Space Industrialization and The Protection of Earth

The Shackleton Energy Company Propellant Depot and Infrastructure Program

WEF-McGill Workshop July 2013 Bringing Space Down to Earth

Cleared for Restricted Release

4th July 2013

"Fueling the Space Frontier"

Mission

Within a Decade

Secure access to over a billion tonnes of water ice located at the poles of the Moon

Open and expand new markets with space-based privately-financed depots supplying propellant in space at a paradigm shifting 10x cost advantage

Establish new infrastructure and business opportunities in space

Architecture Overview

Bryan Verste

Shackleton Energy Company

The Case for Space

Unlocking the Space Market

Historic Infrastructure Projects

a Energy Company

Shackleton Energy Company

The Investment Case

Frontier

Civilization reached its physical frontier over a century ago and now approaches its economic and resource limits

Frontier

1900 AD

Industrialization

1700 AD - 1900 AD

The very presence of physical, resource and economic frontiers has been fundamental to human evolution

Renaissances

2000 BC - 1500 AD

50000 BC - 5000 BC

Shackleton

Energy, Resources, Infrastructure

Energy

Industrial economic growth has been built upon energy, resource, infrastructure and transport

> The next infrastructure investment frontier will be beyond Earth's economic sphere

Economic Growth

Price Performance

Water in Space

Water in Space Solves Critical Societal Needs And Underpins an Historic Economic Opportunity

Shackleton

Population

Shackleton Energy Company

ſŔĨħſĬŔĨħſĬŔĨħſĬ ſŔĨħſĬŔĨħſĬŔĨħſĬ

Earth's ecosystem will strain under the population of 10 Billion by 2050

Resources

US Geological Survey, Adroit Resources, World Bureau of Metal Statistics, International Copper Study Group, Minormetals.com, Cordell et al (2009), Smil (2000), Silver Institute, BP Statistical Review of World Energy 2010

Shackleton Energy

Company

Energy

© SEC July 2013

Heavy Stuff

Launching the required solar power satellites from Earth is simply not feasible

Resulting in over 90% propellant mass of a surface to LEO launch vehicle

The Earth sits in a deep gravity-well surrounded by a thick atmosphere

Rockets have to expend massive energy to get to free space

Shackleton

Space Resources

Shackleton

Space Debris Mitigation

Shackleton

Planetary Protection

Providing a fleet of genuine heavy duty systems capable of asteroid deflection

And ultimately retrieval for additional in-space resource utilization Autonomous long duration planetary protection vehicles built in space

Using Lunar resources to provide the mass of space vehicle construction

SEC resupplies their propellant depots with Lunar polar water for operations

Shackleton

Cascading Civilization Benefits

Bryan Verste

Shackleton Energy Company

The Case for Space

Unlocking the Space Market

Historic Infrastructure Projects

a Energy Company

Shackleton Energy Company

The Investment Case

Apollo Space Model

Shackleton Energy Company

Agency Technology Development

Risk Reduction Foundation for Commercial Space Expansion

Mature Agency Space Model

Shackleton

Current Space Feasibility Gap

Budgetary Constraint

Shackleton

Energy Company

Optimism Bias

Compromised Infrastructure Minimal Production Scale and Cost Leverage Inability to establish end-to-end strategic planning Overbearing Quality Assurance & Overheads Extensive Operational Risk Profiles Time, Economy and Opportunity Loss

Current Space Feasibility Gap

Budgetary Optimism Feasibility Budgetary Optimism Feasibility Constraint Gap Bias Constraint Gap Bias Budgetary Optimism Feasibility Gap Constraint Bias Budgetary Optimism Feasibility Constraint Bias Gap Budgetary Optimism Feasibility Constraint Gap Bias Budgetary Optimism Feasibility Constraint Gap Bias Budgetary Optimism Feasibility Constraint Gap Bias Budgetary Optimism Feasibility Gap Constraint Bias Budgetary Optimism Feasibility Constraint Gap Bias Budgetary Optimism Feasibility Gap Constraint Bias Budgetary Optimism Feasibility Constraint Budgetary Optimism Gap Bias Feasibility Gap Constraint Bias Budgetary Optimism Feasibility Gap Constraint Bias Budgetary Optimism Feasibility Constraint Gap Bias

Shackleton Energy Company

Foundations of the Space Market

Commercial Spaceflight is Here

The Platform for New Space Markets

Shackleton Energy Model

Shackleton

Infrastructure Model

Shackleton Energy Company

The Case for Space

Unlocking the Space Market

Historic Infrastructure Projects

Energy Company

Shackleton Energy Company

The Investment Case

Bryan Verster

Founders

Dale Tietz

Chief Executive Officer

Former US Air Force officer and pilot. Pentagon Strategic Defense Initiative (Star Wars) acquisition program manager. Internationally-recognized development pioneer in unmanned aerospace systems and high tech business leader.

Bill Stone

Chairman and Chief Technology Officer

World-class explorer/ inventor/ engineer/ business developer. Dr. Stone has led scores of expeditions worldwide, developed advanced life support systems, autonomous robotics and space systems

Jim Keravala

Chief Operating Officer

International space systems director; planned and launched of over a dozen spacecraft. High tech entrepreneur; systems engineering and technology program management expertise.

Shackleton

Shackleton Energy Capability

A Team of 130 and growing

With 4,000 years of combined experience in aerospace, defense, launch, space systems, mining, operations and energy

Shackleton Energy Capability

Jim Keravala

Chief Operating Officer jim.keravala@shackletonenergy.com

© SEC July 2013