

Agriculture et Agroalimentaire Canada

Climate Change and Food Security

Agricultural Production under Climate Change

S. Gameda¹, B. Qian¹, P. Falloon², J. Gornall² ¹Eastern Cereal and Oilseed Research Centre Agriculture and Agri-Food Canada, Ottawa, Canada ²UK Met Office Hadley Centre, Exeter, UK

> McGill Conference on Global Food Security October 5 – 7, 2009 McGill University, Montreal, Canada

Climate Change and Implications for Agriculture

IPCC 2007

Warming of the climate system is unequivocal

- increases in global average air and ocean temperatures
- widespread melting of snow and ice
- rising global sea level
- Most of the observed increase in temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic GHG emissions
- Some projected changes of note for agriculture
 - > Increase in frequency of extreme events (heat waves, droughts, heavy precipitation)
 - > Decrease in water resources in many semi-arid areas

Climate Change Impacts on Canadian Agriculture

How will climate change affect agricultural production in Canada

- Growing season length
- Crop heat units
- Precipitation
- Water deficits

Climate Change Impacts on Canadian Agriculture

Canada 4th largest exporter, 5th largest importer of agricultural and food products

Canadian Prairies an important region for crop production

(80-85% of Canadian agricultural production)

Characteristics:

- > Annual temp
- Annual precip
- > ET
- Moisture Deficit
- 0 5 C <350 – >400 mm 500 – 700 mm
- 0 400 mm

Limiting Factors:

- Growing season length
- Crop heat units
- Moisture

GSL (Cool season crops)

Growing season length (GSL) based on minimum cardinal temperature for cool season crops (5°C)

Baseline (1961-1990):

➤ 110 – 155 days

2050s (2040-69 CGCM3 A1B):

- ≻ 105 160 days
 - Little change in growing season length for cool season crops such as small grain cereals (wheat, barley)

GSL (Warm season crops)

Growing season length (GSL) based on minimum cardinal temperature for warm season crops (10°C)

Baseline (1961-1990): ➤ 110 – 170 days 2050s (2040-69 CGCM3 A1B):

125 – 195 days

- Substantial *change in growing season length for warm season crops such as corn, soybeans*
- Potential for shift to warm season crops in Canadian Prairies

Crop Heat Units (CHU)

Crop Heat Units (CHU) accumulated over the growing season for warm season crops

Baseline (1961-1990):

> 1350 – 2850

2050s (2040-69 CGCM3 A1B):

> 1930 – 3600

- Substantial increase in CHU
- Corroborates potential for shift to warm season crops in Canadian Prairies if other factors (soil, moisture) not limiting

WD (Cool season crops)

P-PE accumulated over the growing season for cool season crops

Baseline (1961-1990):
▶ 110 – 395 mm
2050s (2040-69 CGCM3 A1B):
▶ 60 – 375 mm

• Little change (even slight reduction) in projected water deficits for cool season crops such as small grain cereals

WD (Warm season crops)

P-PE accumulated over the growing season for warm season crops

Baseline (1961-1990):
▶ 75 – 475 mm
2050s (2040-69 CGCM3 A1B):
▶ 50 – 575 mm

• *Relatively small but discernable increase* (up to 100 mm) in projected water deficits for warm season crops

Implications for Crop Production

These projections suggest

Potential increases in growing season length, particularly for warm season crops (corn, soybeans)

- Substantive increases in crop heat units to allow shifts to higher value crops
- Manageable increases in growing season water deficits implying no significant increase on crop moisture stress

Implications for Crop Production

These findings suggest that climate change could be beneficial for the production of annual crops in Canada

However

- > Year to year variability not taken into account
- Historical and cyclical extreme weather events, mainly droughts, that have significantly affected crop production, and farm income and livelihood, have not been captured in climate change projections

Implications for Crop Production

Significant droughts occur relatively frequently (e.g. 1984, 1996, 2001)

- The 2001/02 drought is estimated to have resulted in economic losses in excess of \$5 billion
- Severe drought in 2009 leading to crop yield reductions and crop failures – economic costs still being tallied
- It is projected that the severity and frequency of these events will likely increase under climate change
- Implications for food security, both nationally and internationally, are significant

2009

IPCC Projections for Agriculture in Africa

- Temperature increases of 2-5°C (beyond optimal ranges for crop production)
- Rainfall reductions of as much as 50%
- Indications of "alarming" losses in areas suitable for agricultural production

Important Factors:

- Soil resources
- Rainfall (onset, seasonal amount, intensity)
- Temperature
- Year to year variability

GCMs weak in simulating

- > Precipitation
- > ENSO and similar drivers of climate variability
- > Persistence and intensity of extreme events

Implications of Temperature Change (IPCC)

Our findings suggest increased yields over the range of CHU projected for the Canadian Prairies

Evidence of Change from Current Climate

Rainfall onset, seasonal amounts and intensity a critical factor for agriculture in low latitudes

The onset and rainfall amounts of African and Asian monsoons have manifested increased variability with associated increases in risks to food security

- Greater links with ENSO, Indian Ocean SST
- Reports of significant delays in crop planting for the 2009 season
 Evidence of significant reductions in surface and groundwater resources

Impacts of Current Climate

Percent of Normal Precipitation (%) Based on NOAA/CPC RFE Climatology Method February 1 2009 — September 29 2009

The hunger zone

A food crisis is marching across East Africa and the Horn, where 24 million people are lacking basic food or are dependent on relief supplies.

Evidence of significant rainfall departures and risks to food security

NOAA/CPC, FEWSnet

Impacts of Current Climate

Drought Puts Focus on a Side of India Left Out of Progress

Kenyan farmers watch their livelihoods – and food supply – disappear

Climate change is believed to be at the heart of the region's droughts.

East Africa Drought In Fifth Year, Millions Hungry

Some impacts reported in the news:

- 24M in E. Africa at severe risk of hunger and destitution
- failed or unpredictable rains
- wet seasons becoming shorter
- droughts once every 2, 3 years
- severe groundwater depletion

Sources: Globe and Mail, New York Times

Recent Reports on Climate Change, Food Security

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE sustainable solutions for ending hunger and poverty Supported by the CGIAR

FOOD POLICY

CLIMATE CHANGE

Impact on Agriculture and Costs of Adaptation

Summary

- Projected climatologies indicate generally beneficial agricultural production conditions for Canada, but harmful ones for regions in low latitudes
- The projected climate for the Canadian Prairies does not capture the cyclical droughts that occur in the region
- Climate models show low skill in simulating climate variability and extreme climatic events – events closely linked to food security
- Food security will be increasingly challenged under climate change, particularly in the low latitudes, which currently experience substantial food insecurity

