Towards the development of a forage based feeding system for the small ruminant sector in St Kitts and Nevis

A Hosein^{1,} S Borucki², I Watts³, J Berry³ and L E Phillip²

¹Caribbean Agricultural Research and Development Institute (CARDI), Trinidad and Tobago Unit; ²Animal Science Department, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada; ³Department of Agriculture, Ministry of Agriculture, Marine Resources and Cooperatives, St. Kitts and Nevis.

CIFSRF - IDRC - DFATD- CARICOM Food Security Project

Presentation outline

- Introduction
 - Small ruminants
 - Forages
 - St Kitts and Nevis
- Research problem and objectives
- Interventions
- Results
- Conclusions
- Way forward

INTRODUCTION

Small Ruminants

Towards being food secure

- Food / fibre/ income
- Wide variety of herbage, landscape
- Lower investment costs than cattle
- High quality protein source

Small ruminants

- Over 8,900 tonnes of small ruminant meat imported into
 CARICOM member states in 2011 valued at over US\$ 43M
- Demand for small ruminant products expected to increase
- Conditions in the region are suited for SR production
- In recognition of its importance to rural development and poverty alleviation, agricultural diversification and regional food security, CARICOM governments designated the small ruminant industry as a priority area for development

Small Ruminants

CONSTRAINTS

Policy

Absence of clear-cut policy on small ruminants/ or no implementation if they exist Problems in land tenure (unsuitable or high cost)
Inadequate measures in place to deal with praedial larceny

Production

Natural disasters
Unavailable quality breeding stock or inadequate numbers
FEED. High cost of concentrates, limited supply of agro / industrial by-products.
Deficiencies in the management practices (i.e. pre weaning mortality)

Support systems (credit/ technical or extension) inadequate

Marketing

Small ruminant marketing is currently mainly ad hoc Unbridled importation of cheap and poor quality old meat Poor support infrastructures for slaughtering and meat processing to meet intl standards No established meat quality standards

Agricultural Extension and Economics Dept. UWI (2006)

Forages

 Forages: Grasses, legumes, fodder crops or any other crop used for feeding livestock to supply dietary needs

Tropical grasses

- Major limitation is maintaining at a high nutritive value
- Diverse growth habits
- Generally adapted to high fertility soils
- Respond well to applications of N
- Able to withstand varying levels of water-logging and drought
- Introduced and improved spp. are usually more nutritious

Benefits of forage based feeding systems

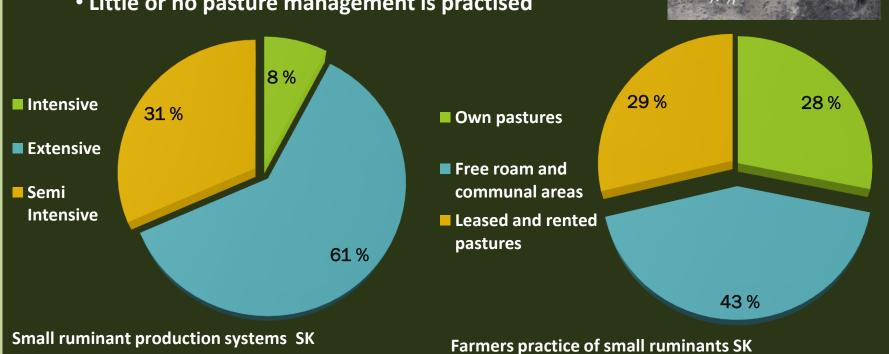
- Controlling soil erosion
- Improving soil fertility
- Less reliance on costly concentrates
- Can be dried and pelleted or used as meal
- Roughage required for proper functioning of the rumen
- Marketing tool???
- Must be nutritious

Considerations

- Species grown and land area available
- Reliability of rainfall/irrigation
- Availability of other feed resources
- Number of animal units
- Need for selective grazing
- Avoiding overgrazing

FRAMEWORK – St. Kitts and Nevis

- Closure of sugar industry
- Available land, need for employment
- Agricultural Development Strategy MoAMR



