than one year of training on an 
instrument over the past five years and less than two years of training in early 
childhood. In addition, all participants reported that they liked listening to Classical 
and Romantic music. The participants also filled out a demographic questionnaire and 
passed an audiometric test in order to verify that their hearing was normal. 
 
Stimuli. Seventy-five music excerpts from the late Romantic period were selected for 
the stimulus set. The excerpts were 35 to 45 seconds in duration and selected by a 
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music theorist from the Romantic, late Romantic, or Neo-classical period (from 1815 
to 1900). These genres were selected under the assumption that music from this time 
period would elicit a variety of emotional reactions along both dimensions of the 
emotion model. Moreover, each excerpt was selected to clearly represent one of the 
four quadrants of the two-dimensional emotion space formed by the dimensions of 
arousal and valence. Ten excerpts were chosen from a previous study [37] and 65 
excerpts from our own personal collection. Aside from the high-arousal/negative-
valence quadrant, which had 18 excerpts, the other three quadrants contained 19 
excerpts each.  
 
Procedure. During the experiment, five physiological signals were measured, 
including facial electromyography (EMG) of the smiling (zygomaticus major) and 
frowning (corrugator supercilii) muscles, skin conductance (SC), respiration rate 
(RR), and blood volume pulse (BVP). EMG measures the muscle activity through 
surface voltages generated when muscles contract. It is often employed to index 
emotional valence [38]. EMG sensors were placed above the zygomaticus major and 
corrugator supercilli muscles. SC is typically employed to index the physiological 
arousal of participants [38]. It measures the skin’s ability to conduct electricity as a 
result of variations in sweat-gland activity. To measure SC, we positioned electrodes 
on the index and ring fingers of the non-dominant hand. RR is one of the 
characteristics of respiration change. A stretch sensor attached around the torso was 
used to record the breathing activity of the listeners. Heart rate variability (HRV) is 
the corresponding characteristic of heart rate activity derived from blood volume 
(BVP) pulse, which is measured with a plethysmograph attached to the middle finger 
of the non-dominant hand. 

During the experiment the participants were asked to sit in a comfortable and 
relaxed position. They were told that it was crucial not to move during the baseline 
recordings and while the excerpts were playing. Following a practice trial to 
familiarize the participants with the experimental task, there was a two-minute 
baseline period in which their physiological measurements were taken. To remove 
inter-individual variability, seven additional one-minute baselines were recorded after 
each block of ten excerpts. Following each excerpt, participants rated their level of 
experienced excitement and pleasantness on 7-point continuous-categorical Likert 
scales.  

3 Audio Feature Extraction 

A theoretical selection of musical features following [12] was made based on musical 
characteristics such as dynamics, timbre, pitch, harmony, rhythm and structure using 
the MIR Toolbox for MATLAB [40]. For all features a series of statistical descriptors 
was computed, such as the mean, the standard deviation and the linear slope of the 
trend across frames. A total of 58 descriptors related to these features was thus 
extracted from the musical excerpts. Table 1 lists the various acoustic features and 
statistical descriptors extracted. 
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Table 1. The acoustic feature set extracted from the audio signals 

Domain No. Name 
Dynamics 1-3 RMS1,2,3  
Timbre 
 
Pitch 
Tonality 

4-18 
 
19-24 
25-36 

Spectral Centroid1,2,3 Spectral Flux1,2,3 Spectral 
Spread1,2,3 Spectral Entropy1,2,3 Roughness1,2,3 

Chromagram1,2,3 Pitch1,2,3 

Key Clarity1,2,3 Key Strength1,2,3 Harmonic Change 
Detection Function1,2,3 Mode1,2,3  

Rhythm 37-49 Fluctuation Pattern1 Attack Times1,2,3 Event Density1,2,3  

Tempo1,2,3 Pulse Clarity1,2,3  

Structure 50-58 Spectral Novelty1,2,3, Rhythmic Novelty1,2,3, Tonal 
Novelty1,2,3 

       
          Mean1 Standard deviation2 Slope3 

3.1 Dynamics 

We computed the RMS amplitude to examine whether the energy is evenly 
distributed throughout the signals, or to determine whether certain frames are more 
contrasted than others. 

3.2 Timbre 

A set of 5 features related to musical timbre were extracted from the Short-term 
Fourier Transform: Spectral Centroid, Spectral Flux, Spectral Spread and Spectral 
Entropy. Spectral Centroid represents the degree of timbre brightness. Spectral Flux is 
related to the degree of temporal evolution of the spectral envelope. Spectral Spread 
indicates the breadth of the spectral envelope. Spectral Entropy is used to capture the 
formants and the “peakedness” of the spectral distribution. Roughness was also 
derived from the peaks in the spectrogram based on the model in [41] and represents 
the sensory dissonance of the sound. 