- CARICOM net importer
- Consumer demands

FRAMEWORK – St. Kitts and Nevis - Survey results of CARDI study (2008) show:

- Almost 100 % of SR farmers graze their animals
- More than 72% (goat) and 79 % (sheep) rely only natural pastures
- Pastures mainly local, scrub vegetation of low quality.
- Little or no pasture management is practised

Agricultural Diversification: Small Ruminants

GAPS and OPPORTUNITIES in SR Production

- On going breeding units and Veterinary SS Projects SK
- High costs of grain (worldwide food crisis)
- Available land (SK)

Forage based production systems

Research Problem and Objectives

Agricultural Diversification: Small Ruminants

Research problem

- Low quantity and quality of forages
- Seasonal availability
- Poor nutrition

INTERVENTIONS

- 1) Establishment of forage crops
- 2) Management of forages
- 3) Harvesting and ensiling technique
- 4) Animal performance studies
- 5) Training and outreach

Specific objectives:

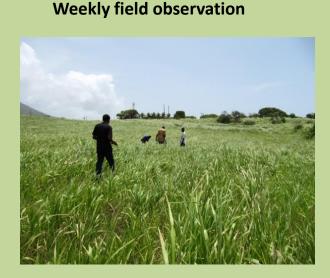
- a) to incorporate <u>mulato grass and forage sorghum into</u> feeding systems as alternative species to increase forage production and quality;
- to introduce <u>forage conservation</u> techniques to balance the periods of forage scarcity with the conserved forage from periods of overproduction;

ESTABLISHMENT OF FORAGES,

MANAGEMENT, SILAGE PREPARATION

Small Ruminants: Establishment of forages: January to June 2012

- Management / Agronomic Practices for Successful Establishment
- Data collection, observations and sampling



MATERIALS AND METHODS Forage Management

Agronomic decisions	Forage Sorghum		Mulato II		
Variety	Brown mid-rib hybrid, Great Scott TX		Mulato II, Tropical Seeds FL		
Area	2 hectares		2 hectares		
Planting date and density	March 2 nd 2012	November 2 nd 2012	February 3 rd 2012, April 19 th 2012		
	22 kg seed / ha	22 and 11 kg seed / ha	11 kg and 18 kg seeds / ha;		
Fertilization	No pre-plant fertilization; 227 kg/ha at 52 d NPK (15:15:15)	Pre-plant fertilization with 110 kg urea/ha;	a. No pre-plant fertilization or during growth until April 2012b. 110 kg/ha NPK (20:10:10) and 200 kg urea/ha after harvest or brush cut (with rain)		
Harvest	May 24, 2012	January 25, 2013	1 st harvest: July 27, 2012 2 nd harvest: November 15, 2012 Brush cut every 6 wk		
Weed control	No pre-plant or growth stage weed control	pre-emergent herbicide and post emergent broad leaf control	No pre-plant or growth stage weed control (only re-seeded section); Post emergent broad leaf control		

Dry season MULATO II establishment

Activity: RE-SEEDED AREA

Land preparation

Ploughed, harrowed, rotorvated to a fine tilth

2X seeding density to account for low germination rate;
Decreased depth of seeding
2.5 – 3.8 cm depth, with beet seed plate

Incorporated fertilizer

NPK (20:10:10) rotorvated into soil at rate of 110 kg / ha;

- -Strategic re-fertilization with
- -N fertiliser with the rain

-incorporated herbicide pre-emergent herbicide pendimethalin (Prowl) applied 2 wk before planting; 2,4 (D ichlorophenoxyacetic acid) applied for broad leaves (July 5, 2012)

ESTABLISHMENT: MULATO GRASS

Seeded Mulato grass area at Belle Vue

Emerging Mulato grass at Belle Vue

Measurements and sampling summary

FORAGE

(mulato and forage sorghum)

Forage establishment - (quadrat method) (height, soil coverage, # tillers, weeds)

Plant maturity: physiological state

Weed development (area covered, type)

Kg of biomass produced (quadrat method)

Silage (mulato and forage sorghum)

Kg forage ensiled

Successful storage, post harvest losses (Kg spoiled forage)

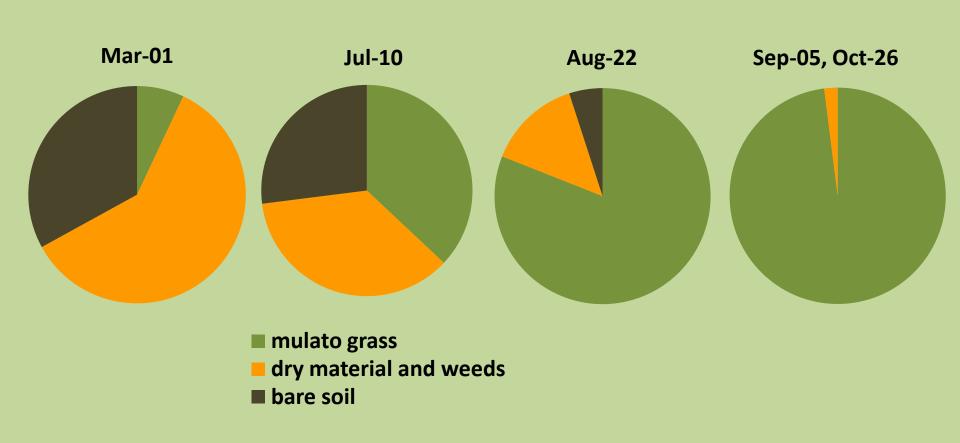
Monthly pH

Environmental:

weed development, f. sorghum invasiveness, covered soil erosion in forage crop lands, composition and proportion of natural forage spp

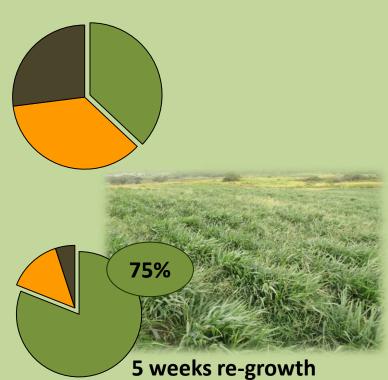
Results

Results



RESULTS ESTABLISHMENT OF Mulato grass

% of area covered by mulato grass along the year


RESULTS

Mulato II establishment

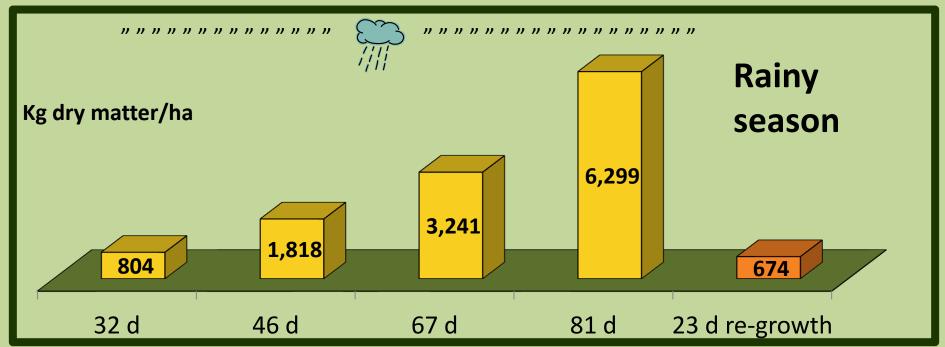
Area covered %

- **■** mulato grass
- ☐ dry material and weeds
- **■** bare soil

RESULTS BIOMASS production of Mulato II

CARICOM P. July 10, 2012 Belle Vue - St. Kitts

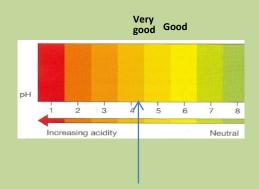
CARICOM P. August 22, 2012 Belle Vue - St. Kitts