3.3 Pitch 

Two pitch features were derived. The Chromagram represents the energy distribution of 
the signals wrapped around the 12 pitch classes. The Pitch was also computed using an 
advanced pitch extraction method which divides the audio signal into two channels 
below and above 1000 Hz and computes the autocorrelation of the low channel, the 
envelope of the high channel, and sums the autocorrelation functions [45].  

3.4 Tonality 

The signals were also analyzed according to their harmonic characteristics. A 
Chromagram representing the distribution of pitch-classes is created. Key Strength 
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computes the cross-correlation of the Chromagram with each possible major or minor 
key. The Key Clarity is the Key Strength of the key with the highest Key Strength out 
of all 24 keys [42]. The Harmonic Change Detection Function is a measure of the flux 
of the Tonal Centroid, and it captures the tonal diversity across time [43]. Finally, to 
model the Mode of each piece, a computational model that distinguishes major and 
minor excerpts was employed. It calculates an overall output that continuously ranges 
from zero (minor mode) to one (major mode) [44]. 

3.5 Rhythm 

Fluctuation Pattern represents the rhythmic periodicity along auditory frequency 
channels) [46], and Attack Times refers to the estimation of note onset times. The Event 
Density measures the overall amount of simultaneous events in a musical excerpt. The 
tempo of each excerpt in beats per minute (BPM) was estimated by first computing a 
spectral decomposition of the onset detection curve. Next, the autocorrelation function 
was translated into the frequency domain in order to be compared to the spectrum curve, 
and the two curves were subsequently multiplied. Then a peak-picking algorithm was 
applied to the spectrum representation to select the best candidate tempo. The Pulse 
Clarity, a measure of the rhythmical and repetitive nature of a piece, was finally 
estimated by the autocorrelation of the amplitude envelope.  

3.6 Structure 

A degree of repetition was estimated through the computation of novelty curves [47] 
based on the spectrogram, the autocorrelation function, the key profiles and the 
Chromagram, each representing a different aspect of the novelty or static temporal 
nature of the music, such as Spectral, Rhythmic, and Tonal Novelty. 

4 Physiological Feature Extraction 

From the five psychophysiological signals, we calculated a total of 44 features, 
including conventional statistics in both the time and frequency domains. Table 2 lists 
the various physiological features extracted. 

Table 2. The feature set extracted from the physiological signals 

Domain No Name 
Blood volume pulse 1-6 BVP1,2,3,4,5,6  
Heart-rate 
Respiration-rate  

7-21 
22-26 

Heart-rate1,2,3,4,5,6,7,8,9 SDNN1,2,3,4,5,6  

BRV1,2,3,4,5 

Skin conductivity 
Electromyography 
(Corrugator-Zygomaticus) 

27-32 
33-44 

Skin conductivity1,2,3,4,5,6  

EMGc1,2,3,4,5,6 EMGz1,2,3,4,5,6  

       
      Mean1 Standard deviation2 Median3 Maximum4 Minimum5 Derivative6  SpecVLF7 SpecLF8 SpecHF9 
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4.1 Blood Volume Pulse (BVP) 

First, we normalized the blood volume pulse (BVP) signal by subtracting the 
preceding baseline from the signal. From the normalized BVP we computed time-
series statistics, such as the mean, standard deviation, median, max, min and the 
derivative. To obtain HRV (heart rate variability) from the initial BVP signal, each 
signal was filtered, the QRS complex was detected, and finally the RR intervals (all 
intervals between adjacent R waves) or the normal-to-normal (NN) intervals (all 
intervals between adjacent QRS complexes resulting from sinus node depolarization) 
were determined. In the time-domain representation of the HRV time series, we 
calculated statistical features, including the mean, the standard deviation of all NN 
intervals (SDNN), the standard deviation of the first derivative of the HRV, the 
number of pairs of successive NN intervals differing by greater than 50 ms (NN50), 
and the proportion derived by dividing NN50 by the total number of NN intervals. In 
the frequency-domain representation of the HRV time series, three frequency bands 
are typically of interest: the very-low frequency (VLF) band (0.003-0.04 Hz), the low 
frequency (LF) band (0.04-0.15 Hz), and the high frequency (HF) band (0.15-0.4 Hz) 
[26]. From these sub-band spectra, we computed the dominant frequency and mean 
power of each band by integrating the power spectral densities (PSD) obtained using 
Welch’s algorithm. 

4.2 Respiration Rate  

After detrending with the mean value of the entire signal and low-pass filtering with a 
cut-off frequency of 2.2 Hz, we calculated the Breath Rate Variability (BRV) by 
detecting the peaks in the signal. From the BRV time series, we computed the mean, 
standard deviation, median, max, min and derivative values. 

4.3 Skin Conductivity (SC) 

The mean, median, standard deviation, max, min, and derivative were extracted as 
features from the normalized SC signal and the low-passed SC signal, which used a 
0.3 Hz cut-off frequency. In order to remove DC drift caused by physical processes 
like sweat evaporation off the surface of the skin, the SC signal was detrended by 
removing continuous, piecewise linear trends in the two low-passed signals: the very 
low-passed (VLP) signal was filtered with a 0.08 Hz cutoff frequency, and the low-
passed (LP) signal was filtered with a 0.2 Hz cutoff frequency. 

4.4 Electromyography (EMG) 

From the EMG signals we took a similar approach to the one we employed for the SC 
signal. From the normalized and low-passed signals, the mean, median, max, min, and 
derivative of the signal were extracted as features.  
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5 Results 

For the 75 excerpts a forward step-wise multiple linear regression (MLR) model 
between the acoustical and physiological descriptors and participant ratings was 
computed to gain insight into the importance of features for the arousal and valence 
dimensions of the emotion space. Table 3 provides the regression estimates and 
variance inflation factors (VIF) for each of the excitement and pleasantness ratings. 
The VIF quantifies the severity of multicollinearity in an ordinary least squares 
regression analysis. Table 4 shows the outcome of the corresponding analysis of the 
physiological features.  Finally, Table 5 shows the outcome of the analysis of the 
combined acoustic and physiological features.  

Table 3. Mean audio features and standardized beta weights of the regression analysis for 
excitement and pleasantness  

Excitement    ȕ VIF  Pleasantness           ȕ VIF 
RMS ** .17 2.30 Key Clarity **        .51 1.06 
Spectral Novelty ** -.21 1.56 Pitch **        .32 1.06 
Spectral Spread ** -.41 2.10 Key Mode **        -.30 1.00 
Spectral Entropy ** 
Spectral Centroid ** 
Pulse Clarity ** 

.24 

.25 

.18 

1.15 
1.13 
2.00 

Attack Times *        -.19 1.00 

 
R2 = .84 for Excitement. R2  = .42 for Pleasantness. * p < .05, ** p < .01 

Table 4. Physiological features and standardized beta weights of the regression analysis for 
excitement and pleasantness 

Excitement    ȕ VIF Pleasantness            ȕ VIF 
SDNN1** -.42 1.32  
Bvp3** -.27 1.08 Heart-rate2**        -.37 1.00 
Skin C4** -.31 1.17 EMGc4**        -.28 1.00 
EMGz1** .25 1.11    
Skin C1* 
Heart-rate5* 

.21 

.20 
1.07 
1.08 

   

Mean1 Standard deviation2 Maximum3 Minimum4 SpecHF5 
R2 = .55 for Excitement. R2  = .21 for Pleasantness. * p<.05, ** p<.01 

Shown in Table 3, the regression model provides a good account of excitement  
(R2 = .84) using only acoustic features (means of RMS energy, spectral centroid, 
spread, entropy and pulse clarity). Four features significantly predicted the 
pleasantness ratings (R2 =.42): the means of Key Clarity, Mode, Pitch and Attack 
Times. Thus the results show that features related to characteristics of harmony, pitch, 
and articulation contribute most to pleasantness.  
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Table 5. Combined audio and physiological features and standardized beta weights of the 
regression analysis for excitement and pleasantness 

Excitement   ȕ VIF Pleasantness         ȕ VIF 
RMS1 ** .16 2.28 Key clarity1 **       .46 1.00 
Spectrum Novelty1 ** -.21 1.59 Pitch1 **       .23 1.06 
Spectral Spread1 ** -.34 2.29 Key mode1 **      -.41 1.07 
Spectral Entropy1 ** .23 2.24 EMGZ3 **       .36 1.06 
Spectral Centroid1 ** 
SDNN2** 
Pulse clarity1** 

.26 
-.21 
.19 

1.40 
1.21 
1.57 

Attack Time1** 
Heart-rate4** 

     -.24 
-.22 

1.06 
1.13 

  Mean1 Minimum2 Derivative3 SpecLF4 
  R2 = .87 for Excitement. R2  = .56 for Pleasantness. * p<.05, ** p<.01 