Research plots (2007-08) ^A
CARDI Trinidad/ SFC Research Station

RESULTS BIOMASS Production Forage Sorghum

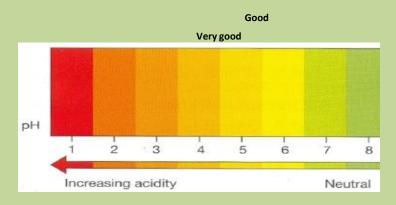
RESULTS Silage Production Forage Sorghum



Methodology: harvest, filling, compaction and storage

4.21 (6 weeks)

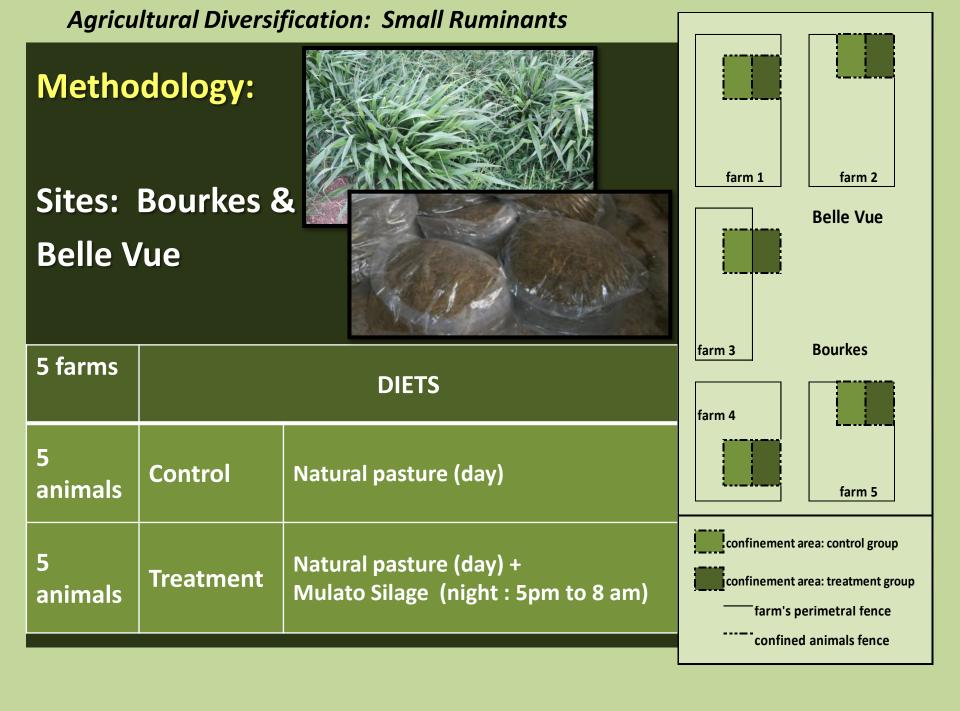
RESULTS Silage Production Mulato grass


Date of silage preparation	Date of Measurement	Days of conservation	рН	Conditions of preservation
July 27, 2012	September 20, 2012	1 month	5.64	acceptable
July 27, 2012	January 22,2013	6 months	4.47	very good
July 27, 2012	February 20, 2013	7 months	4.5	very good
November 10, 2012	January 22,2013	2 months	4.6	good
November 10, 2012	January 22,2013	2 months	4.95	good
February 2013	February 20, 2013	3 weeks	4.32	very good
February 2013	February 20, 2013	3 weeks	8.32	spoiled

RESULTS silage conservation

FORAGE SORGHUM silage, pH measurements

Date of silage preparation	Date of Measurement	Days of silage conservation	рН	Conditions of preservation
May 24, 2012	July 10, 2012	1 month	4.21	very good
January 22, 2012	February 20, 2013	1 month	4.33	very good