Using only physiological features, the model provides an account of excitement 
with R2 =.55 (see Table 4). The standard deviation of the NN intervals (SDNN) in the 
heart rate signals contributes most to excitement, along with the max value of the 
BVP and the mean and minimum of the skin conductance and EMGz signals. The 
power spectrum of the heart rate in the high frequency band (0.15-0.4 Hz) also 
contributes to this dimension. For the pleasantness dimension the model provides R2 = 
.21 using the standard deviation of the heart rate signals and the minimum of the 
EMGc signals. Finally, using combined acoustical and physiological information 
(means of RMS energy, Spectral Centroid, Spread, Entropy, Pulse Clarity and the 
maximum value of SDNN), the model provides an account of excitement with R2 = 
.87. The corresponding estimates for pleasantness use acoustic features related to Key 
Clarity, Mode, Pitch and the attack slope, and physiological features related to the 
EMGz and heart rate (R2 = .56). 

6 Discussion 

In the present paper, the relationships among acoustic features and physiological 
features in emotional reactions to Romantic music were investigated. Our goal was to 
determine the importance of acoustic features in predicting the global emotional 
experience with music as measured with subjective ratings provided after each 
stimulus, and to explore the extent to which physiological activity may increase the 
prediction rate of emotion felt through peripheral feedback. A regression model based 
on a set of acoustic parameters and physiological features was systematically 
explored. The correlation analysis demonstrates that low- and mid-level acoustic 
features, such as RMS energy, Spectral Centroid, Spectral Spread, Spectral Entropy, 
and Pulse Clarity, significantly predict emotional excitement. The corresponding best 
features for the prediction of pleasantness are Key Clarity, Mode, Pitch and Attack 
Times. This result is in agreement with existing work on acoustic feature selection for 
emotion classification [10]. As far as the physiological features are concerned, the 
results indicate that features obtained from time and frequency analysis of the HRV 
series (SDNN, BVP), along with features of skin conductance, are decisive in the 
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prediction of participant ratings of excitement. Furthermore, features such as heart 
rate and corrugator EMG are important for pleasantness prediction. These findings are 
in agreement with previous research on music emotion recognition using 
physiological signals [26] and also support the findings of previous studies, according 
to which SC is linearly correlated to the intensity of arousal [22]. 

To the best of our knowledge a combination of audio and physiological features has 
not been employed in music emotion recognition tasks, and thus, we cannot compare 
our results with existing studies. There are, however, previous studies combining speech 
features and physiological responses for emotion recognition [33, 34]. The results of 
these studies show that the combination of speech and physiological features results in a 
moderate improvement of 3% for both valence and arousal. In our case the 
corresponding improvements are 3% and 14%, respectively, suggesting that the 
combination of acoustic and physiological features can provide more complementary 
information compared to the combination of speech and physiological features.  

Existing results show that combined acoustic features provide better prediction for 
arousal than for valence [11, 10]. Therefore, the significant increase of pleasantness 
prediction by employing both acoustic and physiological features in our study is 
noteworthy here. It seems that EMG measures and spectral features of HRV play a 
significant role for the correct differentiation of positive and negative valence, and 
thus contribute substantially to improved valence prediction. This result is of 
particular importance, as valence is an otherwise elusive and opaque dimension in 
music emotion research. Moreover, MIR approaches thus far have only considered 
objective acoustical/musical features in an emotion recognition task, thereby failing to 
account for the role of physiological responses in the evocation of subjective feelings.  
Thus, any attempt to model a listener’s affective state must also account for how 
subjective ratings of emotional experience may interact with the internal 
physiological state of the listening individual. Indeed, we hypothesize that our 
autonomic and somato-visceral reactions during music listening may influence the 
intensity and valence of our emotions through a process of peripheral feedback.  

7 Future Work 

There are several aspects in the work presented here that need to be addressed in 
future research. It remains to be investigated whether this particular model can be 
applied to other music-listening populations using other musical styles. Indeed, we 
believe that this approach could lead to fundamental advances in different areas of 
research because it may provide consistent descriptions of the emotional effects of 
particular musical stimuli. This, in turn, will have important implications for a number 
of disciplines, such as psychology and music therapy. In our study, feature-level 
fusion was employed. However, it appears that simply combining modalities with 
equal weighting does not always result in improved recognition accuracy. An 
alternative approach would be to decompose an emotion recognition problem into 
sub-problems, treating valence and arousal separately. For valence recognition, audio 
features could be used, whereas for arousal recognition physiological changes could 
be used.    
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