RESULTS

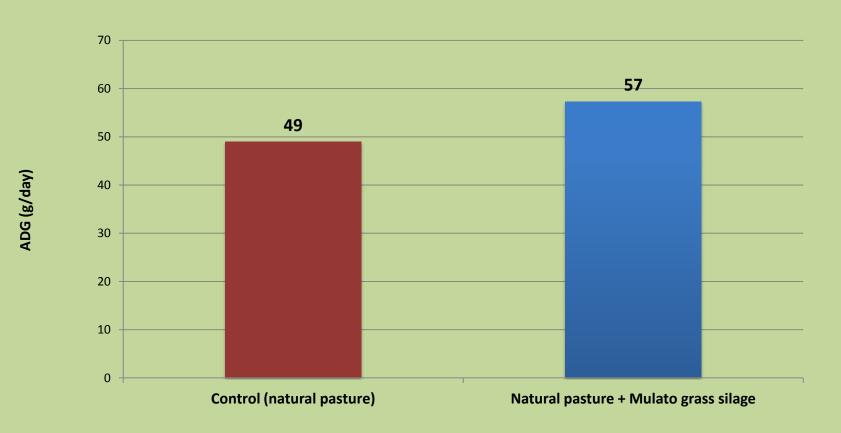
Forage harvested and stored

FORAGES	Total established	Ensiled forage (kg)
Forage sorghum Cycle One Dry Season	2.0 has (5 acres)	23,595
Forage sorghum Cycle One Rainy Season	2.0 has (5 acres)	3,243
Mulato grass Dry Season	2.0 has (5 acres)	3,060
Mulato grass Rainy Season	2.0 has (5 acres)	6,050

ANIMAL PERFORMANCE

Agricultural Diversification: Small Ruminants

Measurements summary:


Live body weight, change

Consumption (offer - refused)

Average daily gain

RESULTS Animal Performance Studies

Daily gain (96 d after weaning) of sheep supplemented with Mulato grass silage in St. Kitts.

TRAINING AND OUTREACH

Training and Outreach activities

- Trained field personnel in small ruminants systems
 - Training sessions conducted in 2012
 - Topics included:
 - Small Ruminant Management: Breeds and Breeding, Feeds and Feeding and Health Management
 - Tropical forage establishment, production, conservation and utilisation focusing on Mulato II and Forage Sorghum
 - Data collection
 - Target audience: Project officers, extension officers, field workers and private ruminant farmers. Total of 19 persons.
- Project led to the establishment of 20 acres of Mulato II on 5 SR farms.

CONCLUSIONS

 Mulato II and Forage Sorghum can be grown and ensiled successfully in SK which will increase year round availability of good quality forages

Reduced dependence on grains and poor quality forages will increase productivity

Technology transfer through training and demonstration

"Impact of interventions on food security in the region"

Possible impacts/outcomes

Increase in quality and quantity of forages

 Reduced seasonal shortages through the introduction of a forage conservation technique

Creation of downstream activities like commercial forage conservation/sales

 Increased farmers income through lower cost of production and increased productivity

Possible impacts/outcomes

- Increased supply of animal protein in the market place, reduction of imports
- Appropriate farm model for the region
- Alternate use for underutilized land in SK: sustainable agriculture
- Mechanized service to attract women interest in small ruminants production (reduce effects of heavy duties of cut & carry)

Challenges

- Hurricane Rafael
- Management of the silage bags
- Forage management

Way forward

 Evaluate the impact of supplemental feeding of mulatto grass silage and WBG (as top dress) on the productivity of sheep in the St. Kitts (in collaboration with Ross University);

 Evaluate the impact of the experimental diets on parasitic load and health condition of sheep (in collaboration with Ross University);

Way forward

 Continue building capacity in forage establishment and management. Possible adoption of technologies successful in other countries of the region eg systems utilising Trichantera, Leucaena, Gliricidia, Mulberry

Building strong farmers groups/association

Thank you,

SMALL RUMINANTS TEAM

- J. Berry, I. Watts, R. Guishard, L. Henry, DEPT. AGRICULTURE, St. Kitts
- A. Hosein and N. Gibson, CARDI
- S. Borucki and L. Phillip, McGill University

ACKNOWLEDGEMENTS

Canada's International Development Research
Centre (IDRC) with the financial support
of the Government of Canada provided
Through the Department of Foreign Affairs, Trade and
Development Canada (DFATD).

